
Quiz 3 for Physics 176: Answers

Professor Greenside

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate respectively whether a given statement
is true or false.

1. T / F If the volume V of an ideal monoatomic gas is halved during an isothermal compression
that conserves the number of particles, then the entropy of the gas will decrease by Nk ln(2).

Answer: T This was discussed in Schroeder and in lecture and is a direct consequence of the
Sackur-Tetrode equation, which was given on the first page of the quiz. If the number of particles N
and total particle energy U are fixed, then Sackur-Tetrode says that S = Nk ln(V )+ f(N, U), where f
is a function that depends only on N and U and so does not change during a volume change and so
can be ignored when computing the entropy change. This problem needed to assume an isothermal
compression to prevent the energy U from changing during the compression.

Thus the change in entropy during the isothermal compression of an ideal monoatomic gas is ∆S =
Sf − Si = Nk ln(Vf ) − Nk ln(Vi) = Nk ln(Vf/Vi). For this problem, Vf/Vi = 1/2 so the change in
entropy is ∆S = Nk ln(1/2) = −Nk ln(2), which is indeed a decrease in the entropy by the magnitude
Nk ln(2) ≈ 0.7Nk.

2. T / F The product of an extensive thermodynamic quantity with an intensive thermodynamic
quantity is also an extensive quantity.

Answer: T This question was intended to test whether you understood my brief description in
class about extensive variables like M , V , S, and U versus intensive variables like P , T , ρ = M/V ,
n = N/V , and so on. Extensive variables increase in proportion to the volume of the system (keeping
the density N/V constant), e.g. if you double the volume you typically double the entropy and the
mass. Intensive variables are almost always ratios of two extensive variables and so don’t change when
the volume is varied. From this, you should be able to see that the product of an extensive variable
with an intensive variable remains extensive: changing the volume causes the extensive variable to
change, but the intensive factor does not change.

3. T / F Given that the function f(x) = 1 − x4 has a single maximum at xmax = 0 with
value fmax = 1, the function [f(x)]N for N a large integer can be accurately approximated by a
Gaussian e−NAx2

for A > 0 some constant.

Answer: F This question was intended to see if you could think rather than just memorize. In
class, we discussed a “theorem”, that a function f(x) with a unique global maximum, if raised to a large
power N , f(x)N , behaves like a narrow Gaussian function centered on the location xmax of the global
maximum. The derivation involved taking the log of the function f(x)N to get N log(f(x)), Taylor
expanding f(x) about x = xmax, and using our favorite log approximation log(a + ε) ≈ log(a) + ε/a.

A key step in the derivation was taking the Taylor expansion to second order:

f(x) = f (xmax) + f ′ (xmax) (x− xmax) +
1
2!

f ′′ (xmax) (x− xmax)
2 + . . . (1)

≈ fmax +
f ′′ (xmax)

2
(x− xmax)

2
. (2)

But this procedure only works if the Taylor expansion has a nonzero coefficient f ′′(xmax) at the location
of the global maximum, otherwise you get some other kind of functional behavior that is not a Gaussian.
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Indeed, if we write FN (x) = (1− x4)N , then

log(FN ) = N ln
(
1− x4

) ≈ −Nx4, (3)

since sufficiently near the global maximum x = 0, |x| ¿ 1, so x4 ¿ 1 and so ln(1 − x4) ≈ −x4.
Exponentiating both sides gives us:

FN =
(
1− x4

)N ≈ exp
(−Nx4

)
, (4)

which is not a Gaussian, but some function that decays more rapidly than a Gaussian as |x| → ∞.

4. T / F For any sequence of experimental steps that leads to a change ∆Sgas in the entropy of an
ideal monoatomic gas (because the variables N , V , and U of the gas have changed to new values N ′,
V ′, and U ′), the value ∆Sgas will depend on how the variables N , V , and U were changed to their new
values (e.g., quasistatic or not quasistatic, isothermal versus adiabatic, etc.)

Answer: F The entropy S of a system, like the energy U of a system, is a function of system
properties such as N , V , and U and so depends only on the current values of those numbers, not on
the experimental history of how those properties were attained. This is apparent for example from
the Sackur-Tetrode equation for a monoatomic ideal gas, the formula S = S(N, V, U) does not require
knowledge of how the system was prepared, just the current values of N , V , and U . Similarly, the
formula for the multiplicity Ω of an Einstein solid depends only on the number N of oscillators and
number of energy units q but not on how the solid was brought to its current state, and similarly for
a paramagnet consisting of N magnetic dipoles.

In thermodynamics, properties of a system that depend only on the current values of system parameters
are called “state variables” since they depend only on the current macroscopic state of the system.
Schroeder does not mention this concept but most other books on thermal physics do.

5. T / F For any sequence of experimental steps that leads to a change in the entropy of an ideal
monoatomic gas (because the variables N , V , and U of the gas have changed to new values N ′, V ′,
and U ′), the total change in entropy of the gas and surrounding environment will depend on how the
variables N , V , and U were changed to their new values

Answer: T The answer here is true because of the difference between reversible and irreversible
processes. Any sequence of processes applied to an ideal gas (or some other thermodynamic system) will
cause its entropy to change to a value that depends on the final value of the system parameters N , V ,
and U . But the total entropy generated—gas plus surrounding environment—will depend on whether
reversible or irreversible processes were used during the sequence, e.g., a non-quasistatic compression
that is so rapid that the gas is not in thermal equilibrium during the compression.

6. T / F The process of slowly, quasistatically, and isothermally introducing a thin impermeable
partition into a box of an ideal gas such that the partition divides the volume V of the box in two
volumes of V/3 and 2V/3 is an example of a reversible thermodynamic process.

Answer: T This is an important point made by Schroeder on the first paragraph of page 80:
mixing of gases consisting of the same particles, e.g., by introducing a partition that reduces the volume
available to different parts of a gas, does not change the entropy of the system. In fact, it was to achieve
this goal that Gibbs introduced the somewhat mysterious 1/N ! factor in the expression Eq. (2.38) for the
multiplicity of an ideal gas of N identical particles in a volume V , otherwise introducing a withdrawing
a partition would cause an entropy change.

Multiple Choice Questions (4 points each)

Circle the letter that best answers each of the following questions.
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1. If x is a sufficiently small number, then the lowest-order approximation to the expression

ln(1− x) + ln(1 + x) + ln(1 + x2) + ln(1 + x4),

is
(a) x2 (b) −x2 (c) x4 (d) −x4 (e) x6 (f) −x8 .

Answer: (f) Solving this question required you to understand why many of you got the wrong
answer in Problem 2.24(b) on page 67 of Schroeder. As I discussed at the beginning of one of the
lectures, there was a point in the algebra of 2.24(b) where many of you faced an expression of the form

N

2
ln

(
N

2
− x

)
+

N

2
ln

(
N

2
+ x

)
, (5)

which many of you simplified to be approximately N ln(N/2), independent of x, since ln(N/2 − x) ≈
ln(N/2)− 2x/N and ln(N/2 + x) ≈ ln(N/2) + 2x/N for |x| ¿ 1, so the terms containing an x cancel.
But this just says that the lowest power in x vanishes, there could be higher-powers to consider and
indeed one has1:

N

2
ln

(
N

2
− x

)
+

N

2
ln

(
N

2
+ x

)
(6)

=
N

2
ln

[(
N

2
− x

)(
N

2
+ x

)]
(7)

=
N

2
ln

[(
N

2

)2

− x2

]
(8)

=
N

2
ln

[(
N

2

)2

×
(

1− x2

(N/2)2

)]
(9)

=
N

2
ln

[(
N

2

)2
]

+
N

2
ln

[
1−

(
2x

N

)2
]

(10)

≈ N ln
(

N

2

)
− 2

N
x2, (11)

to second-order in the small quantity x2. This nonzero second-order piece then combined with other
second-order pieces to give a Gaussian exp(−2x2/N) while most of you derived the approximation
exp(−4x2/N).

With this insight in mind, you should now be able to see that

ln(1− x) + ln(1 + x) + ln
(
1 + x2

)
+ ln

(
1 + x4

)
(12)

= ln [(1 + x)(1− x)] + ln
(
1 + x2

)
+ ln

(
1 + x4

)
(13)

= ln
(
1− x2

)
+ ln

(
1 + x2

)
+ ln

(
1 + x4

)
(14)

= ln
(
1− x4

)
+ ln

(
1 + x4

)
(15)

= ln
(
1− x8

)
(16)

≈ −x8, (17)

so the answer is (f).

1You can get the same result but with slightly more effort by using the second-order approximation

ln(a + ε) ≈ ln(a) +
x

a
− 1

2

“x

a

”2
+ . . .

.
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Problems That Require Writing

All answers in this section of the quiz must be written on the supplementary blank pages. Please remember
to write your name and problem number on each extra page.

1. (5 points) The multiplicity Ω of a certain substance is related to its thermal energy U by the relation Ω =
aU b, where a and b are positive constants. Find a formula for the heat capacity CV of the substance
in terms of a, b, and the Boltzmann constant k.

Answer: Cv = kb.

This problem involved straightforward algebra, using basic definitions. From the multiplicity Ω, we
get the entropy S = k lnΩ, which then gives the temperature 1/T = ∂S/∂U which can be solved
for U = U(T ) which then gives the specific heat CV = dU/dT . The corresponding algebra is

S = k lnΩ = k ln
(
aU b

) ⇒ 1
T

=
dS

dU
=

d

dU
[k(ln(a) + b ln U)] =

kb

U
, (18)

so U = kbT and CV = dU/dT = kb.

Several students in the class wrote:
ln(aU b) = b ln(aU), (19)

a math error of a sort that should not happen for students taking a sophomore-level or higher physics
course.

2. (15 points) Many scientists and engineers are greatly interested in the properties of molecules that
adsorb onto the surface of a substance. (“Adsorb” means that a molecule leaves the gas phase and
bonds with the surface.) For sufficiently high temperatures and for some weakly binding surfaces
(e.g. graphite or frozen argon), the adsorbed molecules can move freely about on the surface without
interacting with each other and so act like a two-dimensional ideal gas.

Consider N identical atoms, each of mass m, that have adsorbed onto a flat surface of area A and of
temperature T . Derive an appropriate version of the Sackur-Tetrode equation that describes
the entropy S = S(N, A,U) of a two-dimensional ideal gas of monoatomic atoms as a
function of N , A, and the thermal energy U .

Some comments: By analogy to how we derived the multiplicity Ω of an ideal gas in a three-dimensional
volume, first derive an expression for the multiplicity Ω of the two-dimensional ideal gas. Each adsorbed
molecule is free to move about in a two-dimensional area A, and each adsorbed molecule is described
by a two-dimensional momentum vector p = (px, py) with kinetic energy p2/(2m) = (p2

x + p2
y)/(2m).

For this problem, assume that the N adsorbed atoms are an isolated system so that their total energy
is conserved. After you have obtained an expression for the multiplicity, use the definition of entropy
plus Stirling’s approximation to derive the 2D version of the Sackur-Tetrode equation. You can drop
multiplicative factors of a very large number that are small or large numbers.

Answer:

S = Nk

[
2 + ln

(
2πm

h2

A

N

U

N

)]
. (20)

This was another problem where I was interested whether you understood the assumptions and details
of how the multiplicity Ω of an ideal gas was determined. The details are worth understanding since
ideal gases play such an important role in physics and chemistry, and an ideal gas is one of the few
systems for which all the details can be worked out analytically. (Three other solvable systems that
we discuss in the course are the Einstein solid, paramagnet, and rubber band.)
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Each adsorbed molecule can glide around on the surface in an area A and the essence of the particles
being in an ideal gas is that they move about independently, with the motion of one molecule not
affecting the motion of another molecule. So we deduce Ω ∝ AN , just as for the 3D gas we had Ω ∝ V N .

Since the particles move around on a two-dimensional surface, each particle is characterized by a two-
dimensional momentum vector p = (px, py) and so the total energy U of this isolated system is given
by the sum of the kinetic energies p2/(2m) of each particle:

U =
p2

1

2m
+ . . . +

p2
N

2m
(21)

=
1

2m

(
p2
1x + p2

1y + p2
2x + p2

2y + . . . + p2
Nx + p2

Ny

)
. (22)

which can be written in the form

p2
1x + p2

1y + p2
2x + p2

2y + . . . + p2
Nx + p2

Ny =
(√

2mU
)2

, (23)

which is the equation for a 2N -dimensional hypersphere of radius
√

2mU . (For the 3d gas, we had
a 3N -dimensional sphere since the momentum vector for each of the N particles contributed three
numbers.) Thus we expect Ω ∝ A2N (

√
2mU) where Ad(r) is the surface area of a d-dimensional sphere

of radius r.

Putting the above together, we finally get the following expression for the multiplicity of a 2d ideal
gas:

Ω =
1

N !
ANA2N (

√
2mU)

(h2)N
. (24)

The factor 1/N ! is required since we have assumed the particles to be identical. The factor 1/h2N

involving Planck’s constant is required to count the number of states; we need one factor of h for the
product Lx × px of length times momentum and another factor h for the product Ly × py (where we
can think of A = LxLy) and we have to raise h2 to the Nth power to take into account N distinct
products of areas with momentum areas, LxLy × pxpy.

Once we have Eq. (24) for the multiplicity, we can substitute the given expression for the surface area
of a d = 2N -dimensional sphere of radius r =

√
2mU , and simplify using Stirling’s formula. We have

Ω =
AN

N !h2N
× 2 π(2N)/2

Γ
(

(2N)
2

)
(√

2mU
)(2N)−1

. (25)

Since we are assuming N is a large number, we can drop the 2 multiplying the πN as being a small
number multiplying a big number πN , and we can approximate 2N − 1 ≈ 2N when raising the
radius

√
2mU of the momentum sphere to 2N − 1. We also can approximate the Gamma function in

the denominator by
Γ(N) = (N − 1)! ≈ N ! . (26)

With these approximations, the multiplicity becomes

Ω =
ANπN

(N !)2 h2N
(2mU)N =

1
(N !)2

(
2πmAU

h2

)N

. (27)

Stirling’s formula gives

(N !)2 ≈
(√

2πN

(
N

e

)N
)2

≈ 2πN

(
N

e

)2N

≈
(

N

e

)2N

, (28)

where we can drop the 2πN prefactor as a large number multiplying a very large number (N/e)2N .
Combining Eq. (28) with Eq. (27) gives

Ω =
(

2πe2m

h2

A

N

U

N

)N

, (29)
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where I have written the expression in terms of the intensive parameters A/N and U/N . We can then
finish by taking the log to get the entropy:

S = k lnΩ = Nk ln
(

2πe2m

h2

A

N

U

N

)
= Nk

[
2 + ln

(
2πm

h2

A

N

U

N

)]
. (30)

It is perhaps worth splitting off the 2 (from the e2) to emphasize that the entropy will be of order Nk
in magnitude.
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