
Quiz 4 for Physics 176: Answers

Professor Greenside
Friday, March 22, 2009

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate respectively whether a given statement
is true or false.

1. T / F A paramagnet in its lowest energy state (all N magnetic dipoles parallel to the external
magnetic field B) has a negative temperature T .

Answer: F All substances reach their lowest possible energy state at absolute zero, T = 0,
even a substance like a paramagnet that can have negative temperatures. You should remember
that negative temperatures are hotter than the highest positive temperature in that a substance with
a negative temperature will always transfer heat to a positive temperature substance. One way to
think of a substance with a negative temperature is that they are unstable. Like balancing a marble
on top of a sphere, such that any tiny perturbation will cause the marble to roll off, the negative
temperature regime of the paramagnet corresponds to having magnetic dipoles pointing the “wrong”
way, antiparallel to the fixed external magnetic field. These dipoles can release energy, and so transfer
heat, by rotating parallel to the magnetic field.

Also keep in mind that negative temperatures only arise when the entropy decreases with increasing
energy. This typically occurs when the total energy of a system is bounded. Thus for a paramagnet,
there is a maximum possible energy, name E = NµB in which all the spin-1/2 dipoles point antiparallel
to the B field. As the energy increases toward its maximum value, the multiplicity Ω starts to decrease
(e.g., there is only way way to arrange all the dipoles to point the wrong way), which means the entropy
decreases with increasing U , which means the temperature ∂S/∂U must be negative.

2. T / F It is possible for the entropy of a system to increase after the system undergoes an adiabatic
process (no heat into or out of the system).

Answer: T See Figure 3.16 on page 113 of Schroeder, the right panel of which shows a system
that undergoes an adiabatic process, free expansion into a vacuum, which results in increase in entropy
(because molecules can move around in a larger volume) without a transfer of heat.

3. T / F If two macroscopic systems A and B can exchange particles of the same type and together
form an isolated system, and if the chemical potentials of these systems satisfy µA < µB , then particles
will spontaneously move from system A to system B.

Answer: F See Figure 3.19 of Schroeder on page 116 and the relate discussion. The chemical
potential is similar to the temperature in that particles spontaneously move toward regions of lower
chemical potential, just as heat spontaneously moves to lower-temperature regions of a system. Gen-
erally, chemical potentials increase with increasing concentration of some object of interest (say atoms
or molecules), so a difference in chemical potential between two parts of a system usually corresponds
to a difference in concentration. Most of you would accept that molecules “flow down a gradient”,
i.e. it is most likely for atoms to move from high concentration regions to low concentration regions.
The mechanism is typically by diffusion (molecular collisions).

4. T / F There are substances for which their experimentally measured entropy S(0) at T = 0 is
not zero.

Answer: T See pages 94-95 of Schroeder, where the concept of residual entropy is discussed.
This is an entropy associated with asymmetric objects like non-symmetric diatomic molecules such as
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CO (carbon monoxide), which you can think of as a tiny arrow that can stack in a crystal with its
arrow pointing one way or the opposite way. It turns out that the disorder associated with irregular
stacking is quite hard to remove (the relaxation time is extremely long) and so there is often a residual
entropy even at absolute zero for some substances.

Note: I do expect you to read the assigned sections of Schroeder to learn about topics that I don’t
have time to discuss in lecture, of which residual entropy was an example.

5. T / F Consider an isolated system of two macroscopic subsystems A and B that each contain
a mixture of two kinds of molecules, labeled type 1 and type 2, that can move between the two
subsystems. If µ1A denotes the chemical potential for molecule 1 in system A with a similar notation
for other combinations of molecules and subsystems, then a necessary condition for the isolated system
to be in thermodynamic equilibrium is: µ1A = µ1B = µ2A = µ2B .

Answer: F As discussed on pages 118-119 of Schroeder, each different constituent in some
macroscopic system [say air which is a mixture of diatomic nitrogen (about 78% by volume), diatomic
oxygen (about 21%), argon (about0.93%), and carbon dioxide (about 0.03%)] has its own chemical
potential so thermodynamic equilibrium for a system holds only if the chemical potential for each
component is the same in all parts of the system. But the chemical potentials themselves do not
have to be the same. This is perhaps most clear from the qualitative observation that increasing
the concentration of some substance increases its chemical potential. Thus for this problem in which
there are two subsystems and two distinct molecules, you could imagine that the concentration of
molecule 1 is large everywhere (corresponding to a large but constant chemical potential µ1) while
the concentration of molecule 2 is small everywhere (corresponding to a small but constant chemical
potential µ2). But there is no need for µ1 = µ2 throughout some substance and that would in fact be
an unlikely occurrence (more than equilibrium would have to hold, one would have to tune some of the
system parameters carefully).

Problems That Require Writing

1. (6 points) The Sun has a surface temperature of about 6000 K while the Earth has a surface tempera-
ture of about 300 K on a sunlit day. A square meter of Earth’s surface receives about 1000 watts (J/s)
of power from sunlight when the Sun is high in the sky. From this information and assuming eight
hours of daylight per day, estimate to one significant digit the total change in entropy (Earth plus Sun)
when a square meter of soil is exposed to sunlight for a 30-day month.

Note: You can compare your answer with the decrease in entropy associated with growing several
kilograms of plants on this square meter of land over a month. In an earlier homework problem
(2.36 of Schroeder), you learned to estimate the order-of-magnitude of the entropy associated with
N particles, namely S ≈ Nk. Several kilograms of plants corresponds to about 1,000 moles of atoms
and so the entropy decrease associated with the plant growth should be of order ∆S ≈ −Nk ≈
−[1, 000moles× (6× 1023 atoms/mole)]× (1.4× 10−23 J/K) ≈ −104 J/K.

Answer: ∆Stotal ≈ 3× 106 J/s.

You first had to recognize that these are isothermal entropy processes, so the appropriate formula to use
is ∆S = Q/T where Q is the heat that enters or leaves the system of interest while the temperature T
is assumed constant. (This formula is usually appropriate to use when the system receiving the heat or
losing the heat is so large that there is no significant change in temperature, definitely the case for the
Earth’s surface and the Sun’s surface.) For the more general case in which the temperature varies as
heat is transferred, one would have to integrate, using Eq. (3.21) on page 94 or Eq. (3.50) on page 113
of Schroeder, in which you would have to know how the heat capacity C(T ) varies with temperature
over the range of interest.

The total entropy change is the increase in entropy at the Earth’s surface with temperature T = 300 K
(increase since the Earth is receiving heat) plus the decrease in entropy at the Sun’s surface with
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temperature T = 6, 000 = 20 × 300 (decrease since heat is leaving the Sun in the form of radiation).
Thus

∆Stotal = ∆SEarth + ∆SSun (1)

=
Q

TEarth
− Q

TSun
(2)

=
Q

TEarth

(
1− TEarth

TSun

)
(3)

=
19
20

Q

TEarth
(4)

≈ Q

TEarth
. (5)

Here I used the observation that TEarth/TSun = 1
20 and 19/20 = 95/100 = 0.95 ≈ 1 to one digit. So it

remains to estimate the entropy change on Earth to one digit:

∆SEarth =
Q

T
(6)

=
1

300K
×

[
30 days× 8

hr
day

× 3600
s
hr
× 1000

J
s

]
(7)

=
3× 8× 3.6

3
× 101+3+3−2 (8)

≈ (8× 4)× 105 J/s (9)
≈ 3× 106 J/s. (10)

where I rounded 3.6 to 4 and rounded 32 to 30. Several students were not careful and used 24 hours
per day but there is, on average, only about 8 hours of sunshine per day in the lower latitudes.

2. (6 points) Consider an equilibrium paramagnet that consists of N magnetic dipoles each of magni-
tude µ. The paramagnet is at temperature T in the presence of a uniform magnetic field of strength B.
For two points each, draw qualitatively

(a) the total magnetization M/(Nµ) as a function of temperature kT/(µB). (Note that −1 ≤
M/(Nµ) ≤ 1 and −∞ ≤ kT/(µB) < ∞.)

(b) the temperature kT/(µB) as a function of energy U/(µB). (Note that −1 ≤ U/(µB) ≤ 1.)

(c) The specific heat C/(Nk) as a function of temperature kT/(µB).

For this problem only, you do not have to write anything to justify these figures.

Answer: See Figure (3.9) on page 101 and Figure (3.10) on page 103 of Schroeder for the answers.
For the extremely few models that we discuss in full detail in this course—such as the ideal gas, Einstein
solid, and paramagnet—I would like you to understand the physics of these systems, which means to
have a qualitative understanding of how key properties of this system such as entropy, specific heat,
and magnetization vary with temperature, energy, and magnetic field strength. It is not apparent
from this course, since you are just learning thermal physics for the first time, but these simplified toy
models, with a handful of others that you may come across later such as the Ising model of interacting
magnetic spins, are a major source of intuition and understanding for much more complicated systems
that are too hard to study from first principles. They are very much worth your time to think carefully
about.

So you should take the time to think about the qualitative shapes of curves likes those in Fig. (3.10)
and see if they make sense, either directly in terms of physical intuition, or in terms of what is being
discussed in the text. As one example, all heat capacities C(T ) must vanish in the limit T → 0 (see
page 95 of Schroeder) and yet quite a number of students drew heat capacity curves that were finite
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at T = 0. Because the energy of a paramagnet is bounded, its heat capacity behaves differently than
the heat capacity of an ideal gas or Einstein solid in that it increases and then decreases rapidly with
increasing temperature.

If you understand conceptually that the magnetization of a paramagnet reflects a competition between
the magnetic field strength B, which tries to align magnetic dipoles parallel to the field lines, and
finite temperature, which tends to randomize the direction of a dipole through collisions, then you
could guess without calculation that the largest possible magnetization of 1 (when measured on the
“natural” scale of Nµ) corresponding to all dipoles aligned parallel to the magnetic field, can only
occur at the lowest possible temperature T = 0, and M .

Even though the quiz gave you the formula for the magnetization as a function of temperature,
Eq. (3.32) on page 104 of Schroeder, many students were not careful and did not notice that the
formula has the form tanh(µB/kT ) in which the temperature appears in the denominator of the argu-
ment. So they ended up plotting M vs 1/T which was not what was asked for.

One last comment. The specific heat C = dU/dT is obtained by differentiating the energy U of the
system. You should be able to show, either qualitatively by drawing a picture or rigorously by using
the definition of a derivative, that differentiation converts an even function f(x) = f(−x) into an
odd derivative, f ′(x) = −f ′(−x) and vice versa (differentiation converts an odd function into an even
derivative). The equation U = −NµB tanh(µB/kT ) is an odd function with respect to T (tanh(x) is
an odd function and so the substitution T → −T changes the sign of the energy) and so the specific
heat dU/dT must be an even function of temperature. This elementary observation allows you to draw
the specific heat of a paramagnet over the entire temperature range −∞ < T < ∞ as just the reflection
of the specific heat curve for T ≥ 0, which is shown in Fig. 3.10 on page 103. Schroeder shows just
the non-negative range of T in his figure (which is reasonable, this is the part that is easiest to study
experimentally).

3. (4 points) The entropy S = S(N,U,A) of an ideal two-dimensional monoatomic gas consisting of N
atoms, energy U , and area A is given by the following version of the Sackur-Tetrode equation:

S = Nk

[
2 + ln

(
2πm

h2

A

N

U

N

)]
. (11)

Derive an expression for the pressure P of this two-dimensional gas, simplify your expression as much
as possible, and discuss briefly whether your expression makes sense physically.

Answer:
P =

NkT

A
. (12)

The only thinking required for this problem was to recognize that one had to use a different thermo-
dynamic identity for a two-dimensional substance, of the form

dU = TdS − PdA + µdN, (13)

where the work term −PdV had to be changed to an appropriate expression involving two-dimensional
quantities, which would be an area A and something corresponding to “force per something” where
the something must be per length instead of area to make the units work out. It is probably not a
good idea to use the same symbol P to denote the usual pressure (force per area) and to denote the
two-dimensional pressure (force per length), for example one could have problems in which a surface
gas interacts with a volumetric gas1.

1You may want to read about the invention of the modern argon-filled light bulb by the physicist-chemist and later Nobel
prize winner, Irving Langmuir. As a fresh PhD, he was hired by General Electric to break Edison’s patents on the light bulb,
but also to make a better light bulb, since Edison’s carbon filament bulb burned out too quickly. Contrary to what everyone
thought at the time, which was that one should create a better vacuum inside the bulb to reduce oxidation of the filament,
Langmuir made several remarkable discoveries about how atoms from the filament were condensing on the inside of the bulb,
and found that it was better to fill the bulb with an inert gas like argon to reduce the evaporation of the filament. The fields
of surface chemistry and surface physics were basically started by Langmuir’s careful and insightful attempts to improve the
light bulb.
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Once you had the appropriate thermodynamic identity, you could derive an expression for the two-
dimensional pressure by assuming dU = 0 and dN = 0 in which case:

P = T
∂S

∂A

∣∣∣∣
U,N

, (14)

which is the analogy of the formula P = T∂S/∂V that we have used for 3d gases. It is straightforward
to differentiate the 2d Sackur-Tetrode with respect to A and obtain Eq. (12). This has exactly the
same form as the ideal gas equation PV = NkT (also called Clapeyron’s equation since the French
scientist Clapeyron was the first to write down the full ideal gas law way back in the early 1800s), and
so is reasonable for the same reason that the ideal law is reasonable. For example, for a fixed area A
and for a fixed number of particles N , raising the temperature T increases the pressure P , and so on.

I challenge you to think about how to verify Eq. (12) experimentally. For example, how would you
measure or vary the pressure, area, and number of particles for a two-dimensional gas adsorbed on
the surface of some substrate? Is it possible to carry out isothermal and adiabatic compressions of a
two-dimensional gas? Can you carry out some thermodynamic cycle like those shown in Fig. 1.10 on
page 23 (except on a P − A plane) and so create little two-dimensional heat engines or refrigerators?
You might enjoy browsing the images on IBM’s scanning tunneling microscope (STM) website

http://www.almaden.ibm.com/vis/stm/gallery.html

which shows that scientests for many years now have had the ability to manipulate single atoms on
surfaces, e.g. write the word “IBM” with xenon atoms on a nickel surface. So it is possible to build
little walls to contain a two-dimensional gas and those walls will feel a pressure from the gas trapped
inside of them.
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