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This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional of the density, F[#(r)], independent of #(r), such that the ex-
pression E== [v(r)n(r)dr+ F[n(r)] has as its minimum value the correct ground-state energy associated with
v(r). The functional F[n(r)] is then discussed for two situations: (1) n{(r)=ne+#A(r), fi/me< <1, and
(2) n(r)= o(r/ro) with ¢ arbitrary and ro — = . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of

these methods are presented.

INTRODUCTION

URING the last decade there has been considerable
progress in understanding the properties of a
homogeneous interacting electron gas.! The point of
view has been, in general, to regard the electrons as
similar to a collection of noninteracting particles
with the important additional concept of collective
excitations.

On the other hand, there has been in existence since
the 1920°s a different approach, represented by the
Thomas-Fermi method? and its refinements, in which
the electronic density n(r) plays a central role and in
which the system of electrons is pictured more like a
classical liquid. This approach has been useful, up to
now, for simple though crude descriptions of inhomo-
geneous systems like atoms and impurities in metals.

Lately there have been also some important advances
along this second line of approach, such as the work of
Kompaneets and Pavlovskii,® Kirzhnits,* Lewis,® Baraff
and Borowitz,® Baraff,” and DuBois and Kivelson.® The
present paper represents a contribution in the same area.

In Part I, we develop an exact formal variational
principle for the ground-state energy, in which the den-
sity n(r) is the variable function. Into this principle
enters a universal functional F[#(r)], which applies to
all electronic systems in their ground state no matter
what the external potential is. The main objective of
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theoretical considerations is a description of this
functional. Once known, it is relatively easy to deter-
mine the ground-state energy in a given external
potential.

In Part II, we obtain an expression for F[ »n] when n
deviates only slightly from uniformity, i.e., n(r)=mn,
+#(r), with #/ny— 0. In this case F[n] is entirely
expressible in terms of the exact ground-state energy
and the exact electronic polarizability «(g) of a uniform
electron gas. This procedure will describe correctly
the long-range Friedel charge oscillations® set up by
a localized perturbation. All previous refinements of the
Thomas-Fermi method have failed to include these.

In Part III we consider the case of a slowly varying,
but mnot necessarily almost constant density, =(r)
= ¢(r/ro), ro—><o. For this case we derive an expansion
of F[n]] in successive orders of ry~! or, equivalently of
the gradient operator V acting on x#(r). The expansion
coefficients are again expressible in terms of the exact
ground-state energy and the exact linear, quadratic,
ete., electric response functions of a uniform electron
gas to an external potential #(r). In this way we recover,
quite simply, all previously developed refinements of
the Thomas-Fermi method and are able to carry them
somewhat further. Comparison of this case with the
nearly uniform one, discussed in Part 11, also reveals
why the gradient expansion is intrinsically incapable
of properly describing the Friedel oscillations or the
radial oscillations of the electronic density in an atom
which reflect the electronic shell structure. A partial
summation of the gradient expansion can be carried
out (Sec. ITL.4), but its usefulness has not yet been
tested.

I. EXACT GENERAL FORMULATION

1. The Density as Basic Variable

We shall be considering a collection of an arbitrary
number of electrons, enclosed in a large box and moving

% J. Friedel, Phil. Mag. 43, 153 (1952).
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under the influence of an external potential #(r) and
the mutual Coulomb repulsion. The Hamiltonian has
the form

H=T+V+U, (1)
where!®
1
T=- f v () vy ()dr, @)
2
ijhwwuwma, @®)

f——¢*<r>¢*(r’)¢<r’>¢<r)drdr @

|r—1|

We shall in all that follows assume for simplicity that
we are only dealing with situations in which the ground
state is nondegenerate. We denote the electronic density
in the ground state ¥ by

n(r)= (TP* @Y ()¥), (5)

which is clearly a functional of v(r).

We shall now show that conversely v(x) is a unique
functional of #(r), apart from a trivial additive constant.

The proof proceeds by reductio ad absurdum. As-
sume that another potential o' (r), with ground state
¥’ gives rise to the same density xn(r). Now clearly
[unless o'(x)—ov(r})=const] ¥ cannot be equal to ¥
since they satisfy different Schrédinger equations.
Hence, if we denote the Hamiltonian and ground-state
energies associated with ¥ and ¥’ by H, H' and E, E,
we have by the minimal property of the ground state,

E'= (¥ HY)< (¥ ,HY)= (¥, (H+V'-V)¥),
so that

E’<E+f[v’ (r)—o () In(r)dr. (6)

Interchanging primed and unprimed quantities, we find
in exactly the same way that

E<E'+ f [o(r)— ' (r) n(r)dr. 1)

Addition of (6) and (7) leads to the inconsistency
E+E<E+E. (8)

Thus »(r) is (to within a constant) a unique functional
of n(r); since, in turn, v(r) fixes # we see that the full
many-particle ground state is a unique functional of

n(r).
2. The Variational Principle

Since ¥ is a functional of #n(r), so is evidently the
kinetic and interaction energy.*We therefore define

Fln(r)]=(¥, (T+U)Y), 9

10 Atomic units are used.
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where F[»n] is a universal functional, valid for any
number of particles! and any external potential. This
functional plays a central role in the present paper.

With its aid we define, for a given potential #(r), the
energy functional

E[n]= f o (1) (e)dr+FLn]. (10)

Clearly, for the correct n(r), £,[#] equals the ground-
state energy E.

We shall now show that E,[# ] assumes its minimum
value for the correct n(r), if the admissible functions
are restricted by the condition

N[n]E/n(r)dr=N. (11)

Itis well known that for a system of IV particles, the
energy functional of ¥

&[¥ =¥, V¥ )+ (¥, (T+U)¥) (12)

has a minimum at the correct ground state ¥, relative
to arbitrary variations of ¥’ in which the number of
particles is kept constant. In particular, let ¥’ be the
ground state associated with a different external po-
tential v’ (r). Then, by (12) and (9)

& [ ]= f v(r)n’ (£)dr+F[n'],
(13)
>8,[\P]=[ﬂ(r)n(r)dr+F[n].

Thus the minimal property of (10) is established rela-
tive to all density functions #'(r) associated with some
other external potential v (r).12

If F[n] were a known and sufficiently simple func-
tional of n, the problem of determining the ground-state
energy and density in a given external potential would
be rather easy since it requires merely the minimization
of a functional of the three-dimensional density func-
tion. The major part of the complexities of the many-
electron problems are associated with the determination
of the universal functional F{» ].

3. Transformation of the Functional F[n}

Because of the long range of the Coulomb interaction,
it is for most purposes convenient to separate out from

It This is obvious since the number of particles is itself a simple
functional of n(x).

12 We cannot prove whether an arbitrary positive density distri-
bution n‘(r), which satisfies the condition /'n’(r)dr=integer, can
be r by seme external potential ¥'(r). Clearly, to first order
in #(r), any distribution of the form #»’(r) =n¢+#A () can be so
realized and we believe that in fact all, except some pathological
distributions, can be realized,
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F[n] the classical Coulomb energy and write

P[n]——[ nnlr )drdr'+G[n], (14)
|r—1’]

so that F,[ 7] becomes

EJ[n]= fv(r)n(r)dr-{— / nlon{ )drdr’—{—Gl:n], (13)

where G[#] is a universal functional like F[n].
Now from the definition of F[#], Eq. (9), and G[n],
Eq. (14), we see that

drdr

G[n]——[v Vit (0,8) | cmpdr+— f (16)

lr—r'|

Here #,:(r,r’) is the one-particle density matrix; and
Cafx,r’) is the two-particle correlation function defined
in terms of the one- and two-particle density matrices as
(17)

Co(t,x ) =n:(r,x’; r,0')—n:(r,0)n, (' ')

Of course n,(r,r)=n(r).
From (16) we see that we can define an energy-density
functional

g[n]=3VVeni(t,r) ] ar
1 [ Cy(r—1'/2;r+1'/2)

2 7|

2

dr’  (18)
such that

G[n:]=[g,[n]dr. (19)

The fact that g # ] is a functional of # follows of course
from the fact that ¥ and hence n; and %, are.
It should be remarked, that while G[#] is a unique

functional of #, g[#]is of course not the only possible
energy-density functional. Clearly the functionals

a

3
gl n)=gln]+2 —hDOn],
i=l dx;

(20)

where the A are entirely arbitrary, give equivalent
results when used in conjunction with (19).

The following sections deal with G[#] and g% ] in
some simple cases.
II. THE GAS OF ALMOST CONSTANT DENSITY
1. Form of the Functionals G[n] and g,[n]
We consider here a gas whose density has the form
n(r)=mno+#(r), (21)
with

A(r)/neK1 (22)
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/fi(r)dr= 0

Here we clearly must have a formal expansion of the
following sort:

and

(23)

G[n:]=G[no]+fK(r—r’)ﬁ(r)ﬁ(r’)dra’r’

+ f L, Y VOR)EE ) drdr'dy+ - . (24)

In this equation there is no term linear in #(r) since
by translational invariance the coefficient of #(r) would
be independent of r leading to zero, by (23). The kernel
appearing in the quadratic term is a functional of [r—r’|
only and may therefore be written as

K(r—r')= (1 QX K(g)eiartr=r. (25)
q
The higher order terms will not be further discussed
here.

One may also quite trivially introduce a density

function

g:[n]= go(no)+- [K(r')ﬁ(r—!-%r')fi(r—%r’)tlr'-!-°", (20)

where go(no) is the density function of a uniform gas of
electron density n, (kinetic, exchange, and correlation
energy).

2. Expression of the Kernel X in Terms of
the Electronic Polarizability

We shall now see that the kernel K appearing in
Egs. (24) and (26) is completely and exactly expressible
in terms of the electronic polarizability a(g). The latter
is defined as follows: Consider an electron gas of mean
density #o in a background of uniform charge plus a
small additional positive external-charge density

neas (D)= (A Q)2 a(q)e7o.

Write the electronic density, to first order In A, as

(27)

n(r)=ny+ (/DL bi(gleivr. (28)
Then
a(g)=b(q)/a(q). (29)
Let us now define the operator
pqEZk: Ck—qg*Ck, (30)

where ¢ *, ¢y are the usual creation and annihilation
operators. Then, by first-order perturbation theory,

—(87r) a(q) 2 (Olpq|n)(nlp—ql )’
(] » FEo—1I,

by(q)=

(31)
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so that
— 8
e(g)= 2.
q2 n

(O pqln) (12| p_q] 0) ' 32)
Eo—E,

Next we express the change of energy in terms of a(g).
By second-order perturbation theory we have

A*(4mr)? 5 la(g) | > (0] pg|n) (12| p-q] 0)

E=FEo+ ,
Q 1 q“ " EO—E?'I
A2 |a(q)|?
— R Y
Q ¢« g
A221l' b1 2
R Zl (@] ' (33)
Q ¢ algd

On the other hand, combining Egs. (15), (24), (25),
and (28) gives

1 [ u(n)n)
E=f1'(r)rz(r)+§j drdv’+G[n}

|r—r|
Ndr _ [0(@)]* N2x _ [5i(e)]”
= LLo= ne
Q alp)g® @ ¢
)\3
+EZ K(q)[b:(q) (2. (34)
Comparison of Egs. (33) and (34) gives
=" 1] (35)
Q=] —— 35
¢*La(g)
Equivalently, in terms of the dielectric constant,
e(g)= ) (36)
1—alg)
we may write
(= (37)
q)=— 3
¢ e(g)—1

3. The Nature of the Kernel K

The polarizability a(g) has the following properties,
as function of ¢ (see Fig. 1)

g—0:  alg)=1+4cegt+cag+- - -; (38)
qg— 2kp: da/dg— — = ; (39)
g—o: a(g) — const/q¢*. (40)

These general properties are exemplified by the random-
phase approximation in which

a(g)=[14(¢*/kr*)S (@) I (41)
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Frc. 1. Behavior

of the electronic po- %@

larizability «{g), as |

function of ¢ {elec- 0.5 [ .
tronic density =4 [

X108 cn—3). [

o
[\ S,

q/q; —>

where k7 is the Thomas-Fermi screening constant,

kTE (4kp)”2

kF 92 q+2kp
S(q)s[%+—(1— ) In
2q\  4kp2/ lg—2kp

This gives for K(g), by (353),

(42)

T. (43)

and

g—0: K(g)=2n[ —cot(cd—edg+---]; (44)

g— 2kp: dK/dg—r 4+ (45)

g—o0: K (g) — constX¢%. (46)
(See Fig. 2.)

The power-series expansion of K(g), (43), leads to
K(r)=2x —cat(c?—c) P+ --]8(x), (47)

which in turn gives

G n]=G[no]+ 27{—— 52[ﬁ (r)2dr

¥ (e —cd) f |V () - - ] s

le., a gradient expansion.

At this point an important remark must be made.
One of the most significant features of K(g) is its
singularity at ¢=2ks. This is responsible for the long-
range Friedel oscillations' in K (r},

K (r)~const cos(2kpr+8) /7.

r—co: (49)
These obviously lie outside the framework of the
power-series expansion (44) of K{g) and hence outside
the gradient expansion (49) of G[#]. This explains
why neither the original Thomas-Fermi method [ which
for the present system reduces to keeping only the first
term in (44) ], nor its generalizations by the addition of
gradient terms, have correctly yielded wave-mechanical
density oscillations, such as the density oscillations in
atoms which correspond to shell structure, or the Friedel
oscillations in alloys which are of the same general origin.

12 1. S. Langer and S. H. Vosko, Phys. Chem. Solids 12, 196
{1960).
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F1c. 2. Behavior
of the kernel K{g),
as a function of ¢
(electronic density =4
X102 cm—9).
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&

[
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III. THE GAS OF SLOWLY VARYING DENSITY
1. The Thomas-Fermi Equation

For a first orientation we shall derive, from our general
variational principle, the elementarv Thomas-Fermi
equation. For this purpose, we use the functional (18)
and in (16) we neglect exchange and correlation effects,
thus setting C»=0. We approximate the kinetic-energy
term by its form for a free-electron gas, i.e.,

g n]="%lkr(m)In, (50)
where the Fermi momentum % is given by
kr(n)= (3r2n)te, (51)
This results in
1 a()n(’)
E[n]= f v(r)n(r)dr+- f ————drdr’
2 lr—1'|
T2 Tnt ar. (2)
To determine #(r) we now set
B{Ev[n]—ufn(r)dr} =0, (33)

where u is a Lagrange parameter. This results in the
equation

n{(r’)
()4 f A3 (3a22 () PA—p=0. (54)
|r—r'|

If we now introduce the “internal” potential

) (55)
(54) is equivalent to the pair of equations

n(r)=(1/3x){2[u—v(r)—v.(r)]}*2,

Vo;(r)= —4xn(r). (57)

From (56) and (57) we can eliminate 7(r) and arrive at

(56)
and
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the Thomas-Fermi equation
V2u,(r) = (—272/3m)[n—o(r) — vi(r) /2.
2. The Gradient Expansion

(58)

It is well known that one condition for the wvalidity
of the Thomas-Fermi equation is that n(r) must be a
slowly varying function of r. This suggests study of the
functional G[#], where » has the form

n(l’)= <p(r/ro) ’

rg—c© .

(59)
with
(60)

It is obvious that this is quite a different class of systems
than that considered in Part I1 (n=no+#, fi/n<1),
since now we shall allow ¢ to have substantial varia-
tions. On the other hand, whereas in Part II, # could
contain arbitrarily short wavelengths, these are here
ruled out as ro becomes large.

We now make the basic assumption that for large 7,
the partial energy density g[#] may be expanded in
the form

B 1= 8o £ Von(D)

F 3 Caes 00 (e(0)- Vi)V (x)

T ) V@ . (61)

Here successive terms correspond to sticcessive negative
powers of the scalc parameter ro. Quantities ke
go(n (1)), gi(n(r)) etc., are functions (not functionals)
of n(r). No general proof of the existence of such an
expansion is known to us, although it can be formally
verified in special cases, e.g., when G n(r)] can be ex-
panded in powers of [n(r})—ng ] At the same time,
we know that, for a finite ry, the series does not strictly
converge (see the discussion at the end of Sec. II.3),
but we may expect it to be useful (in the sense of asymp-
totic convergence) for sufficiently large values of ro.

Now a good deal of progress can be made, using only
the fact that gJ{»] is a universal functional of #,
independent of v(r). This requires g,[ 7] to be invariant
under rotations about r. The coefficients g, ;, - - - (n(r)),
being functions of the scalar #, are of course invariant
under rotations. Hence one finds by elementary con-
siderations that g.[»] must have the form

gln1=go(n)+ 82 (n) VPn+-g2¥ (n) (Vr- Vi) ]

~+terms of order V&, (62)

A further simplification results from the fact that we
may eliminate from g.[#] an arbitrary divergence
2.iVh5[n] (see the end of Sec. I.3). It is then elemen-
tary to show that g,/ #] may be replaced by

gfn]= go(n)+ g2 (n)Vn-Vn
+{£:® (n) (V1) (V*r)+-g.® (1) (Vr) (V1 - Vi)

F2P(n)(Vr-In)2}+0(VE). (63)
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Here the subscripts refer to the number of gradient
operators (or the order in 1/ro) and the superscripts to
the number of times that »# appears to the right of
£ (n).

It may be worth recalling that while g,[#] is an
admissible density function in the sense that

Gn]= [ 2nJdr, (64)

it differs from the energy density function g.{7], Eq.
(18), by a divergence.

3. Identification of the Coefficients of the
Gradient Expansion

We shall now express the coefficients g,?(n) ap-
pearing in Eq. (63) in terms of the expansion coef-
ficients, in powers of q, of the electronic polarizability
a(g), and similar higher order, nonlinear, response
functions.

We do this by applying our general expression (63) to
the case of a nearly uniform electron gas, considered
already in Sec. I1.2. We go, however, beyond (28) and
write

A A2
n(r)= mﬁ—s—2 2 bi(q)e"'q"—l——é- 3 balgleiert- . (65)

The linear- and second-, third-, etc., order response
functions are then defined by the relations

bi(g)=al(g)a(q),
ba(q)= 22

q1tge=g

a(q,92)a(gra(qs), (66)

etc.

Now let us compare these expressions with what one
obtains with the use of (63). We require that

::;{Ev[n:]—,ufn(r)dr} =

o()+ f l‘_"‘ go' = 2@ (V7)?
r—

—2g,DV2n+ 32, (Vn)2--2g, B (Vn)2Vn

+2g,D'Vni-V (V2r)+28.® (V?Vn)

+ 2.3 (Vn)4i+-2g,3Vn-V(Vn)?

+ g (VE(Vn)2—2Vn - V(Vin)—2(V?n)?)

—3g.(4) (Vn)t—4g, OV (Vn)?—4g, O Vn-V(Vn)?
4eee—p=0.

(67)

This gives

(68)
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Now let us set
Mr  a(g)
(1) = B e (69)
Q 1 ¢
n= no+ 2 [Ab:(q) +2%2(q) - - - Jeier,  (70)
Q 4

p=potAm+Nuat - - - (71)

Collecting terms of order A% A!, A%, we find '
g0’ (o) —po=0, (72)

4x 4
_Ea(q>+{7,;+go"+zgzmgz

2Pt }b1<q>=0, (73)

. q#0,
giving
gD” gou 9 gz(ﬁ)
o (e
@={(- )+ (5) 5 @
(74)
Also clearly
y1=0.
Similarly, we obtain
guf!l
b2(q) =Z{g—q2+ - }a(tf)a(q—q’) . (13)
i ‘g

If we now expand the response functions in powers of ¢,

a(g)=1+cog+cug'+ - - - (76)
a(9,9) =2 2 cmaigi"g;", an
mn
we can identify the functions g,’. Thus
gd' /4w =ca, (78)
£ ® =} (— et (79)
2@ fAr=3%(—cet2c2c4—cs). (80)

Simila.rly all other coefficients g,® (#) can be expressed
in terms of the expansion coefficients ¢, of the linear
polarizability a(q) of an electron gas of density #.

In an analogous manner we can express all g,® in
terms of a(q:) and a(q;,qs); and generally g, in terms
of a(ql)a nT 'a(qx,(h, . '(In—l)-

On dimensional grounds we can see from (63) that
the gradient expansion requires

| Vi| /<Ll r(n) (81)

and

|V V| /| V| <Lkp(n). (82)
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Both of these conditions are necessary. For while (81)
would admit the case of a nearly uniform gas with a
small but short-wavelength nonuniformity, this and
similar cases are excluded by (82), as they must be.

4. Partial Summation of Gradient Expansion

In the preceding section we have expressed the coef-
ficlent g, in terms of the expansion coefficient ¢, of
the polarizability a(q), Eq. (76). However, we may apply
the expression (63) to the special case of the gas of
almost constant density, discussed in Part II. This shows
that the leading term go(n) and the subsequent sub-
series involving coefficients g,® (#) may be summed to
yield

L= go(n () + f K nio ()Cn(e--30) = n(r)]

X[n(r—3r)—n(r)ldr'+---  (83)

apart possibly from terms of the form of a divergence
or of higher order in the superscript » of g,. Here

(84)

) 1221&' 1
Kun(@)=- —( )-e"’q'f’.
Q0 @ \earn(q)

The form (83) of g, has the merit of being exact in both
limiting cases where either the density has everywhere
nearly the same value (see Part IT) or is slowly varying.
Its quantitative value for calculating the electronic
structure of actual atomic, molecular, or solid-state
systems is at present uncertain but is being examined.
However, it is already clear that if applied to an atom
it will, unlike the simple Thomas-Fermi theory, yield:
(1) a finite density at the nucleus, and (2) oscillations
in the charge density corresponding to shell structure.

5. Approximate Expressions for the Coefficients
of the Gradient Expansion

In the previous section we have expressed the coef-
ficients g, appearing in the gradient expansion (63)
in terms of properties of the uniform electron gas. We
now collect some results of existing calculations refer-
ring to the uniform electron gas which are useful for
our present purposes.

a. go(m)

This is the sum of the kinetic+ exchange--correlation
energy density of a uniform gas of density #». Here one
has available the high-density expansion of Gell-Mann
and Brueckner*;

2.21 0.916

i~ ?s

go(n)= { +0.0621nr,—0.096+0(r,) }n, (85)

“ M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957).
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where #, is the radius of the Wigner-Seitz sphere defined
by

fxrd=1/n. (86)

This expression is believed to be reasonably accurate
only for r,<1. At lower densities, such as occur in
metals (25r,55), various approximate expressions
have been proposed. One is due to Wigner!

2.21 0916 0.88

4 (n)~{ - — .
’ 7e ry rs+7.8

(87)

Other approximations are due to Hubbard,'® Noziéres
and Pines,”” and Gaskel]l.'8

b. gu®(n)

These coeflicients are all determined in terms of the
electronic polarizability, a(g). For this latter quantity
there is available, at present, a random-phase expres-
sion, Eq. (41), which gives

27 ¢ =1
a(q) =—[1+-~S(q>] (88)
k7t kr?
and
e 11
47[' 2-1' k7*2k p2
4@ 1 1
L (90)

dr 180 Bo2k A

Inclusion of the first of these in the cnergy expression
agrees with a correction to the Thomas-Fermi energy
functional derived by Kompaneets and Pavlovskii.?

An expression for a(g), allowing in an approximate
manner for exchange effects has been proposed by
Hubbard.'s It is

@ [(1+1 < )+ Y )T (o1)
a = - - ’ ;
! 204ket) ket

where S(g) is defined in Eq. (43). This form yields

g2 1( 1 6)
Ar 24\ke2ks? ket)

For typical metallic densities this has the opposite sign
from the random-phase approximation expression (88).
Thus we see that the lowest nonvanishing gradient cor-
rection to the Thomas-Fermi theory depends quite
sensitively on refinements in the theory of the electronic
polarizability, a(g).

(92)

18 E. P. Wigner, Phys. Rev. 40, 1002 (1934).

6 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957).

17 P. Nozitres and D. Pines, Phys. Rev. 111, 442 (1958).

18T, Gaskell, Proc. Phys. Soc. (London) 77, 1182 (1961); 80,
1091 (1962).
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IV. CONCLUDING REMARKS

In the preceding sections we have developed a theory
of the electronic ground state which is exact in two
limiting cases: The case of a nearly constant density
(m=not#(r), #i(r)/n<<1) and the case of a slowly
varying density. Actual electronic systems do not belong
to either of these two categories. The most promising
formulation of the theory at present appears to be that
obtained by partial summation of the gradient expan-
sion (Sec. I11.4). It has, however, not yet been tested
in actual physical problems. But regardless of the out-
come of this test, it is hoped that the considerations of
this paper shed some new light on the problem of the
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inhomogeneous electron gas and may suggest further
developments. ‘
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