
Assignment 2
Physics/ECE 176

Made available: Friday, January 21, 2011
Due: Thursday, January 27, 2011, by the beginning of class.

Problem 1: Distance Between Two Random Walkers

Consider two atoms A and B that undergo a random walk in a box containing some gas. Just like the situation
described in lecture, atom A undergoes a random walk in which it repeatedly travels with a constant speed vA
in a randomly chosen direction until, after a collision time τA (which is always the same), atom A collides
with another molecule and changes direction randomly. Atom B also undergoes a random walk but, because
of its different properties, travels with a different constant speed vB in a randomly chosen direction until,
after a different collision time τB , it collides with another molecule and changes its direction randomly.

Let X(t) and Y(t) be the vector locations of atoms A and B respectively at time t with respect to some
coordinate system and assume that both atoms start at the origin of the coordinate system so that X(0) =
Y(0) = 0. Show that the average square of the distance between the two atoms itself behaves like a random
walk in that it increases linearly with time t like this〈

|X(t)−Y(t)|2
〉
= D t, (1)

and give the diffusion coefficient D explicitly in terms of the parameters vA, vB , τA and τB . (The brack-
ets 〈· · · 〉 indicate an ensemble average.) Discuss briefly whether your conclusion changes if the two atoms
do not start off at the same location at time t = 0.

Some hints: Assume in a time t that atom A takes M = t/τA steps and that atom B takes N = t/τB steps
where M and N are positive integers. Then write

X(t) =
M∑
i=1

∆Xi, Y(t) =
N∑
j=1

∆Yi, (2)

where each step ∆Xi has the same length but a random direction, and where each step ∆Yj has the same
length (although different than A’s) but a random direction.

Problem 2: A Box With a Tiny Cold Plate

Consider a cubic box of volume V that contains an ideal gas in thermodynamic equilibrium that consists of
N identical atoms, each of mass m, each moving with the same speed v. The gas is initially at temperature T
with pressure P . A tiny flat metallic square of area A is attached to the inside surface of the box so that
the square lies flush with the wall and such that the square is cooled to such a low temperature (by external
machinery) that any gas atoms that come in contact with the square permanently stick.

1. Assuming the simplest kinetic model in which 1/6 of the atoms are moving perpendicular to and toward
the flat plate, show that the amount of the energy per unit time dE/dt that must be removed from
the metal square in order to keep its temperature constant and cold is given by the expression

dE

dt
=

1

4
AP

(
3kT

m

)1/2

. (3)
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2. Assuming now that the atoms in the gas all have the same speed but have isotropic velocities (this
means the velocities point in all possible directions with equal likelihood), show that Eq. (3) becomes

dE

dt
=

3

8
AP

(
3kT

m

)1/2

. (4)

Note how the numerical coefficient changes little, 3/8 versus 1/4, when you use the presumably more
realistic isotropic model; the crude kinetic model gets the job done.

Hint: You will want to set up an expression like this:

∆E(θ, φ) = ([v cos(θ)∆t]A)× N

V
× sin(θ) dθ dφ

4π
× · · · , (5)

which represents the small contribution ∆E(θ, φ) to the energy from particles arriving at the plate
within a short time ∆t from the direction (θ, φ), for a spherical coordinate system centered on the
plate with its z-axis pointing into the box and perpendicular to the area A. You then need to integrate
Eq. (5) over some appropriate region to add up all the relevant contributions.

3. Using Eq. (4), estimate without a calculator to one significant digit the power (energy per unit time,
with units of joules/second or J/s) that needs to be removed from a one-millimeter metal square if the
square is attached to the inside of a one liter box containing diatomic nitrogen (molecular weight 28 g)
at STP (standard temperature and pressure so T ≈ 290K and P ≈ 1.0×105 N/m2). Also assume that
the gas parameters have not yet had time to change significantly from their initial values.

Note: When estimating expressions without a calculator, please save time by simplifying your expres-
sion algebraically as much as possible before substituting any numbers. That is, avoid calculating
intermediate numbers that are not needed for the final answer. Also round numbers to one digit before
combining them. In future quizzes and exams, you will lose credit if I see you multiplying out any
numbers by hand.

4. Determine mathematically and then show by an appropriate hand drawing (qualitative sketch) how
the pressure P (t), temperature T (t), and number of particles N(t) vary with time for this gas that is
in steady contact with a tiny cold metal square. Make sure to state clearly any physical assumptions
that you use in your analysis.

From your analysis, determine and give an expression for the characteristic time τ for the pressure to
change substantially.

Problem 3: Long-Term Speed of an Indestructible Sphere

An indestructible sphere of mass 100 kg is placed in the interstellar space of the Milky Way galaxy, a few
light years from any star. What will its speed be (as measured from Earth) after a sufficiently long time?

Some comments: you can assume that the probability for the sphere to fall into a star is zero. (This is true
even for stars, which are so tiny (2 light-seconds) compared to their average separation (a light year) that
they essentially never physically collide, even when two galaxies collide with one another.) The mass of a
typical star is of order 1030 kg, the typical relative speed of one star with respect to another is of order
10 km/s, and there are about 1010 stars in a typical galaxy.

Problem 4: Schroeder and Related Problems

1. Problem 1.21 on page 14 of Schroeder.

2. Problem 1.24 on page 17 of Schroeder.
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3. Problem 1.26 on page 19 of Schroeder.

4. Problem 1.27 on page 19 of Schroeder.

5. Problem 1.31 on page 22 of Schroeder.

Note: this should be an easy review problem and you should be able to do it, even though I won’t get
around to discussing Section 1.5 until the day the homework is due.

Problem 5: Time to Finish This Homework Assignment

Please tell me the approximate time in hours that it took you to complete this homework assignment.
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