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The author discusses the general principles underlying quantum field theory and attempts to identify
its most profound consequences. The deepest of these consequences result from the infinite number
of degrees of freedom invoked to implement locality. A few of quantum field theory’s most striking
successes, both achieved and prospective are mentioned, and possible limitations of the theory are

viewed in the light of its history. [S0034-6861(99)01102-2]

I. SURVEY

Quantum field theory is the framework in which the
regnant theories of the electroweak and strong interac-
tions, which together form the standard model, are for-
mulated. Quantum electrodynamics (QED), besides
providing a complete foundation for atomic physics and
chemistry, has supported calculations of physical quan-
tities with unparalleled precision. The experimentally
measured value of the magnetic dipole moment of the
muon,

(80— 2)exp=233 184 600 (1680)x 10711, @

for example, should be compared with the theoretical
prediction

(8= 2) theor=233 183 478 (308)x10~!! 2

(see the article by Hughes and Kinoshita in this vol-
ume).

In quantum chromodynamics (QCD) we cannot, for
the forseeable future, aspire to comparable accuracy.
Yet QCD provides different, and at least equally im-
pressive, evidence for the validity of the basic principles
of quantum field theory. Indeed, because in QCD the
interactions are stronger, QCD manifests a wider variety
of phenomena characteristic of quantum field theory.
These include especially running of the effective cou-
pling with distance or energy scale and the phenomenon
of confinement. QCD has supported, and rewarded with
experimental confirmation, both heroic calculations of
multiloop diagrams and massive numerical simulations
of (a discretized version of) the complete theory.

Quantum field theory also provides powerful tools for
condensed-matter physics, especially in connection with
the quantum many-body problem as it arises in the
theory of metals, superconductivity, the low-
temperature behavior of the quantum liquids He® and
He*, and the quantum Hall effect, among others. Al-
though for reasons of space and focus I shall not attempt
to do justice to this aspect here, the continuing inter-
change of ideas between condensed-matter and high-
energy theory, through the medium of quantum field
theory, is a remarkable phenomenon in itself. A partial
list of historically important examples includes global
and local spontaneous symmetry breaking, the renor-
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malization group, effective field theory, solitons, instan-
tons, and fractional charge and statistics.

It is clear, from all these examples, that quantum field
theory occupies a central position in our description of
Nature. It provides both our best working description of
fundamental physical laws and a fruitful tool for investi-
gating the behavior of complex systems. But the enu-
meration of examples, however triumphal, serves more
to pose than to answer more basic questions: What are
the essential features of quantum field theory? What
does quantum field theory add to our understanding of
the world, that was not already present in quantum me-
chanics and classical field theory separately?

The first question has no sharp answer. Theoretical
physicists are very flexible in adapting their tools, and no
axiomization can keep up with them. However, I think it
is fair to say that the characteristic, core ideas of quan-
tum field theory are twofold. First, that the basic dy-
namical degrees of freedom are operator functions of
space and time—quantum fields, obeying appropriate
commutation relations. Second, that the interactions of
these fields are local. Thus the equations of motion and
commutation relations governing the evolution of a
given quantum field at a given point in space-time
should depend only on the behavior of fields and their
derivatives at that point. One might find it convenient to
use other variables, whose equations are not local, but in
the spirit of quantum field theory there must always be
some underlying fundamental, local variables. These
ideas, combined with postulates of symmetry (e.g., in the
context of the standard model, Lorentz and gauge in-
variance) turn out to be amazingly powerful, as will
emerge from our further discussion below.

The field concept came to dominate physics starting
with the work of Faraday in the mid-nineteenth century.
Its conceptual advantage over the earlier Newtonian
program of physics, to formulate the fundamental laws
in terms of forces among atomic particles, emerges when
we take into account the circumstance, unknown to
Newton (or, for that matter, Faraday) but fundamental
in special relativity, that influences travel no faster than
a finite limiting speed. For then the force on a given
particle at a given time cannot be deduced from the po-
sitions of other particles at that time, but must be de-
duced in a complicated way from their previous posi-
tions. Faraday’s intuition that the fundamental laws of
electromagnetism could be expressed most simply in
terms of fields filling space and time was, of course, bril-
liantly vindicated by Maxwell’s mathematical theory.

The concept of locality, in the crude form that one can
predict the behavior of nearby objects without reference
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to distant ones, is basic to scientific practice. Practical
experimenters—if not astrologers—confidently expect,
on the basis of much successful experience, that after
reasonable (generally quite modest) precautions to iso-
late their experiments, they will obtain reproducible re-
sults. Direct quantitative tests of locality, or rather of its
close cousin causality, are afforded by dispersion rela-
tions.

The deep and ancient historic roots of the field and
locality concepts provide no guarantee that these con-
cepts remain relevant or valid when extrapolated far be-
yond their origins in experience, into the subatomic and
quantum domain. This extrapolation must be judged by
its fruits. That brings us, naturally, to our second ques-
tion.

Undoubtedly the single most profound fact about Na-
ture that quantum field theory uniquely explains is the
existence of different, yet indistinguishable, copies of el-
ementary particles. Two electrons anywhere in the uni-
verse, whatever their origin or history, are observed to
have exactly the same properties. We understand this as
a consequence of the fact that both are excitations of the
same underlying ur-stuff, the electron field. The electron
field is thus the primary reality. The same logic, of
course, applies to photons or quarks, or even to compos-
ite objects such as atomic nuclei, atoms, or molecules.
The indistinguishability of particles is so familiar, and so
fundamental to all of modern physical science, that we
could easily take it for granted. Yet it is by no means
obvious. For example, it directly contradicts one of the
pillars of Leibniz’ metaphysics, his “principle of the
identity of indiscernables,” according to which two ob-
jects cannot differ solely in number. And Maxwell
thought the similarity of different molecules so remark-
able that he devoted the last part of his Encyclopedia
Brittanica entry on atoms—well over a thousand
words—to discussing it. He concluded that “‘the forma-
tion of a molecule is therefore an event not belonging to
that order of nature in which we live ... it must be re-
ferred to the epoch, not of the formation of the earth or
the solar system ... but of the establishment of the exist-
ing order of Nature.”

The existence of classes of indistinguishable particles
is the necessary logical prerequisite to a second pro-
found insight from quantum field theory: the assignment
of unique quantum statistics to each class. Given the in-
distinguishability of a class of elementary particles, and
complete invariance of their interactions under inter-
change, the general principles of quantum mechanics
teach us that solutions forming any representation of the
permutation symmetry group retain that property in
time, but do not constrain which representations are re-
alized. Quantum field theory not only explains the exis-
tence of indistinguishable particles and the invariance of
their interactions under interchange, but also constrains
the symmetry of the solutions. For bosons only the iden-
tity representation is physical (symmetric wave func-
tions), for fermions only the one-dimensional odd repre-
sentation is physical (antisymmetric wave functions).
One also has the spin-statistics theorem, according to
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which objects with integer spin are bosons, whereas ob-
jects with half odd-integer spin are fermions. Of course,
these general predictions have been verified in many ex-
periments. The fermion character of electrons, in par-
ticular, underlies the stability of matter and the structure
of the periodic table.

A third profound general insight from quantum field
theory is the existence of antiparticles. This was first in-
ferred by Dirac on the basis of a brilliant but obsolete
interpretation of his equation for the electron field,
whose elucidation was a crucial step in the formulation
of quantum field theory. In quantum field theory, we
reinterpret the Dirac wave function as a position- (and
time-) dependent operator. It can be expanded in terms
of the solutions of the Dirac equation, with operator
coefficients. The coefficients of positive-energy solutions
are operators that destroy electrons, and the coefficients
of the negative-energy solutions are operators that cre-
ate positrons (with positive energy). With this interpre-
tation, an improved version of Dirac’s hole theory
emerges in a straightforward way. (Unlike the original
hole theory, it has a sensible generalization to bosons
and to processes in which the number of electrons minus
positrons changes.) A very general consequence of
quantum field theory, valid in the presence of arbitrarily
complicated interactions, is the CPT theorem. It states
that the product of charge conjugation, parity, and time
reversal is always a symmetry of the world, although
each may be—and is—violated separately. Antiparticles
are strictly defined as the CPT conjugates of their cor-
responding particles.

The three outstanding facts we have discussed so far,
the existence of indistinguishable particles, the phenom-
enon of quantum statistics, and the existence of antipar-
ticles, are all essentially consequences of free quantum
field theory. When one incorporates interactions into
quantum field theory, two additional general features of
the world immediately become brightly illuminated.

The first of these is the ubiquity of particle creation
and destruction processes. Local interactions involve
products of field operators at a point. When the fields
are expanded into creation and annihilation operators
multiplying modes, we see that these interactions corre-
spond to processes wherein particles can be created, an-
nihilated, or changed into different kinds of particles.
This possibility arises, of course, in the primeval quan-
tum field theory, quantum electrodynamics, where the
primary interaction arises from a product of the electron
field, its Hermitean conjugate, and the photon field. Pro-
cesses of radiation and absorption of photons by elec-
trons (or positrons), as well as electron-positron pair
creation, are encoded in this product. Just because the
emission and absorption of light is such a common ex-
perience, and electrodynamics such a special and famil-
iar classical field theory, this correspondence between
formalism and reality did not initially make a big im-
pression. The first conscious exploitation of the potential
for quantum field theory to describe processes of trans-
formation was Fermi’s theory of beta decay. He turned
the procedure around, inferring from the observed pro-
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cesses of particle transformation the nature of the un-
derlying local interaction of fields. Fermi’s theory in-
volved creation and annihilation not of photons, but of
atomic nuclei and electrons (as well as neutrinos)—the
ingredients of “matter.” It began the process whereby
classic atomism, involving stable individual objects, was
replaced by a more sophisticated and accurate picture.
In this picture it is only the fields, and not the individual
objects they create and destroy, that are permanent.

The second feature that appears from incorporating
interaction into quantum field theory is the association
of forces and interactions with particle exchange. When
Maxwell completed the equations of electrodynamics,
he found that they supported source-free electromag-
netic waves. The classical electric and magnetic fields
thus took on a life of their own. Electric and magnetic
forces between charged particles are explained as due to
one particle’s acting as a source for electric and mag-
netic fields, which then influence other particles. With
the correspondence of fields and particles, as it arises in
quantum field theory, Maxwell’s discovery corresponds
to the existence of photons, and the generation of forces
by intermediary fields corresponds to the exchange of
virtual photons. The association of forces (or, more gen-
erally, interactions) with exchange of particles is a gen-
eral feature of quantum field theory. It was used by
Yukawa to infer the existence and mass of pions from
the range of nuclear forces, more recently in elec-
troweak theory to infer the existence, mass, and proper-
ties of W and Z bosons prior to their observation, and in
QCD to infer the existence and properties of gluon jets
prior to their observation.

The two additional outstanding facts we just dis-
cussed, the possibility of particle creation and destruc-
tion and the association of particles with forces, are es-
sentially consequences of classical field theory,
supplemented by the connection between particles and
fields that we learn from free field theory. Indeed, clas-
sical waves with nonlinear interactions will change form,
scatter, and radiate, and these processes exactly mirror
the transformation, interaction, and creation of particles.
In quantum field theory, they are properties one sees
already in tree graphs.

The foregoing major consequences of free quantum
field theory, and of its formal extension to include non-
linear interactions, were all well appreciated by the late
1930s. The deeper properties of quantum field theory,
which will form the subject of the remainder of this pa-
per, arise from the need to introduce infinitely many
degrees of freedom, and the possibility that all these de-
grees of freedom are excited as quantum-mechanical
fluctuations. From a mathematical point of view, these
deeper properties arise when we consider loop graphs.

From a physical point of view, the potential pitfalls
associated with the existence of an infinite number of
degrees of freedom first showed up in connection with
the problem that led to the birth of quantum theory, that
is, the ultraviolet catastrophe of blackbody radiation
theory. Somewhat ironically, in view of later history, the
crucial role of the quantum theory here was to remove
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the disastrous consequences of the infinite number of
degrees of freedom possessed by classical electrodynam-
ics. The classical electrodynamic field can be decom-
posed into independent oscillators with arbitrarily high
values of the wave vector. According to the equiparti-
tion theorem of classical statistical mechanics, in thermal
equilibrium at temperature T each of these oscillators
should have average energy k7. Quantum mechanics
alters this situation by insisting that the oscillators of
frequency w have energy quantized in units of Zw. Then
the high-frequency modes are exponentially suppressed
by the Boltzmann factor, and instead of k7 receive

e~ (holkT)
1= RalkD) -

The role of the quantum, then, is to prevent accumula-
tion of energy in the form of very-small-amplitude exci-
tations of arbitrarily high frequency modes. It is very
effective in suppressing the thermal excitation of high-
frequency modes.

But while removing arbitrarily small-amplitude excita-
tions, quantum theory introduces the idea that the
modes are always intrinsically excited to a small extent,
proportional to #. This so-called zero-point motion is a
consequence of the uncertainty principle. For a har-
monic oscillator of frequency w, the ground-state energy
is not zero, but 3% w. In the case of the electromagnetic
field this leads, upon summing over its high-frequency
modes, to a highly divergent total ground-state energy.
For most physical purposes the absolute normalization
of energy is unimportant, and so this particular diver-
gence does not necessarily render the theory useless.! It
does, however, illustrate the dangerous character of the
high-frequency modes, and its treatment gives a first in-
dication of the leading theme of renormalization theory:
we can only require—and generally will only obtain—
sensible, finite answers when we ask questions that have
direct, operational physical meaning.

The existence of an infinite number of degrees of free-
dom was first encountered in the theory of the electro-
magnetic field, but it is a general phenomenon, deeply
connected with the requirement of locality in the inter-
actions of fields. For in order to construct the local field
(x) at a space-time point x, one must take a super-
position

d*k .
W= [ o UR) G)

o

that includes field components 7(k) extending to arbi-
trarily large momenta. Moreover, in a generic interac-
tion

'One would think that gravity should care about the absolute
normalization of energy. The zero-point energy of the electro-
magnetic field, in that context, generates an infinite cosmologi-
cal constant. This might be cancelled by similar negative con-
tributions from fermion fields, as occurs in supersymmetric
theories, or it might indicate the need for some other profound
modification of physical theory.
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we see that a low-momentum mode k;~0 will couple
without any suppression factor to high-momentum
modes k, and k3~ —k,. Local couplings are “hard” in
this sense. Because locality requires the existence of in-
finitely many degrees of freedom at large momenta, with
hard interactions, ultraviolet divergences similar to the
ones cured by Planck, but driven by quantum rather
than thermal fluctuations, are never far off-stage. As
mentioned previously, the deeper physical consequences
of quantum field theory arise from this circumstance.

First of all, it is much more difficult to construct non-
trivial examples of interacting relativistic quantum field
theories than purely formal considerations would sug-
gest. One finds that the consistent quantum field theories
form a quite limited class, whose extent depends sensi-
tively on the dimension of space-time and the spins of the
particles involved. Their construction is quite delicate,
requiring limiting procedures whose logical implementa-
tion leads directly to renormalization theory, the run-
ning of couplings, and asymptotic freedom.

Secondly, even those quantum theories that can be con-
structed display less symmetry than their formal proper-
ties would suggest. Violations of naive scaling relations—
that is, ordinary dimensional analysis—in QCD, and of
baryon number conservation in the standard elec-
troweak model are examples of this general phenom-
enon. The original example, unfortunately too compli-
cated to explain fully here, involved the decay process
m'— vy, for which chiral symmetry (treated classically)
predicts much too small a rate. When the correction in-
troduced by quantum field theory (the so-called
“anomaly”’) is retained, excellent agreement with ex-
periment results.

These deeper consequences of quantum field theory,
which might superficially appear rather technical, largely
dictate the structure and behavior of the standard
model—and therefore of the physical world. My goal in
this preliminary survey has been to emphasize their pro-
found origin. In the rest of the article I hope to convey
their main implications, in as simple and direct a fashion
as possible.

II. FORMULATION

The physical constants £ and ¢ are so deeply embed-
ded in the formulation of relativistic quantum field
theory that it is standard practice to declare them to be
the units of action and velocity, respectively. In these
units, of course, #=c=1. With this convention, all physi-
cal quantities of interest have units which are powers of
mass. Thus the dimension of momentum is (mass)' or
simply 1, since massX ¢ is a momentum, and the dimen-
sion of length is (mass) ~! or simply — 1, since 7 c/mass is
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a length. The usual way to construct quantum field theo-
ries is by applying the rules of quantization to a con-
tinuum field theory, following the canonical procedure
of replacing Poisson brackets by commutators (or, for
fermionic fields, anticommutators). The field theories
that describe free spin-0 or free spin-1/2 fields of mass
m, u, respectively, are based on the Lagrangian densi-
ties
1 m?
Lo(x)= 5 0a(x)7"$(x) = 5= $(x)%, 5)

Lip(x)= () (i y¥d0— ) h(x). (6)

Since the action [d*xL has mass dimension 0, the
mass dimension of a scalar field like ¢ is 1 and of a
spinor field like ¢ is 3. For free spin-1 fields the La-
grangian density is that of Maxwell,

1
L1(x)= = 7 (9,4 (x) = 9pA o(x)) (AL (x) = IPA%(x)),
™)

so that the mass dimension of the vector field A is 1. The
same result is true for non-Abelian vector fields (Yang-
Mills fields).

Thus far all our Lagrangian densities have been qua-
dratic in the fields. Local interaction terms are obtained
from Lagrangian densities involving products of fields
and their derivatives at a point. The coefficient of such a
term is a coupling constant and must have the appropri-
ate mass dimension, so that the Lagrangian density has
mass dimension 4. Thus the mass dimension of a
Yukawa coupling y, which multiplies the product of two
spinor fields and a scalar field, is zero. Gauge couplings
g arising in the minimal coupling procedure d,—d,
+igA, are also clearly of mass dimension zero.

The possibilities for couplings with non-negative mass
dimension are very restricted. This fact is quite impor-
tant, for the following reason. Consider the effect of
treating a given interaction term as a perturbation. If the
coupling « associated with this interaction has negative
mass dimension —p, then successive powers of it will
occur in the form of powers of kA”, where A is some
parameter with dimensions of mass. Because, as we have
seen, the interactions in a local field theory are hard, we
can anticipate that A will characterize the largest mass
scale we allow to occur (the cutoff) and will diverge to
infinity as the limit on this mass scale is removed. So we
expect that it will be difficult to make sense of funda-
mental interactions having negative mass dimensions, at
least in perturbation theory. Such interactions are said
to be nonrenormalizable.

The standard model is formulated entirely using
renormalizable interactions. It has been said that this is
not in itself a fundamental fact about nature. For if non-
renormalizable interactions occurred in the effective de-
scription of physical behavior below a certain mass scale,
it would simply mean that the theory must change its
nature—presumably by displaying new degrees of
freedom—at some larger mass scale. If we adopt this
point of view, the significance of the fact that the stan-
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dard model contains only renormalizable operators is
that it does not require modification up to arbitrarily
high scales (at least on the grounds of divergences in
perturbation theory). Whether or not we call this a fun-
damental fact, it is certainly a profound one.

Moreover, all the renormalizable interactions consis-
tent with the gauge symmetry and multiplet structure of
the standard model do seem to occur—‘what is not for-
bidden is mandatory.” There is a beautiful agreement
between the symmetries of the standard model, allowing
arbitrary renormalizable interactions, and the symme-
tries of the world. One understands why strangeness is
violated, but baryon number is not. (The only discordant
element is the so-called 6 term of QCD, which is allowed
by the symmetries of the standard model but is mea-
sured to be quite accurately zero. A plausible solution to
this problem exists. It involves a characteristic very light
axion field.)

The power counting rules for estimating divergences
assume that there are no special symmetries cancelling
off the contribution of high-energy modes. They do not
apply, without further consideration, to supersymmetric
theories, in which the contributions of boson and fermi-
onic modes cancels, nor to theories derived from super-
symmetric theories by soft supersymmetry breaking. In
the latter case the scale of supersymmetry breaking
plays the role of the cutoff A.

The power counting rules, as discussed so far, are too
crude to detect divergences of the form In A2 Yet diver-
gences of this form are pervasive and extremely signifi-
cant, as we shall now discuss.

lll. RUNNING COUPLINGS

The problem of calculating the energy associated with
a constant magnetic field, in the more general context of
an arbitrary non-Abelian gauge theory coupled to spin-0
and spin-1/2 charged particles, provides an excellent
concrete illustration of how the infinities of quantum
field theory arise and of how they are dealt with. It in-
troduces the concept of running couplings in a natural
way and leads directly to qualitative and quantitative
results of great significance for physics. The interactions
of concern to us appear in the Lagrangian density

1 _
L= 77 GupG P+ Uiy’ D, = )y

+¢'(=D,D"-m?) ¢, ®)

where GQBE &HAE—&BAL—]‘UKA{XAE are the standard
field strengths and D ,=d,+iA’ T! the covariant deriva-
tive. Here the f/X are the structure constants of the
gauge group, and the 77 are the representation matrices
appropriate to the field on which the covariant deriva-
tive acts. This Lagrangian differs from the usual one by a
rescaling gA— A, which serves to emphasize that the
gauge coupling g occurs only as a prefactor in the first
term. It parametrizes the energetic cost of nontrivial

Rev. Mod. Phys., Vol. 71, No. 2, Centenary 1999

gauge curvature or, in other words, the stiffness of the
gauge fields. Small g corresponds to gauge fields that are
difficult to excite.

From this Lagrangian itself, of course, it would appear
that the energy required to set up a magnetic field B’ is
just 1/2g%(B")?. This is the classical energy, but in the
quantum theory it is not the whole story. A more accu-
rate calculation must take into account the effect of the
imposed magnetic field on the zero-point energy of the
charged fields. Earlier, we met and briefly discussed a
formally infinite contribution to the energy of the
ground state of a quantum field theory (specifically, the
electromagnetic field) due to the irreducible quantum
fluctuations of its modes, which mapped to an infinite
number of independent harmonic oscillators. Insofar as
only differences in energy are physically significant, we
could ignore this infinity. But the change in the zero-
point energy as one imposes a magnetic field cannot be
ignored. It represents a genuine contribution to the
physical energy of the quantum state induced by the im-
posed magnetic field. As we shall soon see, the field-
dependent part of the energy also diverges.

Postponing momentarily the derivation, let me antici-
pate the form of the answer and discuss its interpreta-
tion. Without loss of generality, I will suppose that the
magnetic field is aligned along a normalized, diagonal
generator of the gauge group. This allows us to drop the
index and to use terminology and intuition from electro-
dynamics freely. If we restrict the sum to modes whose
energy is less than a cutoff A, we find for the energy

1 1
= — 2__ 2 2 .
E(B)=E+ 5 s BB (In(A%/B) +finite),

©)
where
1
= 5672 [—(T(R,)—2T(Ry)+2T(Ry))]
1
+ 552 [3C2T(R ) +8 TR, (10)

and the terms not displayed are finite as A—oo. The
notation g?(A?) has been introduced for later conve-
nience. The factor T(Rj) is the trace of the representa-
tion for spin s, and basically represents the sum of the
squares of the charges for the particles of that spin. The
denominator in the logarithm is fixed by dimensional
analysis, assuming B> u?,m?.

The most striking, and at first sight disturbing, aspect
of this calculation is that a cutoff is necessary in order to
obtain a finite result. If we are not to introduce a new
fundamental scale, and thereby (in view of our previous
discussion) endanger locality, we must remove reference
to the arbitrary cutoff A in our description of physically
meaningful quantities. This is the sort of problem ad-
dressed by the renormalization program. Its guiding idea
is the thought that if we are working with experimental
probes characterized by energy and momentum scales
well below A, we should expect that our capacity to af-
fect, or be sensitive to, the modes of much higher energy
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will be quite restricted. Thus we expect that the cutoff A,
which was introduced as a calculational device to re-
move such modes, can be removed (taken to infinity). In
our magnetic energy example, for instance, we see im-
mediately that the difference in susceptibilities

&(B,)/B3—&(B,)/ B3=finite 11
1 0

is well behaved—that is, independent of A as A—oo.
Thus once we measure the susceptibility, or equivalently
the coupling constant, at one reference value of B, the
calculation gives sensible, unambiguous predictions for
all other values of B.

This simple example illustrates a much more general
result, the central result of the classic renormalization
program. It goes as follows. A small number of quanti-
ties, corresponding to the couplings and masses in the
original Lagrangian, that if calculated formally would di-
verge or depend on the cutoff, are chosen to fit experi-
ment. They define the physical, as opposed to the origi-
nal, or bare, couplings. Thus, in our example, we can
define the susceptibility to be 1/2g*(B,) at some refer-
ence field B. Then we have the physical or renormal-
ized coupling

1 1
g7 (By) g (A%
(In this equation I have ignored, for simplicity in expo-
sition, the finite terms. These are relatively negligible for

large B,. Also, there are corrections of higher order in

g2.) This of course determines the “bare” coupling to be
1 1

g2 (%) g*(By)

In these terms, the central result of diagrammatic
renormalization theory is that after bare couplings and
masses are reexpressed in terms of their physical, renor-
malized counterparts, the coefficients in the perturba-
tion expansion of any physical quantity approach finite
limits, independent of the cutoff, as the cutoff is taken to
infinity. (To be perfectly accurate, one must also per-
form wave-function renormalization. This is no different
in principle; it amounts to expressing the bare coeffi-
cients of the kinetic terms in the Lagrangian in terms of
renormalized values.)

The question of whether this perturbation theory con-
verges, or is some sort of asymptotic expansion of a
soundly defined theory, is left open by the diagrammatic
analysis. This loophole is no mere technicality, as we
shall soon see.

Picking a scale B, at which the coupling is defined is
analogous to choosing the origin of a coordinate system
in geometry. One can describe the same physics using
different choices of normalization scale, so long as one
adjusts the coupling appropriately. We capture this idea
by introducing the concept of a running coupling de-
fined, in accordance with Eq. (12), to satisty

— 7 In(A%/By). (12)

+ 7 In(A%/By). (13)

d 1
dinBgXB) " (14)
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With this definition, the choice of a particular scale at
which to define the coupling will not affect the final re-
sult.

It is profoundly important, however, that the running
coupling does make a real distinction between the be-
havior at different mass scales, even if the original un-
derlying theory was formally scale invariant (as is QCD
with massless quarks), and even at mass scales much
larger than the mass of any particle in the theory. Quan-
tum zero-point motion of the high-energy modes intro-
duces a hard source of scale symmetry violation.

The distinction among scales, in a formally scale-
invariant theory, embodies the phenomenon of dimen-
sional transmutation. Rather than a range of theories pa-
rametrized by a dimensionless coupling, we have a range
of theories differing only in the value of a dimensional
parameter, say (for example), the value of B at which
1/g%(B)=1.

Clearly, the qualitative behavior of solutions of Eq.
(14) depends on the sign of 7. If >0, the coupling
g*(B) will get smaller as B grows, or in other words as
we treat more and more modes as dynamical, and ap-
proach closer to the “bare” charge. These modes were
enhancing, or antiscreening, the bare charge. This is the
case of asymptotic freedom. In the opposite case of 7
<0 the coupling formally grows and even diverges as B
increases. 1/g?(B) goes through zero and changes sign.
On the face of it, this would seem to indicate an insta-
bility of the theory, toward formation of a ferromagnetic
vacuum at large field strength. This conclusion must be
taken with a big grain of salt, because when g2 is large
the higher-order corrections to Eqs. (13) and (14), on
which the analysis was based, cannot be neglected.

In asymptotically free theories, we can complete the
renormalization program in a convincing fashion. There
is no barrier to including the effect of very large energy
modes and removing the cutoff. We can confidently ex-
pect, then, that the theory is well defined, independent
of perturbation theory. In particular, suppose the theory
has been discretized on a space-time lattice. This
amounts to excluding the modes of high energy and mo-
mentum. In an asymptotically free theory one can com-
pensate for these modes by adjusting the coupling in a
well-defined, controlled way as one shrinks the discreti-
zation scale. Very impressive nonperturbative calcula-
tions in QCD, involving massive computer simulations,
have exploited this strategy. They demonstrate the com-
plete consistency of the theory and its ability to account
quantitatively for the masses of hadrons.

In a non-asymptotically free theory the coupling does
not become small, there is no simple foolproof way to
compensate for the missing modes, and the existence of
an underlying limiting theory becomes doubtful.

Now let us discuss how 7 can be calculated. The two
terms in Eq. (10) correspond to two distinct physical
effects. The first is the convective, diamagnetic (screen-
ing) term. The overall constant is a little tricky to calcu-
late, and I do not have space to do it here. Its general
form, however, is transparent. The effect is independent
of spin, and so it simply counts the number of compo-
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nents (one for scalar particles, two for spin-1/2 or mass-
less spin-1 particles, both with two helicities). It is
screening for bosons, while for fermions there is a sign
flip, because the zero-point energy is negative for fermi-
onic oscillators.

The second is the paramagnetic spin susceptibility.
For a massless particle with spin s and gyromagnetic
ratio g,, the energies shift, giving rise to the altered
zero-point energy

E=A dPk 1
A5=f ——— —(Jk?+ g,,s B+ k> —g,,sB—2Jk?).
0

(2m)° 2
(15)
This is readily calculated as
Aé=-B? 2 1 1 A 16
- (gms) 32772 n B’ ( )

With g,,=2,s=1 (and T=1) this is the spin-1 contribu-
tion, and with g, =2, s=%, after a sign flip, it is the spin-
1/2 contribution. The preferred moment g,,=2 is a di-
rect consequence of the Yang-Mills and Dirac equa-
tions, respectively.

This elementary calculation gives us a nice heuristic
understanding of the unusual antiscreening behavior of
non-Abelian gauge theories. It is due to the large para-
magnetic response of charged vector fields. Because we
are interested in very-high-energy modes, the usual in-
tuition that charge will be screened, which is based on
the electric response of heavy particles, does not apply.
Magnetic interactions, which can be attractive for like
charges (paramagnetism), are, for highly relativistic par-
ticles, in no way suppressed. Indeed, they are numeri-
cally dominant.

Though I have presented it in the very specific context
of vacuum magnetic susceptibility, the concept of run-
ning coupling is much more widely applicable. The basic
heuristic idea is that, in analyzing processes whose char-
acteristic energy-momentum scale (squared) is Q2, it is
appropriate to use the running coupling at Q2, i.e., in
our earlier notation g2(B=Q?). For in this way we cap-
ture the dynamical effect of the virtual oscillators, which
can be appreciably excited, while avoiding the formal
divergence encountered if we tried to include all of them
(up to infinite mass scale). At a more formal level, use of
the appropriate effective coupling allows us to avoid
large logarithms in the calculation of Feynman graphs,
by normalizing the vertices close to where they need to
be evaluated. There is a highly developed, elaborate
chapter of quantum field theory which justifies and re-
fines this rough idea into a form in which it makes de-
tailed, quantitative predictions for concrete experiments.
I am able to do proper justice to the difficult, often he-
roic, labor that has been invested, on both the theoreti-
cal and the experimental sides, to yield Fig. 1; but it is
appropriate to remark that quantum field theory gets a
real workout, as calculations of two- and even three-
loop graphs with complicated interactions among the
virtual particles are needed to do justice to the attain-
able experimental accuracy.
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FIG. 1. Comparison of theory and experiment in QCD, illus-
trating the running of couplings. Several of the points on this
curve represent hundreds of independent measurements, any
one of which might have falsified the theory. From Schmelling
(1997).

An interesting feature visible in Fig. 1 is that the the-
oretical prediction for the coupling focuses at large Q2,
in the sense that a wide range of values at small Q2
converge to a much narrower range at larger Q2. Thus
even crude estimates of what are the appropriate scales
[e.g., one expects g2(Q?)/4m~1 where the strong inter-
action is strong, say for 100 MeV=.0?<1 Gev] allow
one to predict the value of g>(M%) with ~10% accu-
racy. The original idea of Pauli and others that calculat-
ing the fine-structure constant was the next great item
on the agenda of theoretical physics now seems mis-
guided. We see this constant as just another running
coupling, neither more nor less fundamental than many
other parameters, and not likely to be the most acces-
sible theoretically. But our essentially parameter-free
approximate determination of the observable strong-
interaction analog of the fine-structure constant realizes
a form of their dream.

The electroweak interactions start with much smaller
couplings at low mass scales, so the effects of their run-
ning are less dramatic (though they have been ob-
served). Far more spectacular than the modest quantita-
tive effects we can test directly, however, is the
conceptual breakthrough that results from application of
these ideas to unified models of the strong, electromag-
netic, and weak interactions.

The different components of the standard model have
a similar mathematical structure, all being gauge theo-
ries. Their common structure encourages the speculation
that they are different facets of a more encompassing
gauge symmetry, in which the different strong and weak
color charges, as well as electromagnetic charge, would
all appear on the same footing. The multiplet structure
of the quarks and leptons in the standard model fits
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FIG. 2. Running of the couplings extrapolated toward very
high scales, using just the fields of the standard model. The
couplings do not quite meet. Experimental uncertainties in the
extrapolation are indicated by the width of the lines. Figure
courtesy of K. Dienes.

beautifully into small representations of unification
groups such as SU(5) or SO(10). There is the apparent
difficulty, however, that the coupling strengths of the
different standard model interactions are widely differ-
ent, whereas the symmetry required for unification re-
quires that they share a common value. The running of
couplings suggests an escape from this impasse. Since
the strong, weak, and electromagnetic couplings run at
different rates, their inequality at currently accessible
scales need not reflect the ultimate state of affairs. We
can imagine that spontaneous symmetry breaking—a
soft effect—has hidden the full symmetry of the unified
interaction. What is really required is that the funda-
mental, bare couplings be equal, or in more prosaic
terms, that the running couplings of the different inter-
actions should become equal beyond some large scale.

Using simple generalizations of the formulas derived
and tested in QCD, we can calculate the running of cou-
plings, to see whether this requirement is satisfied in re-
ality. In doing so one must make some hypothesis about
the spectrum of virtual particles. If there are additional
massive particles (or, better, fields) that have not yet
been observed, they will contribute significantly to the
running of couplings once the scale exceeds their mass.
Let us first consider the default assumption, that there
are no new fields beyond those that occur in the stan-
dard model. The results of this calculation are displayed
in Fig. 2.

Considering the enormity of the extrapolation, this
calculation works remarkably well, but the accurate ex-
perimental data indicate unequivocally that something is
wrong. There is one particularly attractive way to extend
the standard model, by including supersymmetry. Super-
symmetry cannot be exact, but if it is only mildly broken
(so that the superpartners have masses <1 Tev), it can
help explain why radiative corrections to the Higgs mass
parameter, and thus to the scale of weak symmetry
breaking, are not enormously large. In the absence of
supersymmetry, power counting would indicate a hard,
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FIG. 3. Running of the couplings extrapolated to high scales,
including the effects of supersymmetric particles starting at 1
Tev. Within experimental and theoretical uncertainties, the
couplings do meet. Figure courtesy of K. Dienes.

quadratic dependence of this parameter on the cutoff.
Supersymmetry removes the most divergent contribu-
tion, by cancelling boson against fermion loops. If the
masses of the superpartners are not too heavy, the re-
sidual finite contributions due to supersymmetry break-
ing will not be too large.

The minimal supersymmetric extension of the stan-
dard model, then, makes semiquantitative predictions
for the spectrum of virtual particles starting at 1 TeV or
so. Since the running of couplings is logarithmic, it is not
extremely sensitive to the unknown details of the super-
symmetric mass spectrum, and we can assess the impact
of supersymmetry on the unification hypothesis quanti-
tatively. The results, as shown in Fig. 3, are quite en-
couraging.

With all its attractions, there is one general feature of
supersymmetry that is especially challenging, and it de-
serves mention here. We remarked earlier how the stan-
dard model, without supersymmetry, features a near-
perfect match between the generic symmetries of its
renormalizable interactions and the observed symme-
tries of the world. With supersymmetry, this feature is
spoiled. The scalar superpartners of fermions are repre-
sented by fields of mass dimension one. This means that
there are many more possibilities for low-dimension (in-
cluding renormalizable) interactions that violate flavor
symmetries including lepton and baryon number. It
seems that some additional principles, or special discrete
symmetries, are required in order to suppress these in-
teractions sufficiently.

A notable result of the unification of couplings calcu-
lation, especially in its supersymmetric form, is that the
unification occurs at an energy scale that is enormously
large by the standards of traditional particle physics,
perhaps approaching 10'*-!7 GeV. From a phenomeno-
logical viewpoint, this is fortunate. The most compelling
unification schemes merge quarks, antiquarks, leptons,
and antileptons into common multiplets and have gauge
bosons mediating transitions among all these particle
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types. Baryon-number-violating processes almost inevi-
tably result, whose rate is inversely proportional to the
fourth power of the gauge boson masses, and thus to the
fourth power of the unification scale. Only for such large
values of the scale is one safe from experimental limits
on nucleon instability. From a theoretical point of view
the large scale is fascinating because it brings us from
the internal logic of the experimentally grounded do-
main of particle physics to the threshold of quantum
gravity, as we shall now discuss.

IV. LIMITATIONS?

So much for the successes, achieved and anticipated,
of quantum field theory. The fundamental limitations of
quantum field theory, if any, are less clear. Its applica-
tion to gravity has certainly, to date, been much less
fruitful than its triumphant application to describe the
other fundamental interactions.

All existing experimental results on gravitation are
adequately described by a very beautiful, conceptually
simple classical field theory—Einstein’s general relativ-
ity. It is easy to incorporate this theory into our descrip-
tion of the world based on quantum field theory, by al-
lowing a minimal coupling to the fields of the standard
model—that is, by changing ordinary into covariant de-
rivatives, multiplying with appropriate factors of \/g,
and adding an FEinstein-Hilbert curvature term. The re-
sulting theory—with the convention that we simply ig-
nore quantum corrections involving virtual gravitons—is
the foundation of our working description of the physi-
cal world. As a practical matter, it works very well in-
deed.

Philosophically, however, it might be disappointing if
it were too straightforward to construct a quantum
theory of gravity. One of the great visions of natural
philosophy, going back to Pythagoras, is that the prop-
erties of the world are determined uniquely by math-
ematical principles. A modern version of this vision was
formulated by Planck, shortly after he introduced his
quantum of action. By appropriately combining the
physical constants ¢, # as units of velocity and action,
respectively, and the Planck mass

fic
MPlanck = E

as the unit of mass, one can construct any unit of mea-
surement used in physics. Thus the unit of energy is
M pianekc?, the unit of electric charge is Jhe, and so
forth. On the other hand, one cannot form a pure num-
ber from these three physical constants. Thus one might
hope that in a physical theory where #, ¢, and G were all
profoundly incorporated, all physical quantities could be
expressed in natural units as pure numbers.

Within its domain, QCD achieves something very
close to this vision—actually, in a more ambitious form.
Indeed, let us idealize the world of the strong interaction
slightly, by imagining that there were just two quark spe-
cies with vanishing masses. Then from the two integers 3
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(colors) and 2 (flavors), A, and c—with no explicit mass
parameter—a spectrum of hadrons, with mass ratios and
other properties close to those observed in reality,
emerges by calculation. The overall unit of mass is inde-
terminate, but this ambiguity has no significance within
the theory itself.

The ideal Pythagorean/Planckian theory would not
contain any pure numbers as parameters. (Pythagoras
might have excused a few small integers.) Thus, for ex-
ample, the value m, /M pjanac~ 10722 of the electron mass
in Planck units would emerge from a dynamical calcula-
tion. This ideal might be overly ambitious, yet it seems
reasonable to hope that significant constraints among
physical observables will emerge from the inner require-
ments of a quantum theory that consistently incorpo-
rates gravity. Indeed, as we have already seen, one does
find significant constraints among the parameters of the
standard model by requiring that the strong, weak, and
electromagnetic interactions emerge from a unified
gauge symmetry; so there is precedent for results of this
kind.

The unification of couplings calculation provides not
only an inspiring model, but also direct encouragement
for the Planck program, in two important respects. First,
it points to a symmetry-breaking scale remarkably close
to the Planck scale (though apparently smaller by
1072-10"%), so there are pure numbers with much more
“reasonable” values than 10~ 2? to shoot for. Second, it
shows quite concretely how very-large-scale factors can
be controlled by modest ratios of coupling strength, due
to the logarithmic nature of the running of
couplings—so that 10~%> may not be so unreasonable
after all.

Perhaps it is fortunate, then, that the straightforward,
minimal implementation of general relativity as a quan-
tum field theory—which lacks the desired constraints—
runs into problems. The problems are of two quite dis-
tinct kinds. First, the renormalization program fails, at
the level of power counting. The Einstein-Hilbert term
in the action comes with a large prefactor 1/G, reflecting
the difficulty of curving space-time. If we expand the
Einstein-Hilbert action around flat space in the form

8ap=Napt VGh g, 17)

we find that the quadratic terms give a properly normal-
ized spin-2 graviton field 4,5 of mass dimension 1, as the
powers of G cancel. But the higher-order terms, which
represent interactions, will be accompanied by positive
powers of G. Since G itself has mass dimension —2,
these are nonrenormalizable interactions. Similarly for
the couplings of gravitons to matter. Thus we can expect
that ever-increasing powers of A/Mp,,q Will appear in
multiple virtual graviton exchange, and it will be impos-
sible to remove the cutoff.

Second, one of the main qualitative features of
gravity—the weightlessness of empty space, or the van-
ishing of the cosmological constant—is left unexplained.
Earlier we mentioned the divergent zero-point energy
characteristic of generic quantum field theories. For pur-
poses of nongravitational physics only energy differ-
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ences are meaningful, and we can sweep this problem
under the rug. But gravity ought to see this energy. Our
perplexity intensifies when we recall that according to
the standard model, and even more so in its unified ex-
tensions, what we commonly regard as empty space is
full of condensates, which again one would expect to
weigh far more than observation allows. The failure, so
far, of quantum field theory to meet these challenges
might reflect a basic failure of principle or merely the
fact that the appropriate symmetry principles and de-
grees of freedom, in terms of which the theory should be
formulated, have not yet been identified.

Promising insights toward construction of a quantum
theory including gravity are coming from investigations
in string/M theory, as discussed elsewhere in this vol-
ume. Whether these investigations will converge toward
an accurate description of Nature, and if so whether this
description will take the form of a local field theory
(perhaps formulated in many dimensions and including
many fields beyond those of the standard model), are
questions not yet decided. It is interesting, in this regard,
to consider briefly the rocky intellectual history of quan-
tum field theory.

After the initial successes of the 1930s, already men-
tioned above, came a long period of disillusionment. Ini-
tial attempts to deal with the infinities that arose in cal-
culations of loop graphs in electrodynamics, or in
radiative corrections to beta decay, led only to confusion
and failure. Similar infinities plagued Yukawa’s pion
theory, and it had the additional difficulty that the cou-
pling required to fit experiment is large, so that tree
graphs provide a manifestly poor approximation. Many
of the founders of quantum theory, including Bohr,
Heisenberg, Pauli, and (for different reasons) Einstein
and Schrodinger, felt that further progress required a
radically new innovation. This innovation would be a
revolution of the order of quantum mechanics itself and
would introduce a new fundamental length.

Quantum electrodynamics was resurrected in the late
1940s, largely stimulated by developments in experimen-
tal technique. These experimental developments made it
possible to study atomic processes with such great pre-
cision that the approximation afforded by keeping tree
graphs alone could not do them justice. Methods to ex-
tract sensible finite answers to physical questions from
the jumbled divergences were developed, and spectacu-
lar agreement with experiment was found—all without
changing electrodynamics itself or departing from the
principles of relativistic quantum field theory.

After this wave of success came another long period
of disillusionment. The renormalization methods devel-
oped for electrodynamics did not seem to work for
weak-interaction theory. They did suffice to define a
perturbative expansion of Yukawa’s pion theory, but the
strong coupling made that limited success academic (and
it came to seem utterly implausible that Yukawa’s sche-
matic theory could do justice to the wealth of newly
discovered phenomena). In any case, as a practical mat-
ter, throughout the 1950s and 1960s a flood of experi-
mental discoveries, including new classes of weak pro-
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cesses and a rich spectrum of hadronic resonances with
complicated interactions, had to be absorbed and corre-
lated. During this process of pattern recognition, the el-
ementary parts of quantum field theory were used ex-
tensively, as a framework, but deeper questions were
put off. Many theorists came to feel that quantum field
theory, in its deeper aspects, was simply wrong and
would need to be replaced by some S-matrix or boot-
strap theory; perhaps most thought it was irrelevant, or
that its use was premature, especially for the strong in-
teraction.

As it became clear, through phenomenological work,
that the weak interaction is governed by current
Xcurrent interactions with universal strength, the possi-
bility of ascribing it to exchange of vector gauge bosons
became quite attractive. Models incorporating the idea
of spontaneous symmetry breaking to give mass to the
weak gauge bosons were constructed. It was conjec-
tured, and later proved, that the high degree of symme-
try in these theories allows one to isolate and control the
infinities of perturbation theory. One can carry out a
renormalization program similar in spirit, though consid-
erably more complex in detail, to that of QED. It is
crucial, here, that spontaneous symmetry breaking is a
very soft operation. It does not significantly affect the
symmetry of the theory at large momenta, where the
potential divergences must be cancelled.

Phenomenological work on the strong interaction
made it increasingly plausible that the observed strongly
interacting particles—mesons and baryons—are com-
posites of more basic objects. The evidence was of two
disparate kinds: on the one hand, it was possible in this
way to make crude but effective models for the observed
spectrum with mesons as quark-antiquark, and baryons
as quark-quark-quark, bound states; and on the other
hand, experiments provided evidence for hard interac-
tions of photons with hadrons, as would be expected if
the components of hadrons were described by local
fields. The search for a quantum field theory with appro-
priate properties led to a unique candidate, which con-
tained both objects that could be identified with quarks
and an essentially new ingredient, color gluons.

These quantum field theories of the weak and strong
interactions were dramatically confirmed by subsequent
experiments, and have survived exceedingly rigorous
testing over the past two decades. They make up the
standard model. During this period the limitations, as
well as the very considerable virtues, of the standard
model have become evident. Whether the next big step
will require a sharp break from the principles of quan-
tum field theory or, like the previous ones, a better ap-
preciation of its potentialities, remains to be seen.

For further information about quantum field theory,
the reader may wish to consult Cheng and Li (1984),
Peskin and Schroeder (1995), and Weinberg (1995,
1996).
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