
Assignment 1
Physics/ECE 176

Made available: Thursday, January 13, 2011
Due: Thursday, January 20, 2011, by the beginning of class.

Overview

Before beginning this assignment, please read carefully the part of the course syllabus:

http://www.phy.duke.edu/~hsg/176/176-syllabus.html#grading

concerning grading and homeworks so that you understand your responsibilities with respect to doing and
handing in homework assignments. Assignments are due no later than the beginning of class on the due
date.

Problem 1: An E-mail Introduction

Please introduce yourself by sending me an e-mail message (to hsg@phy.duke.edu) with the following infor-
mation:

1. your major or intended major (if you know it);

2. your professional interests (if you know them);

3. where you grew up and what attracted you to Duke;

4. some of your interests and hobbies outside of classes;

5. anything about how you like courses taught that could help me teach a better course for you;

6. a brief list of the most advanced physics and math courses that you have taken (just the titles are fine).
In particular, have you seen the material in Chapter 1 before so that I can go through that material
quickly?

Note: Please send me this email introduction as soon as possible—preferably no later than Sunday, Jan-
uary 16—since your answer will help me to determine how rapidly I can move through Chapter 1. (Your
answers will also help me to select examples to discuss later in the course.) The rest of this assignment is
due on Thursday, January 20.

Problem 2: Learning to Use Mathematica

For this course, you are required to master the computer mathematics program Mathematica at the level of
the tutorial mentioned below in part 2.4 so please work through this tutorial carefully. Part 2.4 also explains
what you have to hand in for Problem 2.

1. First, install the latest version of Mathematica, version 8.0, on your computer. You can get a free copy
for PCs, Macs, and Linux machines here

http://www.oit.duke.edu/comp-print/software/license/
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under the Software category “Statistics, Science, Mathematics, & Data Transfer”.

2. After installing Mathematica, make sure you can actually run it. Start up Mathematica by double-
clicking on the Mathematica icon. After a few seconds, a “Welcome to Wolfram Mathematica 8”
window will appear. Click on the “Notebook” button in the upper left of this window to create a
so-called notebook window. Inside the notebook window, type “1+2” and then type Shift-Enter to
execute the command. (Shift-Enter means type the Enter key while holding down the Shift key.) You
should get the answer “3”. If you have difficulty installing and running Mathematica, please get help
as soon as possible from a classmate, from Professor Greenside, or from OIT.

3. If you are new to Mathematica, go through the online tutorial “Hands-on Start to Mathematica”
available at this URL:

http://www.wolfram.com/broadcast/screencasts/handsonstart

4. Finally, go to the 176 homework webpage

http://www.phy.duke.edu/~hsg/176/homeworks

and download the Mathematica file problem-1.17-mma-tutorial.nb by right-clicking on the link and
selecting the option “Save link as...”; your Desktop would be a convenient place to save the file. You
can then open the file in Mathematica by simply double-clicking on the file icon. Once the file is opened
in a notebook window, start reading through the tutorial and simply follow the instructions.

What you have to hand in with this homework assignment is brief and is described in the second-to-last
Mathematica cell labeled “Homework exercise: give me your best choice of a and b with a print-out of
your best plot”.

Problem 3: Physics Problems

1. Problem 1.6 on page 6 of Schroeder. Also explain briefly why you cannot feel accurately how hot or
cold some object is for your specific example.

2. Problem 1.12 on page 8 in Schroeder. Make sure to explain how you obtained or estimated the size of
a small molecule.

For this problem, use a similar method to determine the average distance (in light years) between stars
in a galaxy by using the Internet (or an astronomy textbook) to look up the typical number of stars
in a typical galaxy and the typical size of a spiral galaxy.

Also estimate the average distance between galaxies (in light years) based on the total number of known
galaxies (about 1011) in a universe of diameter approximately 14 billion light years.

For all three answers, one significant digits is fine since there are many rough approximations being
made here, e.g., neither stars nor galaxies are uniformly distributed in space.

3. Atoms and molecules are not crisp geometric objects with a precise size but fuzzy quantum mechanical
things, with electron clouds that extend arbitrarily far from the nucleus. One way to associate a
length with a molecule is its de Broglie (pronounced approximately as “de-broy”, not as “de-brog-lee)
wavelength λ = h/p = h/(mv), which is related to the momentum p = mv of the molecule. (See
Eq. (A.3) on page 360 of the Schroeder text or your introductory physics and chemistry texts.) This
wavelength is usually not the same size as the so-called covalent radius, which is defined to be one
half of the distance between two nearest neighbor molecules in a crystalline solid as determined by
X-ray crystallography (with the data extrapolated to absolute zero to eliminate the effects of thermal
expansion).
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For a given pressure, the average distance between molecules1 d ∝ T 1/3 decreases with decreasing
temperature as a gas becomes denser and starts to turn into a liquid. On the other hand, the molecule’s
de Broglie wavelength2 λ ∝ T−1/2 increases with decreasing temperature since the molecule is moving
more slowly on average. An interesting question then arises: is it possible for the decreasing average
distance between molecules in a gas to become about the same size as the increasing de Broglie
wavelength? If so, does anything interesting happen physically?

Answer this question for a gas of He4 atoms in a vessel of constant pressure P = 1.0 atm whose volume
can vary. For this problem, assume that the He gas is ideal.

(a) At what temperature T in kelvin do you predict that the de Broglie wavelength becomes equal to
the average distance between molecules?
Note: you can use Eq. (1.21) on page 13 of Schroeder to estimate the average speed v of a He atom
as a function of the gas’s temperature T .

(b) What is the common value of these two lengths when they become equal? For comparison, the
covalent radius of a He atom is about 3×10−11 m ≈ 30 pm where 1 pm = 10−12 m is one picometer.

(c) Discuss whether your estimate for T corresponds to any features in the phase diagram for He4,
as shown in the left panel of Figure 5.13 on page 168 of the Schroeder text.

Problem 4: Some Math Review

The following two problems are to help you start thinking about some mathematics that we will use later in
the course.

1. Determine the value of the following triple integral in terms of the number π and some ratio of integers.
∫ π

0

dx

∫ π

0

dy

∫ π

0

dz y2 sin(z) . (1)

It is not sufficient to write down the answer, you need to explain or show how you got the answer.

A hint: if you think first conceptually about what this integral means, you can get the answer without
evaluating any integrals3. But also make sure you know how to get the answer by carrying out the
appropriate integrations.

2. Many times during this semester, we will use a trick that is widely used in science, engineering, and
applied mathematics, which is to use the first few terms of the infinite Taylor series f0 + f1(x − a) +
f2(x−a)2 + · · · of some function f(x) about a point of interest x = a to obtain a low-order polynomial
that approximates the function well for locations x sufficiently close to the point a of interest. This
often suffices to provide analytical insight about the properties of a complicated function, say how the
heat capacity C(T ) of some substance behaves for small or large temperatures.

Calculating the Taylor series of a function by hand can be tedious since it requires evaluating successive
derivatives fn(a) of the function f(x) at the point x = a of interest. Fortunately, there are efficient
ways to get the first few coefficients of the Taylor series for many functions that arise in physics by
simple algebraic manipulations of polynomials, without evaluating any derivatives. To help you start
thinking in this direction, please answer the following questions.

1Make sure that you know how to use the proportionality symbol ∝: we say that some quantity a is proportional to some
quantity b, a ∝ b, if there is a nonzero constant c such that a = cb. The notation is valuable when one wants to emphasize a
functional relation without worrying about specific constants. The ideal gas law PV = NkT implies V ∝ T for fixed N and
fixed P and V ≈ Nd3 ∝ d3 which implies d3 ∝ V ∝ T which implies d ∝ T 1/3 as claimed.

2If p = mv is the momentum of a particle of mass m and speed v, the de Broglie relation p = h/λ implies λ ∝ p−1 ∝ v−1.
But Eq. (1.21) on page 13 of Schroeder implies v ∝ T 1/2 so λ ∝ v−1 ∝ T−1/2 as claimed.

3Especially in a science course like 176, you should always try to think first about the possible meaning of some mathematical
expression.
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(a) You learned in high school about the infinite geometric series

1 + x + x2 + x3 + · · · , (2)

which converges to the function (1−x)−1 for all numbers x such that |x| < 1. If the number x has
a sufficiently small magnitude, just a first few terms of this infinite series can provide an accurate
approximation to (1− x)−1.
Show that Eq. (2) converges to (1−x)−1 for all numbers x of magnitude less than one.
Hint: first show that the sum SN (x) of the first N terms of this series is explicitly (1−xN )/(1−x).

(b) Show that Eq. (2) is in fact the Taylor series of the function f(x) = (1−x)−1 about the point x = 0.

(c) In Eq. (2), if |x| is sufficiently small, the first few terms of Eq. (2) can provide a useful approxi-
mation to (1−x)−1 near x = 0. For example, we can use the first three terms of the Taylor series
Eq. (2) to approximate (1− x)−1 in the vicinity of x = 0 by the quadratic 1 + x + x2:

(1− x)−1 ≈ 1 + x + x2, |x| ¿ 1, (3)

and this approximation becomes arbitrarily accurate4 for sufficiently small |x|.
Further, if instead of thinking of x as some number we think of x more broadly as some small
arbitrary mathematical expression, Eq. (3) provides a way to replace a reciprocal in some expres-
sion by multiplication with a low-order polynomial, and polynomials are often easier and more
insightful to work with.
To appreciate this point—replacing a reciprocal by multiplication by some low-order polynomial—
use Eq. (3) followed by multiplication of polynomials to show that the first three terms
of the Taylor series of the function

f(x) =
1 + x2

1 + x− 2x2
, (4)

is given by the quadratic
1− x + 4x2. (5)

Note that you have obtained these terms of the Taylor series5 without any tedious differentiations
of Eq. (4).
Here are some hints:

i. Write f(x) in the form (1 + x2) × (1 − [−x + 2x2])−1 and observe that the expression in
brackets is small if x is sufficiently small in magnitude. You can then use Eq. (3) with x on
both sides replaced by −x + 2x2.

ii. The math is easy because you can just throw out (set to zero) any power higher than two
that appears since these higher powers are acceptably tiny compared to lower powers that
you keep.
For example, the product (1 + x2 − x5)(1 − x + x2) for |x| sufficiently small can quickly be
seen to equal the polynomial 1 − x + 2x2 up to powers of x2. First, the x5 term in the
first factor 1 + x2 − x5 can be ignored right away as tiny compared to x2 so the first factor
becomes 1 + x2. Second, when the x2 in the first term multiplies the second term 1− x + x2

to give x2 − x3 + x4, all powers except the first can be ignored as small compared to x2, i.e.,
x2−x3 +x4 ≈ x2 for small enough x. Thus: (1+x2−x5)(1−x+x2) ≈ (1+x2)(1−x+x2) =
1× (1− x + x2) + x2(1− x + x2) ≈ 1− x + x2 + x2.

4For the mathematically inclined, try showing that no other quadratic polynomial approximates f(x) near x = 0 as well as
the first three terms of its Taylor series.

5Can you figure out why Eq. (5) is indeed the first three terms in the Taylor series about x = 0 of the function f(x)?
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(d) To verify my claim that the first few terms of a Taylor series provides a good approximation to
a function near the point of expansion, use the following Mathematica code to explore visually
the accuracy of approximating Eq. (4) by Eq. (5). Please print out and include in your
homework the plot g2 of the relative error. Also explain briefly what you learn from
your two plots. For example, over what range of x does the second-order approximation give a
relative error smaller than 10% (corresponding to one significant digit of accuracy)? Smaller than
1% (two significant digits)?

f[x_] := ( 1 + x^2 ) / ( 1 + x - 2x^2 ) ;
p[x_] := 1 - x + 4 x^2 ;

g1 = Plot[
{ f[x], p[x] } , (* plot f and p simultaneously on same plot *)
{ x, -0.5, 0.5 } , (* plot over range -0.5 <= x <= 0.5 *)
PlotRange -> { 0, 5 } (* plot function over vertical range [0,5] *)

]

g2 = Plot[ (* plot relative error |f(x) - g(x)|/|f(x)| *)
Abs[ (f[x] - p[x]) / f[x] ] ,
{ x, -0.25, 0.25 } (* plot over range -0.25 <= x <= 0.25 *)

]

Problem 5: Time to Finish This Homework Assignment

Please tell me the approximate time in hours that it took you to complete this homework assignment.
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