
Assignment 7
Physics/ECE 176

Made available: Tuesday, March 15, 2011
Due: by beginning of class, Tuesday, March 22, 2011.

Problem 1: Review question: the ultimate two-vessel ideal gas
entropy change problem

A rigid vessel of volume VA and pressure PA contains an ideal gas of NA identical A-type molecules, each
with fA degrees of freedom, and a second rigid vessel contains a different kind of ideal gas with volume VB

and pressure PB that consists of NB identical B-type molecules, each of which has fB degrees of freedom.
The two vessels are then connected by a tube of negligible volume and allowed to come to thermodynamic
equilibrium. In terms of these data, calculate

1. the equilibrium temperature Tf ;

2. the equilibrium pressure Pf ;

3. the total work Wtotal done by the gases;

4. the heat Q that is transferred from vessel A to vessel B;

5. the total change in entropy ∆Stotal. Hint: because entropy is a state function, you can choose any
quasistatic sequence of processes that take you from the initial state to the final state and use those
processes to calculate the change in entropy.

6. the total change in entropy ∆Stotal assuming that the molecules are in fact atoms so that you can use
the Sackur-Tetrode equation. Does your answer then agree with the previous answer, obtained without
the Sackur-Tetrode equation?

7. the total change in entropy assuming that the molecules are in fact atoms and the A-atoms and B-atoms
are all the same kind of atom.

8. the equilibrium chemical potential µf and the change in the chemical potential µA for system A,
assuming that all the molecules are in fact atoms.

Problem 2: Review question: pressure balance by effusion

Consider a volume V containing an ideal gas that is divided into two chambers by a partition that is
impermeable to heat and particles such that the temperature in chamber 1 is maintained at a constant
value T1 and the temperature in chamber 2 is maintained at a constant value T2.

1. If a large hole is made in the partition and the system eventually becomes time-independent (although
not in thermodynamic equilibrium), how is the final pressure P1 in chamber 1 related to the final
pressure P2 in chamber 2?
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2. If a small hole is made in the partition, so small that molecules can only pass through by effusion, and
the system eventually becomes time-independent (although not in thermodynamic equilibrium), how
is the final pressure P1 in chamber 1 related to the final pressure P2 in chamber 2?

Problem 3: Schroeder Problems

1. Problem 6.1 on page 224 of Schroeder. The Mathematica file

http://www.phy.duke.edu/~hsg/176/lectures/coupled-einstein-solids.nb

will be helpful here.

2. Problem 6.5 on page 225 of Schroeder. Here use Eq. (6.10), that the partition function Z for some
small system with M energy states Em that is in thermal equilibrium with a large thermal reservoir
of energy T is given by the following sum:

Z = e−E1/(kT ) + e−E2/(kT ) + . . .+ e−EM/(kT ). (1)

The probability pm of observing the small system to have energy Em is then given by

pm =
e−Em/(kT )

Z
, (2)

and it should be clear from the above that
∑

pm = 1, i.e. the small system is certain to be in one of
the energy states Em.

3. Problem 6.13 on page 228.

4. Problem 6.14 on page 228.

5. Problem 6.15 on page 231.

6. Problem 6.18 on page 231. Also explain how the formula σE = kT
√
C/k implies that

C(T ) ∝ 1

T
, (3)

for large temperatures T if the energy levels Ei lie in a finite range [Emin, Emax]. This result explains
why the heat capacity of a paramagnet decays to zero at large T for a paramagnet, since the magnetic
dipoles in a paramagnet have just two energy levels, Ei = ±µB.

In case you have not seen (or don’t remember) some elementary manipulations related to the standard
deviation σE of some quantity Es that varies from measurement to measurement (say the energy Es

of a small system in equilibrium with a large heat bath), I show here that

σ2
E =

(
E − E

)2
= E2 −

(
E
)2

. (4)

The first equality is the definition of the variance σ2
E (standard deviation squared) as the average

(overbar) of the square of the deviations E−E where E is the average value of E. The second equality
is a commonly used equivalent1 form. To obtain the second form from the first, assume that the

1The two forms are mathematically equivalent but not numerically equivalent. It is possible in rare cases for the second
expression to round to a negative number on a digital computer because of the quirks of floating point arithmetic.
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variable Es occurs with probability ps where all the probabilities must add to one,
∑

s ps = 1. Then
by definition the average E is the expected value

E =
∑
s

psEs, (5)

and so the variance can be calculated as follows(
E − E

)2
=

∑
s

ps
(
Es − E

)2
(6)

=
∑
s

ps

(
E2

s − 2EEs + E
2
)

(7)

=
∑
s

psE
2
s − 2E

(∑
s

psEs

)
+ E

2∑
s

ps (8)

= E2 − 2
(
E
)2

+
(
E
)2

(9)

= E2 −
(
E
)2

. (10)

In the above, I used the fact that a constant can be pulled out of a sum, e.g.
∑

s ps(−2EEs) =

(−2E)
∑

s psEs = −2E
2
. The above derivation is the gist of Problem 6.17(c) on page 231 of Schroeder.

You may want to work out this problem on your own if the above algebra is not fully familiar.

7. Problem 6.19 on page 231 of Schroeder. Hint: Einstein solids obey the equipartition theorem at high
temperatures.

Problem 4: Time to Finish This Homework Assignment

Please tell me the approximate time in hours that it took you to complete this homework assignment.

3


