
Quiz 1 Solutions

Professor Greenside

The following solutions are more detailed than what was required to get full credit on the problems.

1. (a) (3 points) For one point each, describe three ways that the Earth is not in thermodynamic
equilibrium in addition to the fact that the temperature inside the Earth is not uniform.

Answer: To get credit for this problem, it was not sufficient to list a criterion, you had to be
specific about how the criterion was or was not satisfied in the context of Earth. Some possible
answers:

i. The Earth is not time independent: the air, oceans, and molten rock and iron (deep in the
Earth) all show macroscopic motion, and there are chemical processes such as weathering of
rock that are not in steady state.

ii. There is relative motion: the air in the atmosphere does not move rigidly with the air near
the ground moving more slowly than the air higher in the sky, the water in the oceans does
not move rigidly, the molten iron in the iron core is convecting and so does not move rigidly.

iii. The state of the Earth is not independent of its history. This can be seen in many ways:
there are unmixed minerals and rocks, there are details of the Earth such as the shapes and
positions of the continents that are specific to Earth’s history, the composition of the air
continues to change over time (partly because of human technology).

(b) (5 points) Estimate to the nearest power of ten the ratio of “the thermal relaxation time of the
Earth” to “the age of the solar system” which is about 5 billion years. The radius of the Earth is
6, 400 km and the thermal diffusivity of rock and iron is about 10−6 m2/s.
Hint: Round all numbers to the nearest power of ten as soon as possible to minimize the arithmetic.

Answer: I accepted answers of 100 or 1, 000, or 10, 000, which are all reasonable based on
different ways of rounding. This answer is surprising: it will take a cosmological amount of
time, longer than the current age of the universe, for the Earth to reach thermal equilibrium. Of
course, there may be other time scales such as a relaxation time to equilibrate with respect to
concentrations and chemical reactions so reaching thermodynamic equilibrium might take even
longer than reaching thermal equilibrium.
Let’s answer this problem two ways, first by rounding to the nearest power of ten so that we avoid
working with any numerical digits, second by retaining just one significant digit throughout.
First way: estimate by replacing all numbers by the nearest power of ten. The relaxation time
is L2/κ where L is the largest distance that separates one part of a system from another part
except if the system is coming into equilibrium with a constant temperature surface, in which
case L is the biggest distance from an interior point to the surface. So for this problem, we should
choose L = R where R is the radius of the sphere since Earth is coming into equilibrium with a
constant-temperature surface that is basically zero degrees K (the temperature of outer space).
It is also ok to choose L = 2R for this problem since you get the same order of magnitude.
We are given R = 6, 400 km and κ = 10−6 m2/s so we need to convert km to m or vice versa to
have consistent length units. We are also given the age of the solar system in years which means,
when we take a ratio of L2/κ to the age of the solar system, we have to convert years to seconds
or vice versa, to have consistent units of time.
In general, you should try to combine all numbers together in one calculation rather than calculate
the answer in several stages since the former reduces possible errors and helps one to identify
cancellations that can reduce the amount of work. Thus the calculation would start like this:

L2/κ

age of solar system
=

[(
6, 400 km× 103 m

km

)2
/10−6 m2/s

]

5× 109 years× 365 days
year × 24 hours

day × 3, 600 seconds
hour

. (1)
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I strongly recommend that, in the future, you begin all calculations in the same way: gather all
numbers together with all their known digits, and explicitly give units.
At this point, we could calculate the answer using a calculator or replace each number with a
leading significant digit, or replace numbers with the nearest power of ten. Doing the latter, we
make the substitutions:

6, 400 → 104, 5 → 10, 365 → 102, 24 → 101, 3600 → 103. (2)

The reason why I replace the 5 in the denominator with a 10 and not with a 1 is because there
are several other numbers in the denominator that I am replacing with smaller power of ten, and
I want to balance the errors to improve the overall accuracy of the estimate. Eq. (1) now becomes

L2/κ

age of solar system
≈

[(
104 × 103

)2
/10−6

]

(10× 109)× 102 × 101 × 103
(3)

=

(
107

)2 × 106

101+9+2+1+3
(4)

=
1020

1016
= 104, (5)

so the relaxation time of the Earth compared to the age of the solar system is about 10,000.
Let’s redo the calculation by trying to get a better estimate in which retain one significant digit at
all the various steps. We again start with Eq. (1) where all numbers with all significant digits are
listed. But now we round each number to the leading digit so the substitutions Eq. (2) become

6, 400 → 6× 103, 365 → 4× 102, 24 → 2× 101, 3, 600 → 4× 103. (6)

Making these substitutions, Eq. (1) becomes:

L2/κ

age of solar system
≈

[((
6× 103

)× 103
)2

/10−6
]

(5× 109)× (4× 102)× (2× 101)× (4× 103)
(7)

=
36

5× 4× 2× 4
×

[(
103 × 103

)2 × 106
]

109+2+1+3
(8)

=
36

5× 4× 2× 4
× 103 (9)

≈ 300, (10)

to one significant digit. Notice how I separated all the leading digits from the powers of ten so I
can concentrate on simplifying the combinations of digits.
The combination of digits 36/(5×4×2×4) can be simplified in several ways. One is to divide out
factors as much as possible, e.g., replace 36/4 with 9 to get 9/(5×4×2). Next would be to observe
that 9 is nearly 10 and so replace 9/(5×2) with 1, leaving 1/4 = 0.25 ≈ 3×10−1 so the answer to
one digit would be 300, quite a bit smaller than the first estimate of 104. Alternatively, we could
replace 36 with 40 right away (trying always to retain just one significant digit), and then observe
that 40/(5× 4× 2) = 1 in which case the combination of digits reduces to 1/4 ≈ 0.25 = 3× 10−1

and we again get 300. A calculator applied to Eq. (1) gives 260 to two significant digits, so our
estimate to one significant digit is a good one.
Please appreciate that a precise value is not needed here since the relaxation time L2/κ is a rough
guideline for how long it takes to reach equilibrium; the estimate by replacing all numbers with
nearest powers of ten provided a quick useful way to get the ballpark of what to expect, and we
are off by a factor of 30 compared to the answer with one significant digit. The key scientific
insight to obtain from this problem is that, no matter how we make the estimate, the relaxation
time is really long, billions of years.
A few more comments to keep in mind for future quizzes, exams, and when you do calculations
of your own as scientists or engineers:
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i. There is one exception to when it is ok to replace a number with the nearest power of ten
right away and that is when a number is being raised to a power. Thus replacing (4× 10−4)3

with (10−4)3 = 10−12 is not wise since 43 = 64 ≈ 102 and we have lost a factor of 100. So just
for those numbers being raised to powers, you should retain one significant digit and raise
that digit by itself to the power and then replace by the nearest power of ten.

ii. Too many students made errors with units and forgot to convert kilometers to meters or years
to seconds and ended up with wildly wrong answers. To avoid these kinds of errors, please
list the units with your numbers as you start your calculation as I did in Eq. (1). Once you
know that all units are consistent, it is ok to drop units as you proceed with your calculation.

iii. You should always use scientific notation. Many students wrote out numbers with many
zeros, e.g., 6, 400, 000m for the radius of the Earth. It is hard to count many zeros quickly
and so working with numbers like these increases the chance that you will lose or gain an
extra zero, which can be a big error. It also takes too much time to write out all these zeros,
and especially to multiply or divide numbers with many zeros.

2. (5 points) A molecule undergoes a random walk in which it successively travels a distance d, collides
with another molecule, and then moves off in a random new direction. Show that the ensemble average
of the final position X(N) of the molecule after N successive random steps ∆Xi

X(N) =
N∑

i=1

∆Xi, (11)

is the zero vector 0, i.e., the origin of the coordinate system where the molecule started off.

Answer: The problem requires thinking about the quantity 〈X(N)〉. Using the additivity of averages,
that 〈f + g〉 = 〈f〉+ 〈g〉, Eq. (11) gives

〈X(N)〉 =
N∑

i=1

〈∆Xi〉. (12)

The result will be true if the ensemble average of each separate vector step 〈∆Xi〉 is the zero vector.
But this actually is the case. The ensemble average of the ith step can be written as

〈∆Xi〉 =
1
K

K∑

k=1

∆X(k)
i , (13)

where we imagine K identical experiments being performed, all starting off in an identical way, and we
record the value of the ith step ∆X(k)

i for each of the K experiments and then average the resulting
set of K vectors. But these K vectors all have the same length d (by assumption of the random walk)
but point in randomly different directions in three dimensions. Provided K is large enough, there will
always be one vector that points nearly opposite to another vector and so the sum will be zero since
each vector in the sum is canceled by another vector in the sum.

Although there is no need to do so, this argument can be made a bit more precise by observing that
each step vector ∆X(k)

i = d n̂(k)
i can be written in terms of a unit vector n̂(k)

i whose tip lies on the unit
sphere. The ensemble average of a step vector is then equivalent to summing all the vectors û(k)

i over
the surface of a unit sphere, at least for large enough K (and the ensemble average can be thought
of as the value obtained in the limit K → ∞), and it is pretty obvious this sum has to be zero by
symmetry, for any unit vector pointing in one direction, there is a unit vector pointing in an opposite
direction and their sum will be the zero vector.

It is a useful exercise with spherical coordinates to verify this obvious conclusion. In spherical coordi-
nates, a unit vector pointing in the direction (θ, φ) from the origin can be written as

n̂(θ, φ) =
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
, (14)

3



so the ensemble average Eq. (13) becomes an integration over the the surface of the unit sphere:

〈∆Xi〉 =
1
K

K∑

k=1

∆X(k)
i (15)

= d× 1
K

K∑

k=1

n̂i(θk, φk) (16)

= d×
∫ 2π

0

∫ π

0

(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)× sin(θ) dθ dφ

4π
, (17)

where the first integral is with respect to φ and the second integral is with respect to θ. Notice a
subtle point, that because we are using spherical coordinates, we need to include the factor dΩ/(4π) =
sin(θ) dθ dφ/(4π) to weight each vector n̂(θ, φ) by the fraction of the unit sphere pointing in the
direction (θ, φ). We can see that this integral must give zero without doing any integrations since each
component has odd symmetry with respect to θ or φ and so gives zero when integrated over a domain
symmetric with respect to φ or θ.

Note: some students tried mightily to prove the above result by relating it to the discussion in class, in
which we took the ensemble average of the square of the vector X(N) and then argued that various dot
products would average to zero. This argument does not work here and that was actually the point of
this question: to see if you could understand conceptually how an ensemble average applies to a step
vector ∆Xi directly.

3. (5 points) Given that

e±x ≈ 1± x +
1
2
x2 ± 1

6
x3, for |x| ¿ 1, (18)

find the cubic polynomial that most accurately approximates the hyperbolic tangent function

tanh(x) =
ex − e−x

ex + e−x
,

near x = 0. (Hint: At some point, use 1/(1− x) ≈ 1 + x + x2 + . . . for |x| ¿ 1.)

Answer: The goal of this problem was to determine a Taylor series approximation up to cubic
terms for the hyperbolic tanh function (pronounced in English as “tanch”), i.e., to find a third-order
polynomial c0+c1x+c2x

2+c3x
3 that best approximates this function in the vicinity of the location x =

0. The wrong way to do this would have been to start differentiating tanh(x) up to third order, the
algebra is excessive and unnecessary. Instead, as you learned in the first homework assignment, the idea
was for you to use the given Taylor series of the exponential function to generate a ratio of polynomials,
which you could then simplify using the identity 1/(1 − x) ≈ 1 + x + x2 to convert a reciprocal to a
product.

Before grinding through some algebra, note that you can use parity symmetry of the function, whether
it is even or odd, to get a quick idea of what terms will appear in the Taylor series. Thus you should
be able to see that the tanh(x) function is an odd function so that f(−x) = −f(x). This implies that
only odd powers can appear in the Taylor series about x = 0 and so the polynomial approximation to
cubic order has only two terms of the form c1x + c3x

3; whatever your calculation, the constant term
and x2 terms better be zero. Similarly, a function like tan(cos(x)) is an even function, f(−x) = f(x)
and so all odd powers of x must be missing in the Taylor series. If a function has neither even or odd
parity such as sin(x) + cos(x) or ex, then you can generally expect all powers of x to appear.

The steps go like this. First, the numerator of the tanh function can be written as:

ex − e−x =
(

1 + x +
1
2
x2 +

1
6
x3

)
−

(
1− x +

1
2
x2 − 1

6
x3

)
= 2

(
x +

1
6
x3

)
(19)
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while the denominator can be written as

ex + e−x =
(

1 + x +
1
2
x2 +

1
6
x3

)
+

(
1− x +

1
2
x2 − 1

6
x3

)
= 2

(
1 +

1
2
x2

)
(20)

up to cubic terms. Substituting into tanh(x) = (ex − e−x)/(ex + e−x), we get

tanh(x) =
ex − e−x

ex + e−x
(21)

≈ x + 1
6x3

1 + 1
2x2

(22)

≈
(

x +
1
6
x3

)
×

(
1− 1

2
x2

)
(23)

= x− 1
2
x3 +

1
6
x3 + h.o.t.s (24)

= x− 1
3
x3. (25)

This last line is the answer. Here is a line-by-line justification of the above algebra:

(a) Eq. (22) was obtained by substituting the Taylor series approximations up to third-order terms
from Eq. (19) and Eq. (20) into Eq. (21).

(b) Eq. (23) was obtained by using the two lowest-order terms of the geometric series 1/(1−x) ≈ 1+x
with x replaced by −(1/2)x2. This trick replaces division by the polynomial 1 + (1/2)x2 with
multiplication by the polynomial 1− (1/2)x2:

1
1 + 1

2x2
≈ 1− 1

2
x2. (26)

I ignored all higher-order terms in the geometric series because the next term in the geometric
series involves squaring (1/2)x2 which gives a 4th-order power of x, and this can be thrown out
since we are only retaining terms to 3rd-order.

(c) Eq. (24) was obtained by multiplying out the two polynomials in Eq. (23), and by immediately
setting to zero any power of x higher than 3. The abbreviation h.o.t.s means “higher order
terms” and is a common way to refer to infinitely many terms that can be ignored because they
are sufficiently small in the limit x → 0.

The following Mathematica plot shows that the Taylor series Eq. (25) in purple accurately approximates
the tanh function in blue (relative error smaller than 10%) over the range [-1,1] and then deviates
substantially, if anything because tanh(x) is bounded between -1 and 1 while the cubic polynomial is
unbounded.

-4 -2 2 4

-2

-1

1

2
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We will use the answer Eq. (25) later in the course, it shows up when calculating properties of a
paramagnet and some polymers.

Note: some students didn’t remember or notice that, when using the approximation 1/(1 − x) ≈
1+x+x2, that |x| must be small compared to one, else you can’t ignore the higher powers like x3, x4,
and so on. Thus the following step:

ex − e−x

ex + e−x
=

1− e−2x

1 + e−2x
=

1− e−2x

1− [−e−2x]
≈ (

1− e−2x
)×

(
1 +

[−e−2x
]
+

[−e−2x
]2)

, (27)

is not valid because, for x near zero, e−2x ≈ 1 is not small compared to one. Similarly, you can not
write

1
2 + x

=
1

1− (−1− x)
, (28)

and then use the geometric series with x → −(1 + x) because, for x near zero, −1 − x is close to −1
and so is not small compared to one. The trick is instead to pull out a factor of 2 in the denominator
to get a “one plus something small compared to one”:

1
2 + x

=
1
2
× 1

1 + 1
2x

, (29)

and then use the geometric series with x → −x/2 since x/2 is small compared to 1 if x is small
compared to 1.

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate respectively whether the statement is
true or false. No justification is needed.

1. T / F Water vapor with a temperature of 200◦ C is twice as hot as boiling water with a temperature
of 100◦ C.

Answer: F This statement would be true if the temperature scale was kelvin, not Celsius, one has to
use an absolute temperature scale to compare “hotness”. The ratio of hotness of the vapor to boiling
water is (273 + 200)/(273 + 100) = 473/373 ≈ 1.3, which is not close to being twice as hot.

2. T / F The time scale for a system to approach thermal equilibrium does not depend on how big
the temperature differences are within the system.

Answer: F This problem was not well posed so I discounted it from the grade. The answer is “true”
in that the relaxation time L2/κ does not depend on details of the temperature difference, which is
the answer I had in mind when creating this question. But as one student correctly pointed out to
me, it is possible for a temperature difference in a system to be so great that the system changes its
character, e.g., a solid could melt, a liquid could vaporize, or the substance could transform chemically
into a new substance. In these cases, the mechanism of heat transport (κ) can change substantially, in
which case the answer would be “false”.

3. T / F In order for a macroscopic system to be in thermodynamic equilibrium, the number of
atoms in that system can not change over time.

Answer: F The surface of some material that is in contact with a surrounding gas would be an
example. The surface and surrounding gas can reach thermodynamic equilibrium but there is no reason
why the number of atoms on the surface must be constant in time. Also, equilibrium is defined by
macroscopic observables such as pressure, temperature, and chemical potential and these macroscopic
observables allow microscopic variations in the number of atoms.
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4. T / F An aluminum cylindrical rod has a length L that is much greater than its radius r and
one end of the rod has a higher temperature than the other end. If the rod is sitting in outer space
(i.e., in a vacuum), then the thermal relaxation time for the rod is r2/κ.

Answer: T This problem was also not well posed and discounted from the grade.

What I originally had in mind was a rod that was thermally isolated from the world, e.g., by surrounding
the rod with a thick layer of a material like Styrofoam that conducts heat slowly (a small thermal
diffusivity κ). Then heat can not enter or leave the rod (at least over a time scale that can be made
quite long) and the only way for the rod to reach thermal equilibrium would be along its length. Then
the relaxation time would be determined by the longest distance over which the information has to
travel for equilibration to occur giving τ = L2/κ.

But a vacuum is not the same as an ideal insulator (I did not think carefully enough here), the rod can
lose energy by radiating it way in the form of blackbody radiation. The answer then depends on the
relative rate at which energy is lost by radiation versus the relaxation time L2/κ, and there is no way
for the class to answer this question at this point in the course. (They will be able to answer it later
in the semester.) So the answer could go either way depending on what assumptions one makes about
the mean temperature of the rod (which controls the rate of blackbody radiation) and the thermal
diffusivity of the rod.

5. T / F An aluminum cylindrical rod has a length L that is much greater than its radius r and one
end of the rod has a higher temperature than the other end. If the rod is sitting in air with a constant
temperature T , then the thermal relaxation time for the rod is r2/κ.

Answer: T Here there is no ambiguity: the rod will eventually reach thermodynamic equilibrium
with the surrounding air so the question is: what is the biggest distance over which information has
to travel from the air (surface of the rod) to any point in the rod. But no point in the rod is further
away from the surface than the radius r so the relaxation time is r2/κ.

The point of this and the previous question is that identifying the relaxation time requires stating some
context. For a rod surrounded by an ideal insulator, the relaxation time is L2/κ, for the exact same
rod surrounded by a constant temperature medium, the relaxation time is much faster, r2/κ.

Note that to maintain a constant temperature environment of the rod, it is not sufficient to place the
rod in air since the air near the rod will warm up or cool down in response to the temperature of the
rod and then you have a complicated situation of a rod that is out of thermal equilibrium and air near
the rod that is also out of thermal equilibrium. To make this problem well posed scientifically, you
would have to blow air of constant temperature past the rod at a rate fast enough that the air near
the surface of the rod always has temperature T .

6. T / F For a gas of volume V containing N identical molecules, the quantity (V/N)1/3 is
approximately equal to the mean free path of the molecules.

Answer: F By definition, the mean free path is the average distance a molecule travels before
undergoing a collision. I mentioned in lecture and in my lecture notes that, that for air at room
temperature, the mean free path is quite a bit bigger than the average spacing between molecules,
300 nm versus about 5 nm.

The difference between mean free path and average distance between molecules is important for our
kinetic theory. When asking “how many molecules with average speed v collide with the wall within a
short time ∆t?”, one has to choose the distance v∆t to be comparable to or smaller than a mean free
path, otherwise molecules in the little virtual cylinder will collide with one another before hitting the
wall, typically knocking a molecule out of the cylinder.
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7. T / F If a ∝ b and c ∝ d then a + c ∝ b + d.

Answer: F This problem tested whether you understood the concept of proportionality. a ∝ b
means that there is a nonzero constant k1 such that a = k1b, and c ∝ d means there is a constant k2

such that c = k2d. Then a + c = k1b + k2d and generally k1 6= k2 so k1b + k2d 6= k3(b + d) for some
constant k3. So the statement is false.

Proportionality is mainly useful when multiplying quantities or raising quantities to powers. So it is true
that a ∝ b and c ∝ d implies ac ∝ bd and that a/c ∝ b/d provided c and d are nonzero. The statement
a ∝ b also implies that af ∝ bf for any real number f . These observations allow one to make useful
manipulations. For example, if the mass M ∝ V of a mammoth is proportional to its volume V = L3,
then the size L of a roughly cubical or spherical mammoth would satisfy L ∝ V 1/3 ∝ M1/3 and so the
thermal relaxation time of the mammoth would be τ ∝ L2 ∝ M2/3.

8. T / F The result of executing the Mathematica code

x = { 1 , 2 } ;
y = { 3 , 4 } ;
Table[ x[[i]] - y[[i]] , {i, 1, 2} ]

will be the list { -2, -2 }.

Answer: T This tested whether you understand some basic notation that you learned from the
Mathematical tutorial of the first homework assignment. The Table command generates a list, here a
list of two numbers xi − yi for i = 1 and i = 2. The notation x[[i]] is the notation for accessing the
ithe component or member of the list x.

8


