
First 176 Midterm Exam: Answers

Professor Greenside
Wednesday, February 18

A reminder for future quizzes and exams: work on those problems first that are worth the most points. The
true false and multiple choice questions can be interesting to think about but reward you with few points
compared to the problems that require writing out some answer.

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate whether a given statement is true or
false respectively.

1. T / F For an ideal gas, the ratio of the specific heats CP /CV is equal to the adiabatic exponent γ.

Answer: T This problem required a short calculation. From the ideal gas law in the form V =
NkT/P and from the formulas U = Nf(kT/2), Cv = (∂U/∂T )V = Nfk/2, and CP = (∂U/∂T )P +
P (∂V/∂T )P given at the beginning of the midterm, you can calculate that:

Cp = (∂U/∂T )P + P (∂V/∂T )P (1)
= (Nfk/2) + P (Nk/P ) (2)
= (f/2 + 1) Nk (3)
= (f + 2)Nk/2 (4)

=
(f + 2)

f

(
fN

k

2

)
(5)

= γCV , (6)

so the statement is true.

2. T / F It is possible for the heat capacity CP of a substance to be infinite at a finite temperature.

Answer: T This was mentioned briefly in Schroeder in the discussion of specific heats. From
the definition Eq. (1.4) on page 28, C = Q/∆T , we can see that the specific heat could be infinite
if it is possible to add heat to a system (positive numerator) without changing its temperature (zero
denominator). But this is exactly what happens during some phase transitions such as the melting
of ice or the boiling of water1. Looking for a sharp peak in the specific heat (experimentally or
computationally in a simulation) is also a way to discover a phase transition in some novel substance or
in some novel regime: a careful measurement (say carried out during a computer-controlled experiment)
of the substance’s specific heat as a function of temperature might reveal a large peak, suggesting a
phase transition.

3. T / F When a closed path is traced out in the PV -plane of an ideal gas, starting at some point A
on the path and returning back to A, the total amount of heat absorbed by the gas will depend on the
position of the starting point A on the path.

Note: for this problem, assume that the total work done on the gas after following the path from A
back to A is nonzero.

1I say “some” phase transitions because there are phase transitions of a different kind than the melting of a solid or the
vaporization of a liquid, say the loss of ferromagnetism as a magnet is heated above a certain temperature, for which the
temperature does not stay constant during the transition.
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Answer: F This is a qualitative question that you can settle by drawing some representative closed
loop, e.g., a circle, in the PV -plane of an ideal gas. If you start at different points on the closed curve
and trace all the way around back to the same points, you should be able to convince yourself that
you always end up going once around the entire area enclosed by the loop, which means that the total
compression or extension work done (area enclosed by the curve) is always the same, no matter where
you start. Since the total energy U doesn’t change when you start at some point and return to that
point in the PV plane, if the work stays the same, the heat that enters or leaves the system, which is
the negative of the work, must also be the same.

4. T / F It is possible to trace a closed path in the PV -plane of an ideal gas such that the total
heat absorbed and the total work done on the gas are both zero.

Note: In your thinking, do not include the trivial case in which the gas goes from point A to point B
on some path and then returns to A by traveling backwards along the same path, i.e. assume that the
closed path encloses a finite area.

Answer: T A closed curve that crosses itself one or more times, like the infinity symbol ∞, is an
example of a curve for which the total work done is zero and so the total heat is also zero. All you
need to arrange is for the two closed loops each to contain the same area: then tracing one loop will
enclose the negative of the area enclosed by the other loop, canceling to zero.

5. T / F In an Einstein solid of N identical harmonic oscillators, increasing the number of energy
units q corresponds to increasing the temperature T of the solid.

Answer: T This was a general knowledge question, that was implied but never quite stated directly
by Schroeder. The bound states of quantum mechanical systems have discete energy levels and the
energy of the system is determined by which energy levels are “occupied”, i.e. have an energy unit
associated with them. Adding heat to a macroscopic system like an Einstein solid, which will increase
its temperature since there is no phase transition in an Einstein solid (at least none that we have
discussed or mentioned), necessarily corresponds to adding energy units to the oscillators which means
increasing the number of energy units q.

In Chapter 3, page 91, we will soon show how to calculate the temperature of an Einstein solid through
the definition 1/T = (∂S/∂E)N,V and by using our ability to calculate the multiplicity Ω and so the
entropy S = k lnΩ.

6. T / F A careful experimental measurement over one hour of the temperature T of some equilibrium
macroscopic solid whose width is 0.1 m will include the effects of all the possible microstates of the
solid.

Answer: F This point was made several times in Schroeder: a macroscopic system with Avogadro’s
number of components will have a very large number of microstates (i.e. the exponential of a large
number such as exp(1023). This number of microstates is so huge that even an experiment lasting the
age of the universe will only sample an infinitesimal fraction of the total number of microstates. This
does not imply the breakdown of thermodynamics or of science since, for macroscopic systems, the
multiplicity is so sharply peaked about the state corresponding to thermodynamic equilibrium that
most of the very few microstates sampled will correspond to thermodynamic equilibrium.

7. T / F If an isolated Einstein solid is in thermodynamic equilibrium and has NA oscillators in one
subsystem and NB oscillators in the other subsystem with NA 6= NB , and if the entire solid has q units
of energy, then the most likely amount of energy to be observed in system A is q NA/(NA +NB). (Here
the integers NA, NB , and q are all large numbers.)

Answer: T We learned in Chapter 2 that, because of the extremely narrow peak in the multiplicity Ω
of accessible states in an equilibrium macroscopic system, it is overwhelmingly likely to observe an
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equilibrium system with those values of its macroscopic parameters that correspond to the most likely
macrostate. For two Einstein solids that are weakly interacting, one would guess correctly that a given
total amount of energy q (more precisely qhf where h is Planck’s constant and f is the oscillator
frequency) would, in equilibrium, be distributed in proportion to the number of oscillators in each
solid. Thus a fraction NA/(NA + NB) of the energy will end up in solid A and Nb/(Na + Nb) will end
up in solid B, with these two fractions adding up to one.

This point was made indirectly on pages 58-59 of Schroeder, especially Figure 2.5 on page 59. Here he
considered two solids with unequal numbers of oscillators, NA = 300 and NB = 200. The energy qA

that gives the maximum value of the multiplicity function Ω(qA) = ΩAΩB corresponds to (300/(300 +
200)) = 0.6qtotal = 60 units.

8. T / F If an isolated Einstein solid has two subsystems with equal number of oscillators NA =
NB = N À 1, and if the solid has an amount of energy units q > N , and if at a particular moment
all of the energy q is observed to be in subsystem A, then you can conclude that the solid is not in
thermodynamic equilibrium.

Answer: F Strictly speaking, you can not tell by observing a particular accessible microstate of
some system whether that system is in thermodynamic equilibrium since the system may be in ther-
modynamic equilibrium and you just happened to observe one of the rare microstates that represents
a non-equilibrium distribution of energy. But practically speaking, the probability of observing any
microstate of a macroscopic system whose macroscopic parameter (say energy) does not correspond
to the few microstates with the largest multiplicity is a tiny number (the reciprocal of a very large
number), it would be similar to throwing 1023 pennies and finding that they all come up heads. So if
you were to observe all of the energy in one macroscopic subsystem during some experiment, your first
conclusion would be that something else is going on, e.g. there is a bias in the experiment, perhaps some
unknown mechanism that is transfering heat from subsystem B to subsystem A, or that is preventing
heat from A diffusing to B.

9. T / F For n a large integer and α > 1 some real number, the sum of the n powers 1α+2α+ . . .+nα

is approximately equal to (α/2)nα+1.

Answer: F This question was intended to see if you understood the spirit of how the Stirling
approximation was obtained, which was to approximate the finite sum ln(1)+ln(2)+ . . .+ln(n), which
one can think of as the sum of adjacent block-like areas ln(1)× 1 + ln(2)× 1 + . . . of height ln(i) and
base 1, by the integral

∫ n

1
ln(x) dx. The idea is general and leads to approximations for any sum of

some function f(x) over the integers 1, 2, . . ., n. Here the function f(x) = xα so

1α + . . . + nα ≈
∫ n

1

xα dx =
1

α + 1
(
nα+1 − 1

) ≈ nα+1

α + 1
, (7)

where in the last step I used the fact that, for α > 1 and n large, the expression nα+1 À 1 so the 1
can be dropped inside the parentheses. I encourage you to explore with Mathematica how well this
approximation works for several values of α and of n.

Multiple Choice Questions (4 points each)

Circle the letter that best answers each of the following questions.

1. A large solid block of metal has unequal dimensions Lx × Ly × Lz such that Lx > Ly > Lz. If the
thermal diffusivity of the block is κ, then the least amount of time that an experimentalist should
wait for the block to be close to equilibrium is

(a) L2
x/κ (b) L2

y/κ (c) L2
z/κ (d) Lx/κ (e) Ly/κ (f) Lz/κ
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Answer: (a) or (c) This turned out not to be a well stated problem and I will also accept (c) for
an answer. (So please get in touch with me if you want four points back if you chose (c)). The reason
the problem is not well stated is that the answer depends on the context of how the block is allowed
to reach equilibrium.

Answer (a) would be appropriate if the block was thermally insulated from the rest of the world (which
is what I had in mind but unfortunately did not state). In this case, if the block had a non-uniform
temperature, with some parts hotter and some parts colder, an experimentalist would have to wait for
heat to diffuse (smear out) along the longest dimension Lx of the block for equilibrium to be attained,
i.e. one would have to wait at least some integer multiple of the relaxation time L2

x/κ to have some
confidence that the block was close to equilibrium.

But if the block is not isolated but is instead immersed in some well stirred isothermal environment,
say in a tub of water that has a temperature controller and some fan or pump to mix the water rapidly,
then all surfaces of the block will be exposed to the same constant temperature and so the block will
reach thermodynamic equilibrium on a time scale that is some integer multiple of L2

z/κ, based on the
shortest dimension Lz, since every part of the block is within a distance Lz/2 of the surface.

The isothermal environment has to be well stirred because if you suspend the block in, say a tub
of water that is not stirred, the water in contact with the surface of the block will develop its own
nonuniform temperature distribution because of its contact with the presumably different temperature
of the block, and then the time scale for the block to reach equilibrium will be at least L2

z/κ since the
non-uniform temperature difference in the water would have to diffuse across the longest length of the
block for equilibration to take place.

2. Two identical bubbles A and B of an ideal gas form at the bottom of a lake and then rise upwards
toward the lake’s surface. Because the water pressure decreases from the bottom to the surface, both
bubbles expand as they rise. However, bubble A rises so quickly that there is no time for heat to flow
into or out of the bubble, while bubble B rises so slowly (say it is transported by a lazy water spider)
that its temperature always stays the same (the surrounding water is isothermal). When both bubbles
are just below the lake’s surface

(a) they will have the same diameter.

(b) bubble A will be the larger bubble.

(c) bubble A will be the smaller bubble.

Answer: (c)

This was Problem 1.38 on page 26 of Schroeder and a good conceptual question. The key insight is that,
when both bubbles are just below the surface of the lake, they have the same pressure P (since they are
at the same depth of water and the local pressure is determined by the water depth) and they have the
same number of particles N (since the bubbles started off identically and there is no information that
addresses whether air is lost or gained from the surrounding water so the only reasonable assumption
is that N is conserved). From the ideal gas equation PV = NkT in the form V = V (T ) = (Nk/P )T ,
we see that the final volume V of the bubble will depend on the final temperature T of the bubble,
with the colder bubble having the smaller volume.

We are told that bubble A rises so rapidly that no heat enters or leaves the bubble, i.e. this is an
adiabatic bubble. Conservation of energy ∆U = Q+W = W with Q = 0 then tells us that the internal
energy U = Nf(kT/2) of the gas in the adiabatic bubble is determined by the work W done by the
bubble. Since the bubble expands as it rises (decreasing pressure), it does expansion work against the
surrounding water, which means that W = ∆U < 0, which means that the temperature inside the
bubble must decrease from its original value, which is the temperature of the surrounding water. In
contrast, the bubble carried by the water spider is isothermal since it rises so slowly that it has time to
fully equilibrate with the surrounding water. Thus bubble A arrives near the surface of the lake with
a decreased temperature compared to bubble B and therefore has the smaller volume, hence (c).
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Note: I was not trying to be funny about the water spider. There are spiders that spend much of their
lives underwater and that do transport small bubbles under the water. These spiders build a dome-like
web under the water that can trap air and then fill the dome with air that they capture above the
surface as tiny bubbles with hairs in their abdomen. As to why I know about water spiders, I went
through a “spider phase” when I was about ten and for a few years kept a sizable collection of living
spiders of different New England species in the basement of my home.

3. For x a sufficiently small number, the expression

ln

[
1− ln

(
1− ln(1− x)

)

1 + ln
(
1 + ln(1 + x)

)
]

is approximately equal to

(a) 0 (b) 2x (c) −2x (d) x2 (e) −x2

Answer: (c) This is a problem that required multiple applications of the lowest-order approxi-
mation ln(1 + x) ≈ x for x small, that you learned to use when simplifying the log of a multiplicity,
lnΩ, e.g., for an Einstein oscillator for which q À N À 1. The above expression can be simplified as
follows, starting with the innermost log expressions:

ln

[
1− ln

(
1− ln(1− x)

)

1 + ln
(
1 + ln(1 + x)

)
]
≈ ln

[
1− ln

(
1− (−x)

)

1 + ln
(
1 + (x))

)
]

(8)

= ln
[
1− ln(1 + x)
1 + ln(1 + x)

]
(9)

≈ ln
[
1− x

1 + x

]
(10)

= ln(1− x)− ln(1 + x) (11)
≈ (−x)− (x) = −2x. (12)

One could have also simplified the expression ln[(1− x)/(1 + x)] like this:

ln
[
1− x

1 + x

]
≈ ln [(1− x)× (1− x)] ≈ ln [1− 2x] ≈ −2x, (13)

using the facts that 1/(1 + x) ≈ 1− x and (1− x)2 = 1− 2x + x2 ≈ 1− 2x to lowest order in the small
quantity x. Some students got as far as ln(1−x)− ln(1+x) and then unfortunately made a sign error,
getting zero instead of −2x.
Note however that the lowest order approximation to the similar expression ln(1 + x) + ln(1 − x) is
not x − x = 0 but ln((1 + x)(1 − x)) = ln(1 − x2) ≈ −x2, you have to go to second-order to see
the first non-zero power of x. Alternatively, there are times when you have to use the second-order
approximation ln(1 + x) ≈ x− x2/2.
Using Mathematica, we can see that the lowest-order approximation −2x gives a good approximation
of this complicated function over a rather substantial range of x, [−0.15, 0.5]:

-0.4 -0.2 0.2 0.4 0.6 0.8

-3

-2

-1

1

2

3
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4. A long thermally isolated plastic cylinder is divided into two equal halves by a thin circular metallic
impermeable partition that has an extremely small mass and that can easily slide back and forth along
the axis of the cylinder with negligible friction. One half of the cylinder is filled with He gas and the
other half with gaseous sulfur hexafluoride SF6 (the ratio of the molecular masses is (32 + 6 · 19)/4 =
146/4 ≈ 37) so that thermodynamic equilibrium is attained with constant pressures, temperatures,
and volumes on both sides of the partition. An electrical current is then passed through the partition
so that its temperature instantly increases by a large amount. Immediately after this temperature
increase and before the temperatures of the two gases can change, the piston will

(a) not move at all.

(b) move a tiny bit so as to decrease the volume of He gas.

(c) move a tiny bit so as to increase the volume of He gas.

Answer: (a)

This problem was motivated by a PRS problem that we discussed in class: if an ideal gas of temper-
ature T was inside a container whose walls were suddenly increased to a temperature T ′ > T , would
the pressure on the walls change over a short period of time? If you remember, the answer was “yes”
because molecules coming in contact with the hotter wall on average came away from the wall with
an increased speed, and so the momentum transfer ∆px = m∆vx (assume that x is the coordinate
perpendicular to the wall) that is the origin of the pressure, was temporarily greater since the return
momentum mv′, which has an opposite sign to mv, had an increased value. This PRS problem also
partially explained why radiometers rotate: the black side of the radiometer fin heats up compared to
the white side (black absorbs more light energy), and air molecules striking the black side come away
with an increased speed so there is an increased pressure on the black side of each fin.

This problem is a variation of the radiometer problem in which two different gases are both initially in
equilibrium with some movable partition and then the partition is increased in temperature. It is clear
that the momentum transfer will increase for both gases, but will one gas end up briefly producing a
greater pressure than the other gas, causing the partition to move?

One can answer this question by first considering the details of the momentum transfer of a single
molecule. For simplicity, let’s assume that the surface of the partition is perpendicular to the x
coordinate and that molecules move only along the x coordinate, and let’s consider a gas molecule of
mass m with initial x-velocity component vx that is about to strike the hot partition. Since the gas is
in thermodynamic equilibrium, we can assume equipartition and so

1
2
mv2

x =
1
2
kT or vx =

√
kT

m
, (14)

where T is the temperature of the gas. The incoming or initial momentum is then

pi = mvx =
√

mkT . (15)

After the particle reflects off the hot partition with temperature T ′, we can guess for simplicity that
its new speed on average will be v′x =

√
kT ′/m, corresponding to being in thermal equilibrium with

the hot partition. The outgoing or final momentum will then be

pf = −mv′x = −
√

mkT ′, (16)

where there is a minus sign since we assume the particle has reversed direction along the x coordinate.
The total change in momentum therefore has magnitude

|∆p| = |pf − pi| =
√

mkT +
√

mkT ′ =
√

mk
(√

T +
√

T ′
)

. (17)

Based on a single particle, we would incorrectly conclude that the answer should be (b) since, indeed,
the more massive the particle, the bigger the momentum change since Eq. (17) says that ∆p ∝ √

m,
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so the more massive sulfur hexafluoride molecules should win, pushing the partition into the He gas
and shrinking the volume of He.

But as we have learned this semester, the pressure is not just due to the momentum change per
particle, it has to include the rate at which the particles arrive at the wall. Because of equipartition,
more massive particles move more slowly than less massive particles which means they arrive at the
wall less frequently and this might compensate for the increased momentum change per particle. We
can work out the details using the simplest and quickest version of the kinetic theory to explore the
situation.

So let’s consider a small area A on the wall, in which case all particles within the cylinder (vx∆t)A will
collide with the wall within a time interval ∆t and the number of such particles is [(vx∆t)A] (N/V ),
where the ratio N/V does not change with the temperature of the partition. The pressure P due to
the gas is then the total number of particles hitting the wall per unit time per unit area times Eq. (17),
the momentum transfer ∆p per particle:

P ≈ 1
∆tA

(
(vx∆tA)

(
N

V

)
×∆p

)
(18)

=
(

N

V

)
vx∆p (19)

=
(

N

V

) √
kT

m

√
mk

(√
T +

√
T ′

)
(20)

=
(

Nk

V

) (
T +

√
TT ′

)
. (21)

You can see that the mass of the particle has canceled out and so the pressure change is independent
of the particle mass, so the answer is (a).

Note that it was not worth doing a careful calculation to get an accurate numerical prefactor, say for
an isotropic gas, because all we needed to determine was that the mass canceled out of the expression.

Problems That Require Writing

Please write your answers to the following problems on extra blank sheets of paper. Also make sure to write
your name and the problem number at the top of each sheet. In this part of the exam, you need to justify
all of your answers to get full credit.

1. (8 points) Using Stirling’s approximation, derive an approximation for the multiplicity of an Einstein
solid in the low temperature limit for which the number N of oscillators and the amount q of energy
satisfy N À q À 1. To obtain a simple final expression, ignore large numbers that multiply very large
numbers.

Answer:

Ω ≈
(

eN

q

)q

for q ¿ N. (22)

A detailed derivation is already available to you on pages 63-64 of Schroeder: the problem is exactly
identical provided that you simply switch the symbol q with the symbol N everywhere. In fact, if you
remembered the expression (eq/N)N from Eq. (2.21) of Schroeder, and if you also observed that

(
q + N − 1

q

)
≈

(
q + N

q

)
=

(q + N)!
q! N !

=
(N + q)!

N ! q!
=

(
N + q

N

)
, (23)

you could have written down the answer instantly without any work, by just swapping the symbols q →
N and N → q.

I do observe here that too many students could not complete the algebra. Typically, people forgot to
work with lnΩ and people forgot to look for opportunities to simplify using the approximation ln(N +
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q) ≈ ln(N) + q/N . Some students didn’t drop prefactors that were large numbers like
√

2πN , even
though the problem suggested doing so, and some students threw the baby out with the bathwater,
neglecting q compared to q ln(N/q) with the result that the eq factor in the final answer, a very big
number, disappeared from the expression.

2. (10 points) An isolated box of volume V is divided into two compartments, A and B. Compartment A
contains NA atoms of an ideal gas at temperature TA in a volume VA while compartment B contains
NB atoms of the same gas at a higher temperature TB > TA in a volume VB such that V = VA + VB .
A thin immovable impermeable metal partition separates the two compartments.

Using an appropriate argument supported with mathematical equations, use the second law of thermo-
dynamics in the form dS/dt > 0 together with the definition of temperature 1/T = dS/dE to explain
why heat necessarily flows from the hotter compartment to the cooler compartment. Make sure that
you clearly indicate any assumptions that you have to make.

Answer: I wrote out the details in the exams so don’t give the full details here. This argument is
extremely important for the course and you should fully understand and master it since the argument
explains why temperatures are uniform throughout an equilibrium system and why energy flows from
a high temperature system to a low temperature system.

Simple changes of this argument, in which one treats the entropy S = S(V ) as a function of volume V
for fixed energy and number of particles, or the entropy S = S(N) as a function of the number of par-
ticles for fixed volume and fixed energy, leads to the conclusion that the quantity ∂S/∂E|E,N = P/T
must be constant throughout an equilibrium (maximum entropy) system which therefore implies that
the pressure must be constant and uniform throughout an equilibrium system, or that the quan-
tity ∂S/∂N |E,S = −µ/T must be constant and uniform throughout an equilibrium system, which
implies that a quantity µ called the chemical potential must be constant throughout an equilibrium
system.

Briefly, the key steps of the solution involved first observing that the entropy S(E) = SA(EA)+SB(EB)
is additive over weakly interacting macroscopic subsystems A and B of some isolated system2.The
second law of thermodynamics in the form dS/dt > 0 for a nonequilibrium system (entropy increases
over time) then implies by the chain rule for differentation:

dS

dt
=

dSA

dEA

dEA

dt
+

dSB

dEB

dEB

dt
=

dEA

dt

(
dSA

dEA
− dSB

dEB

)
=

dEA

dt

(
1

TA
− 1

TB

)
> 0. (24)

Here I have used the fact that energy is conserved in an isolated system so that

E = EA + EB = constant ⇒ dEA

dt
+

dEB

dt
= 0. (25)

You can finish the argument from here, concluding that if TB > TA then necessarily dEA/dt > 0
so that the energy of system A increases while the energy of system B decreases. The energy keeps
changing (moving from A to B) until dS/dt = 0 or dS/dEA = 0 or when dSA/dEA = dSB/dEB , when
equilibrium is attained and the temperatures of A and B are the same.

3. (6 points) Without using any mathematics, explain why the expression
(

α1 + α2 + α3 + β − 1
β

)
=

∑

β1+β2+β3=β

(
α1 + β1 − 1

β1

)(
α2 + β2 − 1

β2

)(
α3 + β3 − 1

β3

)
,

is a valid mathematical identity by interpreting this expression physically. The symbols αi and β are
nonnegative integers and the sum goes over all possible nonnegative integer values of the βi that sum
to β.

2The fact that the subsystems are macroscopic, i.e., that the number of molecules near their surfaces is a tiny fraction of
the total number of molecules, is a key reason why interacting subsystems tend to be weakly interacting.
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Answer: I corrected this problem in some detail in your exams so do not repeat the full argument
here. What I was looked for in your answer were several key phrases:

(a) That this equation described three weakly interacting Einstein solids that can exchange energy
with one another. The assumption of weakly interating is necessary to conclude that the multiplic-
ity of the three systems at any particular moment in time (before they can reach thermodynamic
equilibrium) is the product of the individual multiplicities.

(b) That the three solids together form a thermally isolated system, which implies energy conservation
in the form β = β1+β2+β3, where you needed to realize that the betas corresponded to Schroeder’s
notation of q, namely number of energy units hf in the oscillators of the Einstein solids.

(c) That the sum over all possible microstates of the three interacting Einstein solids (the right side
of this identity), for all possible macroscopic values of their energies that are consistent with the
total conserved amount of energy β, must equal the total number of microstates obtained by
treating all three solids as a single solid with total number of oscillators α1 + α2 + α3 and with
total energy β.

I will let the mathematically inclined members of the class see if they can find a way to prove this
identity directly as a mathematical truth (induction is likely a good strategy). For the empiricists in the
class, you can verify the truth of this statement by executing the following Mathematica code, which
calculates the left side minus the right side and so should be zero for any choices of the nonnegative
numbers of oscillators in each solid and for various choices of the nonnegative total energy:

fn[ a1_, a2_, a3_, b_ ] :=
Binomial[ a1 + a2 + a3 + b - 1, b ] (* left side *)

- Sum[ (* right side *)
Sum[

Binomial[ a1 + b1 - 1 , b1 ]
Binomial[ a2 + b2 - 1 , b2 ]
Binomial[ a3 + b - b1 - b2 - 1, b - b1 - b2 ],

{ b2, 0, b - b1 } (* inner sum depends on index b1 of outer sum *)
] ,
{ b1, 0, b }

]

4. (10 points) Consider two identical cubic dice of the sort used in board games, with each die having the
numbers 1 through 6 on its six surfaces. Assume the dice are fair in that each number has the same
probability of appearing when tossed.

Consider the two dice as a macroscopic system whose macrostate is characterized by the sum of the
values that appear on the top most surfaces after throwing the two dice. With an appropriate table,
determine all possible macrostates of the two dice, list all the possible microstates for each macrostate,
and give the probabilities for observing each macrostate.

Answer: All students in the class got this problem so no need to write up a solution here. I would
make one short comment, which is that it was not useful to reduce the various fractions representing
probabilities, it was better to keep all the numbers with the same denominator of 36 so one can compare
the various probabilities more easily.

5. Consider a box of volume V that contains an ideal gas in thermodynamic equilibrium that consists
of N identical molecules, each of mass m, each moving with speed v, and such that the molecular
velocities are isotropic. The gas is initially at temperature T with pressure P . A small flat metallic
square of area A is attached to the inside surface of the box so that the square lies flush with the wall
and such that the square is cooled to such a low temperature (by external machinery) that any gas
molecules that come in contact with the square permanently stick.
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(a) (10 points) In terms of the variables m, P , T , and A (but not in terms of v, N , or V ), derive a
formula for the amount of the heat per unit time that must be removed from the metal square
in order to keep its temperature constant and cold. (Please make sure to use some brief phrases
that explain key details or assumptions in your derivation.)
Answer:

dQ

dt
=

3
8
AP

(
3kT

m

)1/2

=
(

3
4

)3/2

AP

(
kT

m

)1/2

. (26)

This problem was intended to be a minor variation of a problem that you have explored several
times in recent homeworks, namely effusion of particles in an ideal gas (also photons) through
some small hole in the wall. But somehow either many members of the class did not remember
what they did in the homeworks or the wording of the problem threw students off because a
surprisingly large number of students struggled with this problem. In particular, many students
did not remember what the word “isotropic” meant, which was that the molecular velocities point
in all possible directions with equal likelihood, which in turn implied that you needed to carry out
some kind of multiple integral in spherical coordinates to add up all the contributions of molecules
arriving at the metal plate from all possible directions inside the box. A gas whose molecules are
not isotropic would be called “anisotropic”, which would describe the simpler kinetic model in
which all velocities are parallel to the Cartesian axes, with 1/6 of the molecules moving in any
particular direction.
(For future quizzes and exams: if you don’t know the meaning of a possibly crucial word, please
ask!)
Roughly, all that was needed here was to multiply the formula for flux of particles (number of
particles hitting some area per unit time) associated with effusion with the kinetic energy per
particle, (1/2)mv2, which then gives the total amount of energy being received by a small cold
plate of area A. You also had to use equipartition to eliminate the rms speed v in terms of the
temperature of the gas.
Let me give the intended solution first, then discuss some other ways that one could approach
this problem (and which some students used in their answers). Let’s place a spherical coordinate
system at the center of the small metal square, with the z or θ axis perpendicular to the surface
of the square and pointing into the box. The total energy that the plate receives per unit time
can be calculated as the total number of particles arriving at the plate per unit time times the
energy per particle. The calculation is much simplified by the assumption that the speeds v are
all the same; this is not true for a real ideal gas, for which the speeds obey a Maxwell-Boltzmann
distribution f(v) that we will derive and discuss later in the semester.
If we consider some small fixed interval of time ∆t, then only those particles that are within
a distance v∆t of the area will hit the plate within time ∆t. (We assume that the time is
short enough that the hemisphere of radius v∆t centered on A lies entirely inside the box.)
Consider some small infinitesimal volume dV = r2 sin(θ) dr dθ dφ that is centered on the point with
spherical coordinates (r, θ, φ) with 0 ≤ r ≤ v∆t. The number of particles inside this infinitesimal
volume is dV × (N/V ) and the fraction of these particles actually moving toward the plate is the
ratio A cos(θ)/(4πr2) given by the effective area of the plate, A cos(θ), as projected onto the line
of sight from the volume dV , compared to the entire surface area 4πr2 of a sphere centered on
the volume dV . (This is specifically where the assumption of “isotropic” is used, the fraction of
particles reaching a certain area on the surface of the sphere is just the ratio of that area to the
sphere’s surface area). Each particle in the volume dV that strikes the plate will deliver its total
kinetic energy (1/2)mv2 to the plate.
So the total amount of energy ∆Q that is delivered to a plate of area A (doesn’t matter what
the shape of the area is, circle or square or ellipse, so long as the area is small) within a time
interval ∆t is obtained by adding up the contributions from all the infinitesimal volumes dV
within a distance v∆t of the plate. This leads to the following triple integral:

∆Q =
∫ v∆t

0

dr

∫ π/2

0

dθ

∫ 2π

0

dφ

[(
r2 sin(θ)× N

V

)
× A cos(θ)

4πr2

]
× 1

2
mv2. (27)
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Note how the variable θ varies over only half of its possible range, 0 ≤ θ ≤ π/2, since only
infinitesimal volumes inside the box can be included.
Note also how Eq. (27) is the same expression we discussed in class for the effusion of isotropic
particles through some small hole of area A, but with the energy per particle added in as a factor.
If we wanted instead the answer to some other transport problem, say the total mass, or the
total electrical charge, or the total angular momentum delivered to the plate, all we have to do is
replace the expression (1/2)mv2 in Eq. (27) with the appropriate quantity.
Also note that my wording of the problem is not quite consistent. The problem mentions
molecules, not atoms, which means that there is the possibility of rotational and vibrational
thermal energy associated with each molecule, in addition to motion of the center of mass. To
add up the total energy delivered to the plate by each molecule, I should replace (1/2)mv2 in
Eq. (27), which is correct for a monoatomic gas like He, with the expression f(kT/2), where f
would be 5, not 3, for air at room temperature consisting mainly of diatomic nitrogen. I’ll let you
work out the necessary change in the final answer.
The above triple integral is easily evaluated: the integral over φ gives immediately 2π since the
integrand does not depend on φ, the integral over radius gives immediately v∆t since the two r2

terms in the integrand cancel, leaving no radial dependence in the integrand, and the integral
over θ was given to you in the list of data at the beginning of the exam. Equation (27) then
becomes (after dividing both sides by ∆t):

∆Q

∆t
=

1
8
mv3A

(
N

V

)
. (28)

This expression is inconvenient to use since the speed v is not as easily measured as pressure or
temperature. So we can use equipartition:

1
2
mv2 =

3
2
kT or v3 =

(
3kT

m

)3/2

. (29)

to eliminate v in terms of T . We can also eliminate the number density N/V in terms of the
pressure by using the ideal gas law in the form:

N

V
=

P

kT
. (30)

Substituting Eq. (14) and Eq. (30) into Eq. (28) and simplifying leads to the desired answer,
Eq. (26) above.
If you didn’t remember what isotropic meant or how to set up the above triple integrals, I gave
you most of the credit if you used the simpler but less accurate assumption that the molecular
velocities are all parallel to the Cartesian coordinate axes so that only 1/6 of the molecules are
moving toward the plate in a perpendicular cylinder of volume (v∆t)A. Many students even
didn’t remember this possibility and got an approximate answer by using what they remembered
from the effusion homework problem, Problem 1.22 on page 14 of Schroeder, in which the average
pressure P due to a single molecule of mass m colliding with a wall

P =
1
A
×m

(
∆vx

∆t

)
, (31)

leads to an expression for N independent molecules colliding with a wall and bouncing elastically
with ∆vx = 2vx, giving

P =
m(2vx)N

A∆t
, (32)

which can be solved for the number of particles arriving per unit time:

N

∆t
=

AP

2mvx
. (33)
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This could then be multiplied by the kinetic energy per particle, (1/2)mv2
x, to get the expression

∆Q

∆t
=

AP

2mvx
× 1

2
mv2

x =
1
4
APvx =

1
4
AP

(
kT

m

)1/2

, (34)

which has the same combination of parameters as Eq. (26) but a different numerical prefactor.
This expression is fine for estimating order of magnitudes (like that requested for part (b)) but
this approach didn’t give you a chance to show off all the fancy knowledge you learned in working
with an isotropic gas in spherical coordinates.
Finally, what if you didn’t remember anything we discussed in class or in Schroeder? You could
still deduce the form of the formula, good enough for order-of-magnitude estimates, by using
dimensional analysis. The wording of the problem suggests that the answer must depend on the
variables m, P , A, and T , and we can ask: what algebraic combination of powers of these variables

Amα P β T γ , (35)

will have the same physical units as the energy per unit time dQ/dt? (It is clear that the area
must enter as the first power A1 since the number of molecules striking the plate is proportional
to its area.) Now energy has units of “force times distance” and force has units of “mass times
acceleration” and acceleration has units of “distance over time squared”. If we let the symbols M ,
L, and T denote units of mass, length, and time respectively, we conclude that the physical units
of dQ/dt are (please verify this!):

dQ

dt
= L2 M1 T−3. (36)

Before trying to deduce the powers in Eq. (35), we need to observe that the temperature T is
dimensionless and so at first glance can be raised to any arbitrary power. But in nearly all problems
in statistical physics, the temperature T only appears in formulas through the expression kT which
does have physical units of energy. Eq. (35), with kT instead of T , has the physical units

A mα P β (kT )γ = L2 Mα

(
M

LT 2

)β (
ML2

T 2

)γ

= L2−β+2γ Mα+β+γ T−2β−2γ . (37)

Equating the right most side of Eq. (37) to the right side of expression Eq. (36) leads to three
equations in three unknowns:

2− β + 2γ = 2, α + β + γ = 1, −2β − 2γ = −3, (38)

which you can solve3 to find the values

α = −1
2
, β = 1, γ =

1
2
. (39)

which means that the answer must be:

dQ

dt
= A m−1/2 P 1 (kT )1/2 = AP

(
kT

m

)1/2

. (40)

This indeed recovers the correct combination of the parameters in Eq. (26), and is off by a factor
of (3/4)3/2 ≈ 0.6, not bad at all.

(b) (6 points) Using your formula, estimate to one significant digit the heat per unit time (in units of
joules/second or J/s) that needs to be removed from a one-millimeter metal square if the square
is attached to the inside of a one liter box containing diatomic nitrogen (molecular weight 28 g) at

3The first and third equations lead to two simple equations in the two unknowns β and γ: −β + 2γ = 0 and β + γ = 3/2,
leading to β = 1 and γ = 1/2 and then α = 1 can be deduced from the middle equation.
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STP (standard temperature and pressure so T ≈ 290 K and P ≈ 1.0 × 105 N/m2). Also assume
that the gas parameters have not yet had time to change significantly from their initial values.
Note: You will save time if you simplify your expression algebraically before substituting any
numbers. Also round numbers to one digit before combining them.

Answer:
dQ

dt
=

3
8
AP

(
3kT

m

)1/2

≈ 20
J
s
. (41)

This is actually a substantial macroscopic amount of energy per second for a small area and so
somewhat of a surprising result.
If you had the right formula, this was easy to estimate provided that you remembered that the
mass m in Eq. (41) (or in the similar expressions Eq. (34) or Eq. (40)) was the mass per molecule,
not the mass per mole. So the mass to use in these expressions for diatomic nitrogen with
molecular weight 28 g was:

m
kg

molecule
=

(
28 g

mole

)
×

(
10−3 kg

g
)

6.0× 1023 molecules
mole

. (42)

But you do not want to evaluate this number separately (takes extra time, there is the possibility
of unnecessary errors), just substitute the above expression into Eq. (26) and combine all the
numerical terms in one effort. This is actually desirable: there are more opportunties to combine
or cancel terms.
Some students also made an unfortunate error in converting a square millimeter to a square meter,
(1mm)2 = (10−3 m)2 = 10−6 m2.
An estimate to one digit could then be found as follows:

dQ

dt
=

3
8
AP

(
3kT

m

)1/2

(43)

≈ 3
8
× 10−6 × 105 ×

(
3× (1.4× 10−23)× 290
28× 10−3/(6.0× 1023)

)1/2

(44)

≈ 3
8
× 10−1 ×

(
3× 1.4× 2.9× 6

2.8
× 10−23+2−1+3+23

)1/2

(45)

≈ 3
8
× 10−1 × (

30× 104
)1/2

(46)

≈ 3
8
× 10−1 × (

5× 102
)

(47)

≈ 15
8
× 10 ≈ 16

8
× 10 (48)

≈ 2× 101 = 20
J
s
. (49)

Using a calculator, the answer to two significant digits is 1.9× 101, so the estimate is good. Note
how in line (45), I first combined all the numerical factors together before rounding, in case I want
to use a calculator later to get a more accurate answer. I then saw that the 2.9 in the numerator
cancels the 2.8 in the denominator, and that 1.4× 6 = 2.8× 3 ≈ 3× 3 so the remaining numbers
multiply to about 27 which rounds to 30. The square root of 30 is 5 to one digit.

(c) (6 points) Draw schematic curves of how the pressure P , temperature T , and number of particles N
vary with time for this gas that is in steady contact with an small extremely cold metal square.
(You need to justify, at least briefly, why you draw your particular curves.)
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Answer: Since this problem is identical to effusion in nearly all details (particles striking
the plate are removed from the gas at exactly the same rate as passing through a hole of equal
area), you should have been able to state immediately that the number of particles N(t) decays
exponentially with time, just like you worked out in an earlier homework assignment.
What about how the temperature T (t) and pressure P (t) vary? The temperature turns
out to be constant (a point that many students missed). This is because the molecules that
strike and stick to the cold plate do not return to the gas, so that the molecules remaining in
the gas continue to have the same speed v and so the same temperature via the equipartition
result (3/2)kT = (1/2)mv2.
Once you know that the temperature is constant, the ideal gas formula in the form P = P (N) =
(kT/V )N with T and V constant immmediately implies that P behaves the same way as N and
also decays exponentially.

A challenge: the speeds of the molecules in an equilibrium gas are not all equal, most are close
to vrsm but some move slower, some move faster according to the Maxwell-Boltzmann distribution
(see Fig 6.13 on page 245 of Schroeder). Will the temperature of a gas with a distribution of speeds
also stay constant if the gas is exposed to a cold plate that traps all the particles? See if you can
reason this out intuitively, before you learn how to calculate the answer in detail when we get to
Chapter 6.
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