
Answers to Quiz 2 for Physics 176

Professor Greenside
Monday, February 2, 2009

I include brief answers to the quiz questions below. Please feel free to get in touch with me if you would like
to discuss the answers in more detail.

You can get a sense of how your score compared to the class scores in this plot
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which also shows the curves corresponding to µ and µ±σ, where µ is the mean score and σ was the standard
deviation. You can get further information about the statistics of this quiz, of quiz 1, and from future quizzes
from this Mathematica notebook

www.phy.duke.edu/~hsg/176/course-related-files/quiz-statistics.nb

which contains the raw scores plus some cells to plot the scores with some statistics. This notebook also
explains the rough way that I assigned grades to Quiz 1 and Quiz 2.

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate respectively whether a given statement
is true or false.

1. T / F An isobaric (constant pressure) compression of an ideal gas will increase its temperature.

Answer: F We discussed in class that, for an ideal gas in thermodynamic equilibrium, its internal
energy U = Nf(kT/2) = (f/2)PV depends only on the value of the pressure P and volume V . An
isobaric compression decreases V with P constant, hence the internal energy U ∝ PV will decrease
which in turn implies that its temperature T must decrease. Conservation of energy then implies
that Q = ∆U −W < 0 since the energy decreases and the work done on the gas W is positive for any
compression. Thus an isobaric compression also requires that heat be removed from the gas, e.g. by
placing some colder object in thermal contact with the gas.

2. T / F An isothermal (constant temperature) compression of an ideal gas requires that some
object that is cold compared to the gas be placed in contact with the gas during the compression.

Answer: T For an isothermal compression, the energy of the gas U = Nf(kT/2) does not change
so ∆U = 0 = Q + W , which implies that Q = −W . For compressive work, W > 0 so Q < 0 which
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means that heat must flow out of the gas during an isothermal compression. This requires thermal
contact with some colder object.

3. T / F An isochoric (constant volume) process that changes the pressure of an ideal gas will not
change the gas’s thermal energy.

Answer: F An isochoric process corresponds to moving vertically, up or down, in the PV -plane
of an ideal gas. Because U ∝ PV , any change in the value of PV will change the internal energy of the
gas. Here we are told that V is constant and P changes so the thermal energy must change, although
we don’t know the sign of the change unless we are told that the pressure increases or decreases.

4. T / F An adiabatic compression of a gas requires more work than an isothermal compression of
the same gas to achieve the same change in volume.

Answer: T This follows directly from Fig. 1.12 on page 25 of Schroeder and from discussions
in class. Adiabatic compression increases the temperature of a gas, which means that the P (V )
curve traced out by the compression must cross from one isothermal hyperbola PV = NkT to another
isothermal hyperbola at higher T , i.e. the P (V ) curve for an adiabatic process lies above any isothermal
process that both start at the same point in the PV -plane. Since the work done by compression is the
area under the P (V ) curve, this implies that adiabatic compression requires more work.

One could also show this mathematically by looking at the integral

W = −
∫ Vf

Vi

P (V ) dV = −
∫ Vf

Vi

CV −γ dV, (1)

where γ = (f + 2)/2 > 1 and C is determined by the values Pi, Vi of the common starting point in the
PV -plane of the compression (These data let us evaluate the constant C for which PV γ = C). But
if γ > 1, the function V −γ increases more rapidly than V −1 as V decreases, which leads to the same
conclusion as above.

5. T / F An adiabatic compression of a gas requires that the gas not be ideal since PV γ = const
for an adiabatic compression while PV = const for an ideal gas.

Answer: F It is somewhat confusing that two similar expressions appear in the discussion of
gases, PV = constant for an ideal gas and PV γ = constant for an adiabatic change in a gas. But
both expressions are fully compatible with a gas being ideal, and this is a classic example of how it
is not sufficient to memorize a formula, you need to remember the context in which the formula was
derived or discussed. The first equation is really PV = NkT which means that PV is constant only
if the number N of particles and the gas’s temperature T are both constant as P or V are varied.
But the assumption of constant temperature T does not hold for an adiabatic compression so it is not
a contradiction that PV γ = constant in that case. If you read Schroeder carefully, you might have
noticed that he in fact used the ideal gas law PV = NkT to go from Eq. (1.39) to Eq. (1.40) on
page 26.

6. T / F If a series of physical processes applied to an ideal gas trace out a continuous closed loop
in the PV -plane of the gas, the total work done on the gas and the total heat that flows into the gas
after traversing the loop once are each equal to zero.

Answer: F No thinking should have been needed for this question since we worked out an
example in class, and you worked out an example in the most recent homework, in which one traces
out a simply connected closed loop in the PV -plane and the total work done on a gas and the total
heat added to the gas are both nonzero. However, their sum Q+W = 0 is always zero for an ideal gas
(and not necessarily zero for a non-ideal gas) since U ∝ PV means that the thermal energy of a gas
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always returns to its original value after tracing out an arbitrarily complicated and criss-crossing loop
in the PV plane to return to the same starting values of P and V .

7. T / F A quasistatic expansion is an isothermal expansion.

Answer: F A quasistatic expansion is one that is sufficiently slow mechanically that the gas is
always in mechanical equilibrium so that one can talk meaningfully about the pressure P of the gas. An
isothermal expansion is necessarily quasistatic since, as we have seen several times in recent lectures,
the relaxation time for heat, L2/κ, is much longer than the relaxation time for mechanical equilibrium,
L/vs where vs is the speed of sound in the medium; it takes so long to let the temperature equilibrate
after each little adjustment of the system, there is plenty of time to reach mechanical equilibrium.
(And this implies that one does not want to use isothermal processes in heat engines or refrigerators,
such processes take too long.)

An adiabatic compression would be an example of a quasistatic expansion that is not isothermal: it is
easy to expand a gas quickly enough for mechanical equilibrium to be achieved at each step without
thermal equilibrium occurring.

8. T / F If a person were placed in a small room with plenty of food, water, and air such that the
walls of the room were essentially perfect thermal insulators, that person’s body temperature would
eventually increase to a fatal level.

Answer: T Humans steadily generate energy through chemical reactions, and like any process
that converts energy from one form to another (e.g., our bodies create and degrade other chemicals
like proteins and DNA, move muscles, extract waste products from blood to produce urine, etc, which
all require some source of energy), the process is not perfectly efficient (for reasons we will discuss
in this course, related to entropy production). So some of the energy generated ends up in increased
kinetic motion of molecules which corresponds to increasing the temperature of the body. As long as
a person continues to metabolize food, there is energy production and the thermal energy of the body
will increase. Humans limit the rise of their body temperature in two ways: they bring themselves
into contact with cooler sources like surrounding air (e.g., you can change from a long-sleeve shirt to a
short-sleeve shirt to increase the contact of your skin with cooler air) and they sweat, which eliminates
internal energy by converting water to water vapor.

But in a room that is thermally isolated as in this problem, two things will happen: the temperature
of the room will continue to rise as the person’s body continues to increase its internal energy and
the water vapor will reach a saturating concentration in the air which means that the person can no
longer shed thermal energy by evaporation of sweat. The person’s body and the air in the room will
continue to increase in temperature until the person dies, which happens around 106◦F ≈ 41.1◦C when
the brain starts to die.

You have probably read about (but I hope not experienced first-hand) heat stroke, e.g. when marathon
runners race on a particularly warm day. Heat stroke is caused precisely by the inability of the body
to keep its temperature within a viable range and is exacerbated by heavy exercise (lots of energy
generated to warm the body) and when the surrounding air is hot and humid so that the body can’t
eliminate some of its thermal energy.

Architects worry a lot about the energy generated by human bodies, especially when in large numbers
and in relatively small rooms. They need to make sure enough air flows through such rooms that the
excess body heat can be carried off.

9. T / F The heat capacity CV of 2 moles of ammonia gas, NH3, is less than the heat capacity of
a gaseous mixture consisting of one mole of N2 and three moles of H2. (Note: all gases are ideal and
the temperature is so high that no degrees of freedom are frozen out.)

Answer: F Assuming all gases are ideal, the heat capacity CV = dU/dT of 2 moles of ammonia
gas would be (2NA)fammon(k/2) where NA is Avogadro’s number. Ammonia is a non-linear molecule (it
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looks like a nitrogen ball on three hydrogen legs) with K = 4 atoms so fammon = 3+3+2(3K−6) = 18
since there are three translational degrees of freedom for the center of mass, three rotational degrees
of freedom for the center of mass, and 3K − (3 + 3) = 6 vibrational degrees of freedom that contribute
2(kT/2) each to the thermal energy. So here CV = 36NA(k/2).

The total thermal energy U of one mole of N2 and three moles of H2 would be Utotal = NAfN (kT/2)+
(3NA)fH(kT/2) = NA(7/2 + 3(7/2))(kT/2) = 14NA(kT/2) which implies that CV = (dU/dT )V =
14NA(k/2). (I have used here the fact that, for ideal gases, the internal energies are additive since the
particles don’t interact with each other.) We see that CV (ammonia)/CV (mixture) = 36/14 ≈ 2.6 so
the ammonia gas has a substantially larger heat capacity.

This is rather interesting because both gases have the exact same number of atoms; the heat capacity
clearly depends through the factor f on how the atoms are attached to one another.

10. T / F It is possible for an object to have a solid angle Ω of 12.

Answer: T The solid angle Ω = A/R2 is a dimensionless number (no physical units) that is
defined to be the ratio of the area A of some region on the surface of a sphere of radius R to the
quantity R2. Since the maximum surface area is 4πR2 on such a sphere, Ω is a number between 0
and 4π ≈ 12.4 so it is just possible for an object to have Ω = 12 but not, say, a value of 13. An object
with Ω = 12 would cover nearly the entire surface of a sphere and could not be seen in its entirety with
human eyes (since we can’t see behind our heads).

11. T / F If the radius of a planet were somehow to double with all other properties unchanged
(its mass, the temperature of its exosphere), then atomic hydrogen will escape more rapidly from that
planet’s atmosphere.

Answer: T This problem followed directly from our discussion in class about how molecules
of mass m in a planet’s exosphere of temperature T will be lost over geological times if the thermal
speed v =

√
3kT/m > 0.2vescape where vescape is the escape speed for that planet. (Note: except for

gas giants like Jupiter and Saturn, the atmospheres of planets are so thin compared to the radii of
the planet (Earth’s atmosphere spans 50 km, versus a radius of 6,400 km) that we can assume that
vescape is the same everywhere through the atmosphere.) Increasing the radius of a planet decreases
the escape speed as 1/

√
R, so the condition v =

√
3kT/m > 0.2vescape becomes satisfied to a greater

extent.

Something to Calculate

Microscopic analysis of an iron meteorite found in Antarctica showed that it completely liquefied upon
entering the atmosphere.

1. (3 points) Was the iron meteorite melted by heat or by work? (Justify your answer briefly.)

Answer: by work.

Heat might have played a tiny role when the meteorite first entered the atmosphere since the denser
parts of the atmosphere are hotter than -125◦C. But there are no parts of the atmosphere that come
close in temperature to the melting point of Fe so the overwhelmingly part of the temperature increase
must have come from friction between the Fe and surrounding air. By our definitions, this is work not
heat. In fact, as the temperature of the meteorite approaches and then reaches the high melting point
of Fe, heat goes the wrong way, with the meteorite losing heat to the surrounding cooler air.
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2. (5 points) If the temperature of the meteorite before entering the atmosphere was -125◦C, estimate to
one significant digit the minimum speed v of the meteorite when it entered the Earth’s atmosphere.

Some thermodynamic data for iron: the melting point is 1808◦C, the specific latent heat of fusion is
2.9 × 105 J/kg, the boiling point is 3023◦C, the specific latent heat of vaporization is 6.3 × 106 J/kg,
and the specific heat is 450 J/(kg · C◦).

Answer: 2× 103 m/s .

Energy is needed to raise the Fe meteor to its melting point and then to melt all of the Fe. If the mass
of the meteor is m, the energy needed is given in terms of the specific heat c = 450 J/(kg ·C◦) and the
specific latent heat L = 2.9 × 105 J/kg of fusion. (I realize you might not have seen the phrase ”heat
of fusion” before, but you could deduce this to be the right quantity since no vaporization occurs here,
i.e., turning liquid Fe into Fe vapor.) The thermal energy needed is then

m (c∆T + L) , (2)

where the temperature difference ∆T = 1808− (−125) ≈ 2000 + 100 = 2100 ≈ 2000◦C to one digit.

Where does this energy come from? From the context of this problem, of a meteorite arriving from
space with some initial but unknown speed v, a reasonable guess is that the kinetic energy (1/2)mv2

is the source of energy that melts the meteorite. The minimum speed v occurs if all the kinetic energy
of the meteorite goes into melting the meteorite. As you might guess, some of the kinetic energy will
also go into heating the air that the meteorite comes in contact with and into other processes like
fluid turbulence of the air, sound, and light. So the actual initial speed is likely much higher than our
estimate here. Equating the kinetic energy to the total thermal energy above, we see that the mass m
of the meteorite divides out and we find:

v = (2(c∆T + L))1/2 (3)

≈ (
2

(
450× 2000 + 3× 105

))1/2
(4)

≈ (
2

(
12× 105

))1/2
(5)

≈
√

2.4×
√

106 (6)
≈ 2× 103 m/s. (7)

to one significant digit. An answer of 1 × 103 was also acceptable depending on how you rounded,
e.g. rounding the 12 to 10.

A few comments based on various answers provided by students:

(a) Several students used up precious time multiplying out numbers with lots of digits. The trick for
estimating numerical expressions quickly and easily is to round all of your data to one significant
digit before you do any arithmetic, since only one significant digit was requested in the final
answer. Provided one rounds enough numbers up or down during the process, the rounding errors
will approximately cancel and leave a useful answer.

(b) When one takes square roots of some power of ten,
√

a× 10b, take or add a factor of ten away from
the power 10b so that the power becomes an even number and the prefactor a becomes a number
between 1 and 10, whose square root is easily estimated to one digit. Thus

√
24× 105 should be

written as
√

2.4× 106 =
√

2.4×103 and
√

0.24× 105 should be written as
√

2.4× 104 =
√

2.4×102.
Then use simple mental estimates to approximate

√
α for some number α between 1 and 100.

Thus
√

2.4 must be a number between 1 (whose square is 1) and 2 (whose square is 4). If you
remember your squares, that 152 = 225 and 162 = 256, then 1.52 = 2.25 and 1.62 = 2.56 so

√
2.4

is closer to 2 than 1 and rounds to 2.
A similar trick holds for other powers. For example (26×107)1/5 could be estimated by adding or
subtracting powers of ten from 107 until one has an integer exponent that is divisible by 5,1 and
by arranging the prefactor to be some number larger than one whose 5th-root can be estimated.
I would write this as

(
2600× 105

)1/5 = 26001/5 × 10. Now 105 = 100, 000 and 55 = (10/2)5 =
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105/25 = 100, 000/32 ≈ 100, 000/30 ≈ 3, 000 so a quick guess is 26001/5 ≈ 5 to one digit. The
actual value is 4.8 to two digits.

(c) Does a speed of about 2 km/s make sense scientifically? If you recall from lecture, we discussed
that the escape speed for Earth is about 11 km/s so, perhaps surprisingly, the meteor’s estimated
speed is substantially less than the escape speed. I don’t know the typical speeds with which
meteorites strike the Earth’s atmosphere, but they could actually exceed the escape speed because
the Earth is rotating around the Sun and a meteorite could strike the Earth from the “front”,
for which the relative speed is largest. Gravitational interactions of rocks with planets (especially
Jupiter) can also boost or decrease speeds substantially, so it is hard to tell whether 2 km/s is
reasonable or not, although it is almost certainly too small.

(d) A few students used the formula v =
√

3kT/m as the speed for the meteorite, incorrectly con-
necting this problem to a gas in thermodynamic equilibrium. The fact that the meteorite was
arriving from space with some initial speed suggests that its speed is not related to some equilib-
rium process. And the meteor does not stay around in the atmosphere long enough to equilibrate
with the air molecules, it falls to the ground rapidly. Perhaps ironically, one can get the right
answer for the wrong reasons using this formula because one can say that (1/2)mv2 = (3/2)kT
for the meteorite and then equate the thermal energy (3/2)kT to the energy m(c∆T + L) needed
to melt the iron. This leads to the correct relation and the correct answer.

(e) A few students guessed that it was the gravitational energy mgh, released from the fall of the
meteorite to the ground, that provided the energy that melted the meteorite. This guess doesn’t
allow one to bring in the initial speed v into the problem but does raise an interesting issue, of
whether the initial kinetic energy is larger or smaller than the gravitational energy released by
falling to the ground. Assuming an atmosphere of h = 50 km in thickness, the energy released by
falling to the Earth would be mgh which we want to compare to (1/2)mv2. Dividing out by the
mass m, we can easily compare (1/2)v2 ≈ 2× 106, with gh ≈ 10× (5× 104) so the kinetic energy
is greater than the potential energy released by a factor of about 4, which suggests that gravity
could be playing a role although not a dominant one.
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