
Assignment 5
Physics/ECE 176

Made available: Saturday, February 12, 2011
Due: Friday, February 18, 2011, at my office by 3pm.

Problem 1: Surface areas of hyperspheres

Please read Appendix B.2 of Schroeder and do Schroeder problem B.8 below before doing Problem 1 so that
you know the definition of the Gamma function Γ(x) and its values for some representative arguments.

The surface area Ad(r) of a hypersphere of radius r in d spatial dimensions is given by

Ad(r) =
2πd/2

Γ
(
d
2

) rd−1. (1)

1. Use Eq. (1) to calculate a symbolic expression (in terms of π times a rational prefactor) and its numerical
value of the surface area Ad(1) of a unit hypersphere for d = 4 and d = 5. For example, for d = 2, the
symbolic value is 2π and its numerical value is ≈ 6.3 to two digits. In Mathematica, numerical values
of symbolic expressions can be obtained using the N function, for example N[2 Pi] = 6.283 where Pi
is Mathematica’s symbol for π (and E is Mathematica’s symbol for e).

2. The values for Ad(1) for d = 2, 3, 4, 5 suggest incorrectly that Ad(1) is an increasing function of d. Use
Stirling’s formula in the form Γ(x + 1) ≈

√
2πx (x/e)x to show that, for large d, Ad(1) ∝ d−d/2 =

e−[ln(d)/2]d actually decreases rapidly (a bit faster than exponentially rapidly) with increasing d.

3. In what spatial dimension does the numerical value of the surface area of a unit hypersphere reach
a maximum value? Hint: use Plot to get a visual answer, there is no need to do any calculus here.
Mathematica knows how to evaluate the Gamma function for all possible arguments (positive, negative,
complex), just invoke Gamma[x].

Problem 2: Heat Capacity CV (T ) of an Einstein Solid

This problem is one of the most important in the course so please take the time to not just do it but
think carefully about what steps you are taking and why. This problem shows you how to go from a
mathematical expression for the multiplicity Ω(N,U) of an Einstein solid with N oscillators and energy U =
(hf)q all the way to the heat capacity CV (T ) as a function of temperature, and how to use low-order Taylor
series approximations to get some intuition about the low-temperature and high-temperature parts of the
mathematical curve.

1. Use Stirling’s formula to show that the multiplicity Ω(N, q) of an Einstein solid for any large values
of N and q is approximately given by

Ω(N, q) =

(
q +N

q

)q (
q +N

N

)N

. (2)

In your derivation, indicate clearly where you dropped certain multiplicative factors since they were
just “large numbers” multiplying a “very large” number.

2. Use Eq. (2) to calculate the temperature T = T (U) as a function of its thermal energy U .
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Hints: U = ε q, where ε = hf is the energy spacing between quantum harmonic oscillator levels, so in
Eq. (2) you can express q in terms of U and ε. The entropy is give by S = k lnΩ and you can use the
chain rule to simplify your calculation of temperature:

1

T
=

∂S

∂U
=

∂S

∂q

∂q

∂U
=

1

ε

∂S

∂q
. (3)

3. Invert your expression for T = T (U) to find U = U(T ), the thermal energy as a function of T . Then
differentiate to get the heat capacity CV (T ) = ∂U/∂T . Your answer should be:

CV = Nk
( ε

kT

)2 eε/(kT )(
eε/(kT ) − 1

)2 . (4)

4. Use Mathematica to plot Eq. (4) and include your plot with your homework assignment.

Since Nk is a natural unit for heat capacity and the temperature T enters Eq. (4) only through the
combination of symbols x = kT/ε ∝ T , plot Eq. (4) by plotting CV /(Nk) versus x; this avoids having
to know values for N or ε. (A range 0 ≤ x ≤ 2 should be fine.) Since x ∝ T , you can think of the
horizontal axis as still being the temperature axis. Note that x = 1 on the horizontal axis when kT = ε,
i.e., the thermal energy kT is comparable to the harmonic oscillator energy spacing.

5. Using the fact that

ey ≈ 1 + y +
1

2
y2 +

1

6
y3, (5)

for y sufficiently small (close to zero), show that the high-temperature part of the heat capacity
curve Eq. (4) behaves approximately like

CV (T )

Nk
≈ 1− 1

12

( ε

kT

)2

+ . . . , (6)

for kT � ε. The dots . . . in Eq. (6) represent higher powers of ε/(kT ) that can be neglected as tiny
for T sufficiently large.

To get some intuition about when the high-temperature approximation Eq. (6) is qualitatively useful,
use Mathematica to plot Eq. (6) and Eq. (4) on the same plot and include that plot with
your homework. Indicate with arrows and labels on your plot the range of x over which
Eq. (6) is a useful approximation.

Note how Eq. (6) implies that the high-temperature limit T → ∞ of CV is none other than Nk, the
equipartition value predicted for N oscillators, each with f = 2 degrees of freedom, i.e., Eq. (4) is
consistent with the equipartition theorem for high temperatures.

Some hints: the expression y = 1/x = ε/(kT ) is small when T is large so first rewrite Eq. (4) in terms
of the small quantity y:

CV

Nk
=

y2ey

(ey − 1)
2 . (7)

Now use Eq. (5) to second-order in the numerator and to third-order in the denominator and use your
accumulated Taylor-series skills to obtain Eq. (6).

6. Now obtain a leading-order low-temperature approximation to the expression Eq. (4) by showing that

CV

Nk
≈

( ε

kT

)2

e−ε/(kT ), (8)

when kT � ε. Hint: As T → 0, y = ε/(kT ) becomes large and so ey � 1.
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Create a final Mathematical plot that combines your low-temperature approximation Eq. (8), your
high-temperature approximation Eq. (6), and the full curve Eq. (4) on one plot and include that plot
with your homework.

Describe over what range of x the low-temperature expression Eq. (8) qualitatively agree with Eq. (4).
If you knew just the low- and high-temperature behaviors, would you be able to deduce the entire form
of CV (T )?

A comment: in case you are wondering, you can’t simplify Eq. (8) further by trying to approximate
exp(−ε/(kT )) by a truncated Taylor series around T = 0 because a function of the form e−c/T for c
a positive constant is one of the rare functions that has infinitely many derivatives at T = 0 (as you
should verify) but all the derivatives are zero (as you should also verify) and so the function does not
have a Taylor series about T = 0. This situation arises frequently in thermal physics.

7. The expression Eq. (4) can be used to understand the vibrational motions of diatomic molecules.
Looking only at the vibrational contribution to the heat capacity graph for H2 in Fig. 1.13 on page 30,
estimate the value of ε (this is the uniform spacing between energy levels of the quantum harmonic
oscillator) for the vibrational motion of a H2 molecule and compare your value with the experimental
value of ∆E, which is 0.5 eV to one digit.

Hint: One way to compare the theoretical curve Eq. (4) with the experimental data is to look for some
representative feature that can be compared independently of physical units. For example, from your
plot of Eq. (4), observe that the curve reaches half its maximum value when x = ε/(kT ) ≈ 1/3.

Problem 3: Schroeder Problems

1. Problem B.7 on page 388. Hint: integration by parts.

2. Problem B.8 on page 388. Hint: In the expression for Γ(1/2):

Γ

(
1

2

)
=

∫ ∞

0

x−1/2e−x dx, (9)

change the integration variable to y = x1/2 and use Eq. (B.6) on page 386. (You need to memorize the
value of the Gaussian integral Eq. (B.6) which is used often in physics, engineering, and mathematics.)

3. Problem 2.21 on page 66. In addition, please also answer the sentences in bold below as part of this
problem.

Note that this problem basically involves executing the Mathematica command

Manipulate[

Plot[

( 4. z (1 - z) )^(10^a) ,

{ z, 0, 1 } ,

PlotRange -> { 0, 1 } (* make vertical axis range [0,1] *)

] ,

{ a, 0, 4 } (* the Manipulate parameter *)

]

Please explain briefly what this code is doing, e.g. what is being plotted as the parameter a
varies from 0 to 4. Also discuss briefly what you learn from executing this code.

Note that for larger powers of N , the plots show artifacts, e.g. the peak at z = 1/2 doesn’t reach all
the way up to 1 which mathematically it must since the maximum value of the function 4z(1− z) is 1,
which is unchanged no matter what power N the function is raised to. When using any visualization
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software like Mathematica or Matlab, you should always be wary and you should think of ways to
determine whether your plot makes sense or not.

These artifacts are consequences of Mathematica’s heuristic plotting algorithm, which unfortunately
is not discussed anywhere, presumably because the algorithm is proprietary. The Plot algorithm first
samples the function to be plotted with a modest number of equally spaced points, then evaluates the
function at some extra points based on the mathematical structure of the crude plot. The problem
here is that the function f(z)N is becoming so narrow with increasing N that the default number of
sampling points that Plot starts with is too few to determine a reasonable structure of the curve.

You can override Mathematica’s heuristic algorithm by telling Plot explicitly how many initial sampling
points to use via the PlotPoints option. Thus re-execute the above Mathematica code (you don’t
have to include the second plot in your homework nor discuss it) with this option

PlotPoints -> 200 (* use many more initial sampling points *)

added to the Plot command. You should verify that the plots now have a correct peak for all powers.
Note that you don’t want to go overboard with the option PlotPoints since, on a computer screen
with perhaps 100 pixels per inch, you can’t plot more than about 1,000 points on a screen and actually
see the points.

Even though the peak is now correct, discuss briefly whether the width of the curve f(z)N

for large N is also correct, by using your analytical knowledge of what the width should
be according to the Gaussian that approximates this curve. (The discussion of Figure 2.7
in Schroeder on pages 65-66 may be helpful here.)

It is also insightful to use Mathematica to compare the function [f(z)]N for f(z) = 4z(1− z) with the
Gaussian that it presumably asymptotes to for large N . According to our discussion in class about how
a high power of a function f(z) look like a Gaussian near its global maximum zmax with value fmax,
the Gaussian approximating [4z(1− z)]N for large N should be:

f(z)N ≈ fN
max exp

[
−N

|f ′′(zmax)|
2fmax

(z − zmax)
2

]
(10)

= exp

[
−4N

(
z − 1

2

)2
]
, (11)

since here fmax = 1 and |f ′′(zmax)| = 8.

Thus also execute the Mathematica code:

Manipulate[

Plot[

{

( 4. z (1 - z) )^(10^a),

Exp[ - 4 10^a (z - 1/2)^2 ] (* compare with Gaussian *)

} ,

{ z, 0, 1 },

PlotRange -> { 0, 1 } , (* make vertical axis range [0,1] *)

PlotPoints -> 200

] ,

{ a, 0, 4 } (* the Manipulate parameter *)

]

and summarize what you learn: how large does a power N have to become for a Gaussian
to describe f(z)N well?
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4. Problem 2.23 on page 67. Note: use Stirling’s formula to answer part (a). Your answer should be

Ωmax =

(
2

πN

)1/2

2N . (12)

5. Problem 2.24 on page 67.

Some comments:

(a) You have solved part (a) already while answering Problem 2.23(a) so don’t do this a second time.

(b) Part (b) will perhaps be the most challenging part of this assignment algebraically so let me give
you some suggestions to help you on your way. Using Stirling’s approximation, show as a first
step that the multiplicity Ω(N↑) of a two-state paramagnet consisting of N magnetic dipoles can,
for large values of N , N↑, and N↓ can be approximated as:

Ω =
N !

N↑!N↓!
≈

(
N

2πN↑N↓

)1/2
NN

N
N↑
↑ N

N↓
↓

, (13)

where the number N↑ of up spins and the number N↓ of down spins satisfy

N↑ +N↓ = N. (14)

Because the denominator N
N↑
↑ N

N↓
↓ has big numbers raised to different exponents, Eq. (13) can

not be written in the form f(N↑)
N so we cannot use Eq. (10), that high powers of a function with

a single global maximum looks like a Gaussian near the global maximum. Instead, you can use
the more direct argument of Schroeder on page 65. We know that the maximum multiplicity will
occur for N↑ = N↓ = N/2 and we can anticipate (and verify later) that the multiplicity will be
sharply peaked about the maximum value. So we can write

N↑ =
N

2
+ x, N↓ =

N

2
− x, (15)

where the variable x expresses how far we are from the position N/2 of the maximum. If the
peak near the maximum is extremely narrow, then we only have to consider Eq. (13) near its
maximum, i.e. we can assume that the variable x in Eq. (15) is small:

x � N

2
. (16)

Now follow the ideas of page 65 of Schroeder in three steps: eliminate N↑ and N↓ everywhere in
terms of N/2 ± x; take the log of the multiplicity; and simplify several expressions of the form
ln(a+ ε) ≈ ln(a) + ε/a where ε/a � 1. When the dust clears, you should obtain the answer

Ω ≈
(

2

πN

)1/2

2N e−(2/N)x2

. (17)

(The 2 in the argument −(2/N)x2 of the exponent in Eq. (17) is not a mistake.) Note how this
result reduces to your answer in (a) for x = 0.

6. Problem 2.26 on page 72. Then use S = k lnΩ and Stirling’s formula to derive the two-dimensional
version of the Sackur-Tetrode equation for the entropy S(U,A,N) of N atoms on a two-dimensional
surface of area A:

S = Nk

(
2 + ln

[
A

N

(
2πm

h2

U

N

)])
. (18)

Problem 4: Time to Finish This Homework Assignment

Please tell me the approximate time in hours that it took you to complete this homework assignment.
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