
Midterm Exam for Physics/ECE 176: Answers

Professor Greenside
Thursday, March 4, 2010

The following answers are far more detailed than what was necessary to get full credit for any given problem.
I include the details with the hope that they will help you to understand the thermal physics better.

Problems That Require Writing

1. (30 points) The year is 2020 and you have been invited by one of your professor friends to be
a guest speaker in her undergraduate thermal physics class. Using as a specific example one of the
three key systems that you have studied so far this semester (Einstein solid, ideal gas, or paramagnet),
discuss concisely what you would say to the class about how microstates, macrostates, multiplicity,
and the second law of thermodynamics are related to one another: why does counting microstates have
anything to do with thermodynamic equilibrium?

Note: your goal is to show me that you understand the logical thread that ties various ideas together,
in the context of a specific example. You don’t need to write full sentences or give any mathematical
derivations but you do need to state key definitions, assumptions, and mathematical expressions, and
especially indicate through appropriate brief phrases the logic that connects the various concepts so
that these future students understand what is going on.

Answer: In your answer, I was looking for most of the following ideas, concepts, and equations. I
have made bold certain words or phrases that were especially important to mention.

(a) Thermal physics is concerned with macroscopic objects that consist of many parts. The object
is isolated from the world so that its total energy U , volume V , and number of components N
are conserved. Experiments then show that such isolated macroscopic objects eventually reach
thermodynamic equilibrium, in which certain properties are uniform throughout the object (tem-
perature, pressure, etc) and the properties are independent of how the object reached equilibrium.

(b) The macroscopic object is characterized by certain macroscopic quantities such as U , V , and N ,
which defines the object’s macroscopic state or macrostate. Many other properties could be
used to characterize the object (color, geometric shape, heat capacity, resistivity, brittleness,
sound speed, etc) but the most important parameters are ones for which some conservation law
holds.

(c) The macroscopic object may be further characterized by its microstates. A particular microstate
is defined to be a list of all the states of each individual component that makes up the object
at a particular time. For example, a microstate of an ideal gas would correspond to particular
values of the position x = (x, y, z) and momentum p = (px, py, pz) for each atom in the gas
so the microstate involves a list of 6N numbers total if there are N atoms in the gas. For an
Einstein solid with N quantum harmonic oscillators, a microstate would be a list of the N energy
levels (q1, . . . , qN ) occupied by each oscillator, which indicates how much energy is stored in each
oscillator.

An aside: the microstate of a system is difficult to define if the components interact with one
another. For example, in a liquid, a given atom interacts via some potential energy with its
nearby neighbors and so one can not describe the atom separately from its neighbors.

(d) For a given description of the macroscopic object through values of U , V , and N , only certain
microstates are compatible with those values. These are called the “accessible microstates” of the
macroscopic object. For an Einstein solid, an accessible microstate would have

∑
i qi = q, the

sums of the energy qi in each oscillator adds up to the fixed total amount of energy q.

(e) The number of accessible microstates of a given macroscopic object is called the multiplicity of
the object and is denoted by Ω = Ω(U,N, V ). It is an integer greater than or equal to one.
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(f) An important fundamental hypothesis of thermal physics is that, in thermodynamic equilib-
rium of an isolated macroscopic system, all accessible microstates are equally likely
to be observed if one were to measure the microstate of a system at any given time.

(g) This hypothesis has the very important consequence that some macroscopic states are much more
likely to be observed than other macroscopic states, because some macroscopic states have many
more accessible microstates. To see this, consider an Einstein solid that is divided into two equal
weakly interacting macroscopic halves, with N oscillators in one piece and N oscillators in the
other piece. A fixed total amount of energy q can now be divided macroscopically between the two
halves, with qA energy units going into half A and q− qA energy units going into half B. Because
the two halves are weakly interacting (which is true for nearly all substances the class will ever
need to consider), the multiplicity of the entire solid is approximately equal to the product of the
multiplicities for each subsystem:

ΩAB ≈ ΩA(qA)ΩB(q − qA), (1)

where I have assumed that the multiplicity of a subsystem depends only on the energy of that
subsystem, at least over times short compared to some relaxation time like L2/κ. But we learned
earlier this semester, that in the high-temperature limit q � N � 1,

Ω(N, q) ≈
(eq
N

)N
. (2)

So in the high-temperature limit, Eq. (1) becomes

Ωtotal ≈
( e

N

)2N
(qA(q − qA))

N
. (3)

But we also learned earlier this semester that any function with a single global maximum, in
particular the function f(qA) = qA(q − qA), raised to a high power acts like a very tall, very
narrow Gaussian centered on the location of the maximum, here qA = qB = q/2 with energy
equally distributed between the two halves, with a peak whose width is of order 1/

√
N where N

is the number of components. The peak is exceedingly narrow if N is of order Avogadro’s number.
Since the probability of observing a particular macrostate with energy qA in A is

p(qA) =
ΩAB(qA)

Ωtotal
, (4)

(this is the ratio of microstates compatible with qA energy units in A over the total number of
microstates), we conclude that, for N sufficiently large, only one macroscopic state is likely to
be observed at any given time, the one corresponding to energy equally distributed between two
equal halves.

Note: the above information is the most important collection of facts that I wanted to see in your
answer to Problem 1. You needed to consider two weakly coupled systems of an isolated whole,
and argue that the multiplicity for the entire system has an incredibly tall, incredibly sharp peak
centered on the value that corresponds to equilibrium. You needed to mention that the width
of the probability was of order 1/

√
N since that specifically tells you how unlikely it is to see

anything but the equilibrium state: once the energy qA deviates from the equilibrium value q/2
by about one part in 1010, the probability is vanishing small to observe such a macroscopic state.

(h) The previous paragraph implies that the multiplicity of a macroscopic system will steadily increase
over time until it reaches a maximum value corresponding to energy (or volume or particles if these
two can vary) distributed in proportion to the size of each macroscopic system. In more detail,
the number of microstates compatible with an equilibrium distribution of energy is so enormously
greater than all the other accessible microstates, that the system will, with probability nearly one,
change to a microstate that is consistent with equilibrium and then in the future switch only to
other microstates consistent with equilibrium (say with q/2 amount of energy in subsystems A
and in B).
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(i) Thus if we define an entropy by S = k lnΩ, it will have the property that, for an isolated system
such that U , V , and N are conserved, S will strictly increase over time until it reaches a maximum.
(Further, by Eq. (1), the entropy will be additive over subsystems.) This explains the second law
of thermodynamics in terms of microstates, conservation laws, and the fundamental postulate
that all accessible microstates are equally likely.

2. A carbon nanotube is a remarkable straw-like molecule of carbon atoms that can be several millimeters
long while having a tiny diameter of a few nanometers. Assume that N � 1 identical atoms with a
fixed total energy U adsorb onto a nanotube of length L, such that the adsorbed atoms act as a
one-dimensional ideal gas.

(a) (15 points) Derive the Sackur-Tetrode equation for the entropy S = S(U,L,N) of this one
dimensional gas.

Answer: This problem is a straightforward variation of what we discussed in class for a 3D gas
and of two problems that you solved in a recent homework assignment regarding a 2D gas (see
problems 2.26 and 3.39 of Schroeder). I will outline the key steps here and let you work out the
algebra.

The first step is to calculate the multiplicity Ω(U,L,N) of N adsorbed atoms on a 1d nanotube of
length L with fixed total energy U . By analogy to how Schroeder derived Eq. (2.40) on page 71,
we have:

ΩN =
1

N !
LNAN

(√
2mU

) 1

hN
(5)

=
1

N !

LN

hN

2πN/2

Γ(N/2)

(√
2mU

)N−1

. (6)

The leading 1/N ! factor comes from the assumption that the atoms are all identical particles, it
decreases the multiplicity from the over-counting that arises if the particles are assumed to be
distinct. The factor LN comes from the fact that, for an ideal gas of non-interacting particles,
each adsorbed atom independently has a number of distinct spatial positions proportional to L,
the size of the space that the atoms move in. The factor AN (

√
2mU) is the surface area of a N -

dimensional hypersphere of radius
√
2mU and arises from the fact that, on a one-dimensional

nanotube, the N momenta p1, p2, . . . , pN of all the adatoms satisfies the condition that the
kinetic energies of all the adatoms must add up to the fixed total energy U :

p21
2m

+ . . .+
p2N
2m

= U, (7)

that is p21 + . . . + p2N = 2mU , which defines the set of points on the surface of a N -dimensional

hypersphere of radius
√
2mU . Finally the term 1/hN , where h is Planck’s constant, is the crucial

term required by quantum mechanics that converts the proportionality Ω ∝ LNAN (
√
2mU) to

an exact integer count. (Each product of a length L with a momentum p must be divided by the
smallest possible product ∆x∆p ≈ h allowed by the uncertainty principle.)

We next convert the multiplicity to an entropy. First, we observe that if N � 1, in Eq. (6) we can
approximate N − 1 to be N , drop the 2 factor in Eq. (6) since it is a small number multiplying a
very large number, and approximate Γ(N/2) = (N/2− 1)! ≈ (N/2)!. Thus

Ω(L,N,U) ≈ 1

N !

1

(N/2)!

1

hN
LNπN/2 (2mU)

N/2
=

1

N !

1

(N/2)!

[
L

(
2πmU

h2

)1/2
]N

. (8)

This is Eq. (2.40) on page 71 of Schroeder if we replace V with L and replace 3 everywhere with 1
(3D to 1D).
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To get the one-dimensional Sackur-Tetrode equation, we use the definition S = k lnΩ and apply
Stirling’s formula in the form ln(n!) ≈ n ln(n)− n to the two factorials in Eq. (8). We find:

S = k lnΩ (9)

= Nk ln

[
L

(
2πmU

h2

)1/2
]
− k ln(N !)− k ln[(N/2)!] (10)

≈ Nk ln

[
L

(
2πmU

h2

)1/2
]
−Nk ln(N) +Nk − Nk

2
ln

(
N

2

)
+

Nk

2
(11)

= Nk

[
3

2
+ ln

(
L

N

(
4πm

h2

U

N

)1/2
)]

. (12)

The last line is the desired one-dimensional form of the Sackur-Tetrode equation. Note that the
constant 3/2 changes to 4/2 in 2D and to 5/2 in 3D. I have also written Eq. (12) in a form that
emphasizes the intensive ratios L/N and U/N .

(b) (5 points) Find the equation of state P = P (T,L,N) for this one-dimensional gas.

Answer: In three dimensions, pressure has units of force per area. In two dimensions,
pressure has units of force per length. In one dimension, pressure has units of force and the
expression −PdV for the work done on the gas related to compression or expansion becomes−FdL
where dL is some small distance over which the force F is applied. The thermodynamic identity
for our nanotube should then be written as dU = TdS − FdL. For an isolated system for which
energy is conserved, dU = 0, we obtain the following expression for the “pressure” F in terms of
the entropy

F = T

(
∂S

∂L

)
U,N

. (13)

In the 1d Sackur-Tetrode equation Eq. (12), we see that S = Nk ln(L)+ f(N,U) where f is some
function of N and U but not of L. Eq. (13) then gives us

F = T
∂

∂L

(
Nk ln(L) + f(N,U)

)
=

NkT

L
. (14)

This can be written in the form FL = NkT , which is the desired equation of state. Note how it
has a form identical to the ideal gas law PV = NkT .

Note that we can pin down what temperature means for this 1d gas by calculating 1/T = dS/dU
for S given by Eq. (12). As you should verify, this leads to the equipartition theorem U = N(kT/2)
with f = 1 since there is only one translational degree of freedom, which is along the axis of the
nanotube.

3. (10 points) A ferromagnet at absolute zero has all of its N � 1 two-state (spin-1/2) magnetic
moments aligned in parallel, with no external magnetic field present. The ferromagnet is then heated
until its temperature exceeds its Curie temperature T0, at which point the magnetization M of the
magnet has decreased to zero. A crude model of how the heat capacity CV (T ) of the ferromagnet
depends on temperature is given by the following plot:
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which corresponds to the mathematical expression

CV (T ) =

{
Cmax (2T/T0 − 1) , for T0/2 ≤ T ≤ T0

0, otherwise.
(15)

By computing the entropy change of the ferromagnet from absolute zero to the Curie temperature in
two different ways, determine the maximum value Cmax of the heat capacity in terms of N and the
Boltzmann constant k.

Answer: The two ways to calculate the entropy are first by integrating CV (T )/T over an appropriate
temperature range, and second by calculating the change in multiplicity Ω of the ferromagnet as it
changes from its ground state with Ω = 1 to its high-temperature state for which there are equal
numbers of up and down spins. Equating the two expressions then let’s one deduce a value for Cmax,
the maximum possible heat capacity.

Using the given expression Eq. (15) for CV (T ), we find

∆S1 =

∫ T0

0

CV (T )

T
dT (16)

=

∫ T0

T0/2

Cmax(2T/T0 − 1)

T
dT (17)

= Cmax

∫ T0

T0/2

(
2

T0
− 1

T

)
dT (18)

= Cmax

(
1− ln(2)

)
. (19)

The second way to compute the change in entropy of the ferromagnet involves calculating the change
in multiplicity between the ground state at T = 0 and the non-magnetic state at T = T0:

∆S2 = S(T0)− S(0) = S(T0) = k lnΩ(T0), (20)

where I used the fact that the zero temperature entropy S(0) = 0 by the third law of thermodynamics.
(Alternatively, Ω =

(
N
N

)
= 1 in the ground state for which all spins are parallel, so S(T = 0) = k lnΩ =

k ln(1) = 0.) We are told that the magnetization of the ferromagnet has become zero at T = T0 and
this corresponds to equal numbers of up and down spins, N↑ = N↓ = N/2 where N is the total number
of two-state magnetic dipoles. Using Stirling’s formula1 in the form n! ≈ (n/e)n, the high-temperature
multiplicity is then

Ω(T0) =

(
N

N/2

)
=

N !

[(N/2)!]2
≈ (N/e)N

[((N/2)/e)N/2]2
= 2N . (21)

The prefactors of the form
√
2πn in Stirling can be ignored since they are large numbers multiplying

the very large number 2N . Thus S(T0) = k lnΩ(T0) ≈ Nk ln(2) and equating this to Eq. (19) gives us
the desired answer

Cmax ≈ ln(2)

1− ln(2)
Nk, (22)

which has a numerical value of about 2.3Nk.

4. (10 points) For an ideal gas of diatomic nitrogen N2, draw qualitatively but carefully the heat
capacity CV (T )/(Nk) as a function of temperature T in kelvin. Label the horizontal axis with numerical
values that indicate at approximately what temperatures various degrees of freedom start to increase

1One could avoid using Stirling’s formula by observing that the total number of microstates of N two-state magnetic dipoles
is 2N . But in equilibrium at T = T0, the area under the incredibly narrow incredibly tall peak in Ω(N↑) is basically the area

of the entire Ω(N) curve and so must be about 2N . Stirling’s formula confirms this argument is correct, it corresponds to
neglecting large factors like

√
2πn that multiply very large factors.
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as the temperature increases, and indicate the corresponding numerical values of the heat capacity on
the vertical axis. Also label what type of degree of freedom corresponds to the different regimes of
your drawing.

Answer: Please refer to Figure 1.13 on page 30 of Schroeder which answers this question completely.
We will not discuss much data during this course, but the few cases that we do discuss, especially curves
that we compare with theory, are important and you should study and think about the data carefully
so that you remember and appreciate key points. There will be future questions on the quizzes or final
exam that will test whether you are familiar with some of the more important experimental plots.

5. (10 points) Calculate the leading-order low-temperature (small T ) and high-temperature (large T )
behaviors of the expression

n̄ =
1

ec/T − 1
− N

eNc/T − 1
, (23)

and use your results to draw qualitatively how n̄ varies with T from low to high temperatures.
Here N � 1 is a large positive integer and c > 0 is a positive constant. This expression arises
when trying to understand how a zipper-like DNA molecule self-assembles as a competition between
energy and entropy; n̄ is the average number of cross-links formed.

Answer: Let’s work out the low-temperature and then high-temperature approximations to Eq. (23)
and then figure out the overall shape of the curve n̄(T ).

At low temperatures, T < c is tiny and so c/T > 1 is a number much greater than one. Then ec/T � 1

is an even bigger number and eNc/T =
(
ec/T

)N � ec/T is an even bigger number. (If c/T is a “small

number” in Schroeder’s lingo of page 61, then ec/T will be a “large number”.) For small temperatures,
we therefore have

n̄ =
1

ec/T − 1
− N

eNc/T − 1
(24)

≈ 1

ec/T
− N

eNc/T
(25)

= e−c/T −Ne−Nc/T (26)

≈ e−c/T . (27)

Eq. (27) is the desired low-temperature leading-order behavior of n̄. To get from line (24) to line (25),
I ignored the 1’s compared to the large numbers ec/T and eNc/T in the denominators. To get from
line (26) to line (27), I dropped Ne−Nc/T as a much smaller quantity since (e−c/T )N � e−c/T if e−c/T

is small and N is large. From your calculations of specific heats related to an Einstein solid which
involved expressions of the form e−ε/(kT ) where ε = hf was the energy spacing between harmonic
oscillator levels, you should recognize e−c/T as an expression that decays to zero rapidly2 as T → 0.

For large temperatures T � c, the ratio c/T � 1 is a small quantity and so we want to carry out a
Taylor series of Eq. (23) about c/T = 0 to see what the leading order behavior is. As usual, it is too
much work to calculate various derivatives fn(x) to get the coefficients in a Taylor series, instead we
substitute and manipulate simpler Taylor series, which here would be the one based on the exponential:

ex ≈ 1 + x+
1

2
x2 +O

(
x3
)
. (28)

Since the wording of the problem is to determine the “leading-order” behavior, which means the first
non-zero correction in the Taylor series of Eq. (23), we need to retain the first three terms in Eq. (28)
since the lowest-order term (the one) gets killed by the subtraction in the denominators. Some students
retained only the first two terms in Eq. (28) and found that the two terms canceled to give n̄ = 0 to

2Note that it is wrong to say that the expression e−c/T decays exponentially rapidly to 0 since this expression does not
depend exponentially on T .
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order c/T , but that should have just warned them that they had to go to higher-order to find the first
non-zero term.

Applying Eq. (28) to the two exponentials in Eq. (23), we find:

n̄ =
1

ec/T − 1
− N

eNc/T − 1
(29)

≈ 1[
1 + c/T + 1

2 (c/T )
2
]
− 1

+
N[

1 +Nc/T + 1
2 (Nc/T )2

]
− 1

(30)

≈ T

c

(
1

1 + (1/2)(c/T )
− 1

1 + (1/2)(Nc/T )

)
(31)

≈ T

c

([
1− 1

2

c

T

]
−
[
1− 1

2

Nc

T

])
(32)

=
N − 1

2
(33)

≈ N

2
. (34)

This first non-zero term is quite different from zero! On line (30), I approximated both exponentials
with the Taylor expansion Eq. (28). Line (32) was obtained from the previous line by using the first
two terms of the geometric series (which is the Taylor series for 1/(1 + x))

1

1 + x
≈ 1− x for |x| � 1. (35)

On line (34), I used the fact that N � 1 to drop the 1 compared to the N . We conclude that n̄(T )
approaches a constant value N/2 as T → ∞.

If we had extended the Taylor series Eq. (28) to include the third-order term (1/6)x3, you would discover
that Eq. (34) would have a 1/T correction added to N/2. This is similar to what you discovered in
answering part (f) of Problem 3.25 on page 109 of Schroeder, except there the correction to the constant
high-temperature value was quadratic in 1/T .

The low-temperature behavior Eq. (26) and the high-temperature behavior (34) are sufficient to guess
the overall qualitative form of the curve n̄(T ): it is a function that increases rapidly from zero at T = 0
and then asymptotes to a horizontal plateau with value N/2, i.e., it looks qualitatively like the heat
capacity C(V ) of an Einstein solid, being concave up and then becoming concave down. You can
confirm the correctness of the above discussion with a Mathematica plot

0 10 20 30 40 50
0

1

2

3

4

5

Temperature T�c

n

which I generated with the command
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nn = 10. ;

Plot[

1 / ( Exp[ 1 / T ] - 1 ) - nn / ( Exp[ nn / T ] - 1 ) ,

{ T, 0, 5 nn } ,

PlotRange -> { 0., nn/2. }

]

where I have set c = 1 and N = 10. For N this small, I have to use the asymptote Eq. (33) and the
curve indeed asymptotes to (N − 1)/2 = 4.5.

6. (10 points) Two vessels of volume V1 and V2 each contain N atoms of the same ideal gas at the
same pressure P but with temperatures of T1 and T2 respectively. In terms of the heat capacity Cp at
constant pressure (which you can assume is constant) and the temperatures T1 and T2, calculate the
change of entropy ∆S that arises when a tube connects the two vessels and thermodynamic equilibrium
is attained. Determine also whether ∆Stotal ≥ 0 for your system.

Answer: There are two ways to solve this problem. The more general and somewhat easier way is
to use the formula

∆S =

∫ T2

T1

CP (T )

T
dT, (36)

for the entropy change ∆S of any general system (solid, liquid, gas, etc) whose temperature changes
while the external pressure is constant. The second way is to use the Sackur-Tetrode equation, which
holds only for an ideal gas consisting of atoms (so there are no rotational or vibrational degrees of
freedom). Both approaches lead to the answer Eq. (40) below.

Let’s try solving the problem first using Eq. (36). Since in equilibrium the temperature will be uniform
throughout the combined vessels, a first step is to deduce the final equilibrium temperature Tf . From
the ideal gas law PV = NkT , we have

P (V1 + V2) = (2N)kTf , (37)

since in the interconnected system, the total volume is V1+V2 and the total number of particles is 2N .
The pressure will not change since it is already in equilibrium (P1 = P2 = P ). So we have

Tf =
P (V1 + V2)

2Nk
=

T1 + T2

2
, (38)

where I used

T1 =
PV1

Nk
and T2 =

PV2

Nk
. (39)

That Tf = (T1 + T2)/2 could also be deduced from a heat capacity argument, energy conservation
between the two vessels implies CP (Tf − T1) = CP (T2 − Tf ). Even more simply, since we are mixing
two equal amounts of the same gas (both have N atoms), the final temperature must be the average
of the two initial temperatures.

By additivity of entropy (and assuming the two vessels together are thermally isolated so we don’t have
to worry about heat being exchanged with the surrounding environment), the total change in entropy
will be the sum of the changes in entropy of each vessel, ∆Stotal = ∆S1 +∆S2. We can calculate this
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directly from the temperature change of the gas in each vessel:

∆Stotal = ∆S1 +∆S2 (40)

=

∫ Tf

T1

CP (T )

T
dT +

∫ Tf

T2

CP (T )

T
dT (41)

= CP ln

(
Tf

T1

)
+ CP ln

(
Tf

T2

)
(42)

= CP ln

(
T 2
f

T1T2

)
(43)

= Cp ln

[
(T1 + T2)

2

4T1T2

]
. (44)

This last line, Eq. (44), is the desired answer3. In evaluating the integrals, I used the assumption that Cp

is constant over the temperature range of interest, and I used the log identity ln(a) + ln(b) = ln(ab) to
combine the two entropy expressions into a single log.

The expression Eq. (44) will be non-negative—a desired property of any total entropy expression—
provided that the argument inside the log is greater than or equal to one:

∆Stotal ≥ 0 ⇔ (T1 + T2)
2

4T1T2
≥ 1. (45)

But this last condition always holds4 since it can be written in the form (T1 − T2)
2 ≥ 0. So the total

entropy change is always positive (the process of connecting the two vessels and waiting for equilibrium
is irreversible) except when T1 = T2 in which case ∆Stotal = 0.

We can also solve this problem by using the Sackur-Tetrode equation

S = Nk

(
5

2
+ ln

[
V

N

(
4πm

3h2

U

N

)3/2
])

, (46)

which is the entropy of an ideal gas ofN atoms5 in a volume V with total energy U . By the equipartition
theorem, the energy U = Nf(kT/2) with f = 3 for atoms so the U/N = 3kT/2 term in Eq. (46) can
be expressed in terms of T .

The total initial entropy Si
total is the sum of the entropies of the gases in each vessel:

Si
total = Nk

(
5

2
+ ln

[
V1

N

(
4πm

3h2

3kT1

2

)3/2
]
+

5

2
+ ln

[
V2

N

(
4πm

3h2

3kT2

2

)3/2
])

(47)

= Nk

5 + ln

V1V2

N2

([
4πm

3h2

3k

2

]2
T1T2

)3/2
 (48)

The final total entropy Sf
total corresponds to 2N molecules at temperature Tf in a total volume V1+V2:

Sf
total = (2N)k

(
5

2
+ ln

[
V1 + V2

2N

(
4πm

3h2

3kTf

2

)3/2
])

(49)

3Alternatively, you can verify that Eq. (44) can also be written in terms of the volumes, ∆S = CP ln
[
(V1 + V2)2/(4V1V2)

]
.

4The inequality (T1 + T2)2/(4T1T2) ≥ 1 can also be written in the form (T1 + T2)/2 ≥
√
T1T2, which is a simple case of the

“arithmetic-geometric mean inequality”, which states that the average of N numbers, (1/N)
∑N

1 xi, is always greater than or

equal to the geometric mean of the numbers, (ΠN
1 xi)

1/N , with equality if and only if all the numbers are equal.
5If the wording of the problem had said “N molecules”, we would not be able to use Sackur-Tetrode since that equation

is based on the assumption of ignoring rotational and vibrational degrees of freedom. Can you pinpoint in the derivation of
Sackur-Tetrode why this restriction was necessary?
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Using 2 ln(x) = ln(x2) on Eq. (49) and then subtracting Eq. (48) from Eq. (49) gives the total change
in entropy ∆Stotal:

∆Stotal = Sf
total − Si

total = Nk ln

 (V1 + V2)
2

4V1V2

(
T 2
f

T1T2

)3/2
 . (50)

If we eliminate Tf , V1, and V2 in favor of T1 and T2 via Eqs. (38) and (39) and use the fact that, for a
monoatomic gas, CP = CV +Nk = (5/2)Nk (see Eq. (1.48) on page 30 of Schroeder), then we get the
same expression as Eq. (44). (Please verify this for yourself.) That the two expressions agree for an ideal
gas of atoms can be interpreted as confirmation of the correctness of Eq. (36), which was derived using
only macroscopic thermodynamic definitions and arguments (for example, dS = Q/T = (CP (T )dT )/T
and dU = TdS − PdV ).

7. (a) (6 points) Starting with a qualitative plot of how the entropy S(U,B) of a two-state paramagnet
in a uniform magnetic field of strengthB varies with energy U , deduce and then draw schematically
for two different magnetic field strengths Blow and Bhigh > Blow how the entropy S(T ) varies with
temperature T over the range −∞ < T < ∞. Make sure to label your two entropy curves clearly,
for low B and high B.

Answer: This question involved your ability to work out functional relations from qualitative
drawings, a valuable skill since often in experimental or computational work, one does not have
analytical formulas to work with or known analytical formulas might be too complicated to obtain
intuition from. The flow of ideas is suggested in this figure:

Panel (a) shows what should be a familiar dependence of entropy S/k on energy U/(NµB) for a
paramagnet of N two-state magnetic dipoles. Just below panel (a), I have sketched in panel (b)
how the temperature T varies with energy U/(NµB) by taking several representative points on
the entropy curve in (a) and looking at the reciprocal of the slopes at these points, 1/T = dS/dU .
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Rotating (b) counterclockwise about the origin by 90◦ and then rotating the curve 180◦ about
the vertical axis gives us U = U(T ) as a function of T , as shown in panel (c). (This too should
be familiar to you.)

To deduce how the entropy S(T ) varies with temperature, we choose several representative points
on the curves in (c) which I have labeled a, b, . . . , f. For a given point, say “a” corresponding
to a slightly negative temperature, I look up the corresponding value of U (which is close to 1 on
the U/(NµB) axis) and then I go to panel (a) to see what value of S corresponds to this value
of U ; here S is positive and close to zero as shown by the point labeled “a” on the S = S(U)
curve. Repeating this for various representative points, we are led to panel (d), which shows
qualitatively how the entropy S = S(T ) varies with temperature for a fixed external magnetic
field. The entropy is zero at T = 0 (as we would expect from the third law of thermodynamics)
and increases monotonically to the maximum value of SmaxNk ln(2) which corresponds to the
zero magnetization state, in which there are equal numbers of up and down spins. Although I
didn’t draw the curves accurately, S is an even function of temperature, S(−T ) = S(T ) and so
is symmetric for positive and negative temperatures. This is a consequence of S = S(U) being
an even function of energy, which in turn is a consequence of the binomial coefficient Ω =

(
N
N↑

)
being a symmetric function of N↑ about the point N↑ = N/2.

The above sketch of S(T ) in panel (d) corresponds to a fixed magnetic field strength B. How
does S(T ) change if B is increased to some larger value? There are two ways to figure this out.
One is thinking physically: an increased magnetic field for a fixed temperature will align more
magnetic dipoles parallel to the magnetic field, and this will decrease the entropy since there are
then fewer microstates available and the multiplicity decreases. (In the extreme case of a nearly
infinite magnetic field, all spins will be parallel to B and so Ω = 1.) So S(T ) for larger B will
be a curve similar to what we already drew but rising more slowly and so lying everywhere below
the S(T ) curve. In panel (d), I have sketched the high-B entropy curve as dashed lines below the
solid lines of the low-B curve.

A second way to figure out how S(T ) varies with B is to observe that all the quantities that
characterize a paramagnet (energy U , magnetization M , heat capacity C, etc) depend on tem-
perature through the expression kT/(µB). If we write this as T/T0 with T0 = (µ/k)B, we see
that the magnetic field B defines a temperature scale T0, this is the magnitude by which the
temperature T has to change for something “interesting” to happen, e.g., for the magnetization
to decrease substantially or for the entropy to rise substantially towards its maximum asymptotic
value. Increasing the magnetic field B increases the temperature scale T0 and so a larger value
of T is now needed to achieve the same value of S that is observed for a smaller temperature value
when B is smaller. This implies that a high-B entropy curve must lie below a low-B entropy
curve since they are the same curves but one (the high-B curve) is stretched horizontally away
from the origin compared to the low-B curve.

(b) (4 points) For a thermally isolated two-state paramagnet in the presence of a uniform magnetic
field with strength B, discuss whether increasing B will increase, decrease, or leave unchanged
the temperature of the paramagnet.

Answer: The temperature of the isolated paramagnet increases when B is increased. This
is a consequence of the low-B and high-B entropy curves of panel (d) in the above figure. A
thermally isolated paramagnet can not exchange heat with the outside world, i.e., its entropy is
constant (since dS = Q/T ), just like the case of an adiabatic change of an ideal gas. Increasing
the magnetic field strength B then corresponds to starting on a low-B entropy curve and moving
horizontally (constant S) to the right until one reaches a point on a high-B entropy curve. This
is illustrated by the small horizontal arrow that I drew in panel (d), and you can see that the
temperature indeed increases.

This is an important scientific insight that is often used in the opposite direction: decreasing the
external magnetic field of a thermally isolated paramagnet will decrease the temperature of the
paramagnet, and then bringing the cold paramagnet in contact with some other substance (say
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liquid helium) will decrease the temperature of that substance, i.e., we can use varying magnetic
fields and a paramagnet as a refrigerator. This is, in fact, one of the important strategies that
scientists and engineers have invented to cool substances to temperatures of order a millikelvin.
You can read more about this on pages 144-146 of Schroeder, who describes “magnetic cooling”
with several other strategies for reaching low temperatures. Look particularly at Figure 4.14
on page 146 of Schroeder, which illustrates the two keys steps used multiple times in magnetic
cooling: increase the magnetic field while paramagnet is in thermal contact with a constant T
reservoir (so you don’t raise the temperature of the paramagnet as you increase B), then decrease
the magnetic field of the thermally isolated paramagnet to decrease its temperature.

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate whether a given statement is true or
false respectively.

1. T / F To the nearest power of ten, the entropy of a mole of Belgian chocolate molecules is
approximately 10 J/K.

Answer: T From Problem 2.36 on page 79 of Schroeder, which you did as one of your homework
problems, you learned that the entropy of any object consisting of N components is approximately S ≈
Nk. (Please confirm this result for the Einstein solid and ideal gas.) Since a mole consists of N ≈
6.0×1023 molecules and k ≈ 1.4×10−23 J/K (each to two significant digits), a mole of Belgian chocolate
molecules has an entropy of about

S ≈ Nk ≈ (6× 1023)× (1.4× 10−23 ≈ 10 J/K. (51)

Since chocolate has a complicated molecular structure (actually, chocolate consists of many different
complicated molecules), it is convenient to be able to make a rough guess like this.

2. T / F CV (steam) > CV (water).

Answer: F That CV (steam) < CV (water) is a fact that you were told and had to use in one of your
homework problems, when you were asked to draw qualitatively but carefully the entropy S(T ) as a
function as ice warmed up and melted into water, and the water warmed up and vaporized into steam.

3. T / F The heat capacity CEinstein(T ) of an Einstein solid accurately describes the shape of the
heat capacity CV (T ) of an ideal gas of diatomic molecules in the regime for which vibrational degrees
of freedom are freezing out (decreasing) as the temperature of the gas is decreased.

Answer: T An ideal gas of diatomic molecules is essentially a perfect Einstein “solid”: it consists
of N non-interacting identical quantum harmonic oscillators (at least if the temperature is not too
high, remember the homework problem about the Morse potential?) with each molecule corresponding
to one oscillator. So the expression for the specific heat CV (T ) that you calculated and plotted in
Problem 3.25 on page 108 of Schroeder (and that is given in Eq. (7.103) on page 307 of Schroeder and
plotted in Figure 7.29 on page 312) quantitatively and usefully describes the high-temperature regime
of Figure 1.13, where the vibrational degrees of freedom are freezing out as T decreases.

Somewhat ironically, a gas of diatomic molecules is much better described as an Einstein solid than a
real solid since the latter involves many oscillators with different frequencies and the oscillators interact.
We will learn how to correct the Einstein model when we discuss the Debye theory of Section 7.5 in
Schroeder.
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4. T / F If an ideal gas is compressed isothermally and then expanded adiabatically back to its
original volume, the final pressure will be greater than the initial pressure.

Answer: F Please refer to Figure 1.12 on page 25 of Schroeder which pretty much answers this
question: if you follow the curve labeled Tf to the left starting with initial volume Vi (an isothermal
compression) and finishing at volume Vf , and if you then follow the adiabatic process labeled “Adiabat”
from Vf to the right until you return to V = Vi (an adiabatic expansion), you necessarily end up with
a lower pressure.

The reason is that, during an adiabatic compression, the temperature of the gas increases. (If you
don’t remember the math on page 25, you should remember the fire piston demo I showed you in class
or how a diesel engine works). This means that a curve P (V ) in the PV plane that corresponds to
an adiabatic process must cross from a high-temperature isothermal hyperbola to a lower temperature
isothermal hyperbola during an expansion as shown in Figure 1.12.

The same geometric picture shows without any calculation that it takes more work to compress a gas
adiabatically than isothermally: starting from the initial volume Vi in Figure 1.12, the adiabat always
lies above the isothermal hyperbola that grows out of the same initial point (Vi, Pi).

5. T / F For a two-state paramagnet in a uniform external magnetic field B, all the magnetic
dipoles are antiparallel to the direction of the magnetic field in the limit T → ∞.

Answer: F By Curie’s law for paramagnets which we discussed in class and which you read about
in Schroeder (see page 105), the magnetization M ∝ 1/T for sufficiently large temperatures T , i.e.,
M → 0 as T → ∞. But M ∝ N↑ − N↓ so M → 0 implies N↑ = N↓ = N/2 in the limit of high
temperatures. So the magnetic dipoles are equally likely to be up or down at high temperatures, and
it is not the case that the dipoles all assume the highest possible energy state of being antiparallel to
the magnetic field as T → ∞.

If you didn’t remember Curie’s law or think of using it, you could also deduce that M → 0 as T → ∞
from the qualitative drawing of how U(T ) depends on T for a paramagnet, since for a two-state
paramagnet, M = −U/B. See also Figure 3.10b on page 103 of Schroeder, which plots M(T ) versus T ,
you can see that M → 0 as T → ∞.

6. T / F The ratio W/Q of work produced to heat added is 2/7 for an ideal gas of diatomic N2 that
undergoes an isobaric expansion close to room temperature.

Answer: T An isobaric expansion is a constant pressure expansion. Assume the constant pressure
is P0 and the gas expands from some initial volume V1 to some final volume V2 > V1. The work W
done on the gas is given by

W = −
∫ V2

V1

P (V ) dV = −P0

∫ V2

V1

dV = −P0(V2 − V1), (52)

and so the work done by the gas on the environment is the negative of this and is the positive
quantity Po(V2 − V1). As usual, we determine the heat that flows into the gas by energy conserva-
tion Q = ∆U −W . By the equipartition theorem U = Nf(kT/2) where f = 5 for a diatomic nitrogen
at room temperature6, the change in energy ∆U = (f/2)∆(NkT ) = (f/2)∆(PV ) = (f/2)P0(V2−V1).
Using Eq. (52), the heat Q that flows into the gas is then

Q = ∆U −W =

[
f

2
P0(V2 − V1)

]
− [−P0(V2 − V1)] =

(
1 +

f

2

)
P0(V2 − V1). (53)

6Remember that, for many diatomic molecules including nitrogen, the vibrational degrees of freedom have frozen out for
temperatures close to room temperature so f = 5, not f = 7.
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This leads to the result
|W |
Q

=
P0(V2 − V1)

Q
=

1

1 + f/2
=

2

2 + f
=

2

7
, (54)

so the claim is true. Note how by taking the ratio |W |/Q, we get a result that is independent of the
values of P0, V1, and V2. Note also that a ratio of 2/7 is not particularly impressive. You should be
able to verify quickly that an isothermal expansion has a ratio |W |/Q = 1, so isothermal expansions
produce more work for a given amount of heat.

7. T / F The surface area Ad(1) of a d-dimensional hypersphere with unit radius is a decreasing
function of d for sufficiently large d.

Answer: T From the formula for Ad(r) that we used in our discussion of the multiplicity of an idea
gas of atoms and that you of course wrote down on your one page of notes, we know that (for r = 1):

Ad(1) =
2πd/2

Γ
(
d
2

) . (55)

But, as I showed during one lecture, we also know that Γ(x) can be accurately approximated by
Stirling’s formula for a large enough argument x:

Γ

(
d

2

)
=

(
d

2
− 1

)
! ≈

(
d

2

)
! ≈

√
2π(d/2)

(
d/2

e

)d/2

, (56)

where I used d/2− 1 ≈ d/2 for d sufficiently big. Combining Eqs. (55) and (56), we find

Ad(1) ≈
2√
πd

(
2πe

d

)d/2

. (57)

For d large, the factor 2/
√
πd is a small number (the reciprocal of a large number) multiplying a very

small number (the reciprocal of a very large number) and so can be ignored compared to the very small
number. So Ad(1) ∝ 1/(d/(2πe))d/2 and is in fact a rapidly decreasing function of d for sufficiently
large d.

Since 2πe ≈ 20, from Eq. (57) we can guess that Ad(1) might actually increase to some maximum before
it starts to decrease since initially 2πe/d is greater than one. Plotting Eq. (55) with Mathematica
confirms this: Ad(1) increases to a maximum value of about 30 around d = 7 before decreasing
monotonically and rapidly for all larger d.

8. T / F The expression S = S(U, V ) = S0 U
3/4V 1/4 (where S0 is a positive constant) is not a

physically reasonable functional form for the entropy of some substance.

Answer: F This expression is a physically reasonable ansatz for the entropy of a system. In fact, later
this semester we will discover this functional form when calculating the entropy of a gas of photons.

To determine whether S is physically reasonable, we want to check that

(a) S is an increasing function of U for U ≥ 0, which is the case for most systems except paramagnet-
like spin systems whose components do not have any kinetic energy and for which the energy U
is bounded from above. Since S ∝ U3/4, S indeed increases with U so this checks.

(b) S is a first-order homogeneous function of the extensive variables U , V , andN , which is a necessary
condition for S to be additive over weakly interacting subsystems. If we make the substitution
(U, V ) → (λU, λV ), then (λU)3/4(λV )1/4 = λU3/4V 1/4 so S is a linear homogeneous function,
and this checks.

(c) Finally, we want to see whether S is consistent with the third law of thermodynamics, that S → 0
as T → 0. As usual, we determine T by 1/T = (dS/dU)V ∝ U−1/4 so U ∝ T 4 and S ∝ U3/4 ∝
(T 4)3/4 ∝ T 3 so the third law is indeed satisfied.
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