
Physics 176 Final Exam: Solutions

Professor Greenside
May 2010

The following answers are much more detailed and pedagogical than what was needed to get full credit for
any given problem. My hope is that the answers will be insightful, help you to solve related problems, and
perhaps help you to appreciate some of the thermal physics.

Problems That Require Writing

Please write your answers to the following problems on extra blank sheets of paper. Also make sure to write
your name and the problem number at the top of each sheet. Unless otherwise stated, you need to justify
your answers to get full credit.

1. (10 points) Sketch qualitatively correct graphs of the Gibbs free energy G = U − TS + PV versus
temperature T for the three phases of water (ice, water, and steam) at atmospheric pressure. You
should draw your three graphs on the same set of axes so that you can see how they imply which phase
is stable at a given temperature. Also make sure to indicate where on your temperature axis T = 0◦ C
and T = 100◦ C.

Answer: This was Problem 5.30 on page 172 of Schroeder and should have been straightforward
to solve if you had read Section 5.3 and had thought about the homework problems related to this
section.

Two important insights from pages 170-171 were that the qualitative behavior of the Gibbs free en-
ergy G(T, P, N) as a function of temperature T or of pressure P could be understood from the relations

(
∂G

∂P

)

T,N

= V, (1)

and (
∂G

∂T

)

P,N

= −S, (2)

which both follow from the thermodynamic identity for G:

dG = −SdT + V dP +
∑

i

µidNi. (3)

This identity in turn could be obtained from the given definition G = U − TS + PV and the thermo-
dynamic identity dU = TdS − PdV :

dG = d(U − TS + PV ) (4)
= dU − SdT − TdS + V dP + PdV (5)
= (TdS − PdV )− SdT − TdS + V dP + PdV. (6)

Since you are being asked to plot G versus T for a fixed pressure of one atmosphere (and for a
fixed number of particles N), Eq. (2) is the desired equation to get some insight. This equation
implies the following, if one also uses some background knowledge that entropy generally increases
with temperature, and also increases as phases change from solid to liquid to gas:

(a) the slope of G(T ) for fixed pressure is always negative, i.e., G(T ) is a decreasing function of T .
(b) the slope of G(T ) becomes more negative with increasing T since, generally, the entropy of a solid,

a liquid, or a gas increases with temperature T . Thus not only does G decrease with increasing T ,
it has to decrease faster than a straight line and so have some curvature downward.
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(c) finally, since generally Ssolid < Sliquid < Sgas for three different phases of the same substance, the
slopes of the corresponding G(T ) curves must increase in steepness in going from solid to liquid
to gas for a given temperature.

If we combined these observations with the fact that, for any given pressure, temperature, and number
of particles the observed (stable) phase must have a lower Gibbs free energy than the unobserved
(unstable) phases, one ends up with a qualitative figure like the following panel on the left (which I
took from Schroeder’s answer manual for the text):

The panel on the right is the similar diagram one would get for a constant pressure of 0.001 bar, which
is below water’s triple point in which case the liquid phase is not stable for any temperature value; see
the water phase diagram, Figure 5.11, on page 167 of Schroeder, which shows that water’s triple point
occurs for P ≈ 0.006 bar.
Note that there is no discontinuous jump in the value of the Gibbs free energy G at the phase transitions
at T = 0◦ C and at T = 100◦ C, although the slope dG/dT does jump discontinuously since one is
switching to a different G-curve as the phase transition occurs. In contrast, recall from Problem 3.29
on page 113 of Schroeder how the entropy S(T ) increases discontinuously via a finite vertical jump as
ice melts to water or water vaporizes into steam. This situation arises because one is adding latent
heat to some phase (say ice melting to water) without changing the temperature, so ∆S = Q/T
increases steadily with increasing Q, i.e., S(T ) increases vertically and so discontinuously during a
phase transition. Once the initial phase is completely converted to the new phase, the entropy starts
to increase monotonically again with increasing temperature.
There is a major qualification to this discussion: some phase transitions do not involve a finite jump
in the entropy as some thermodynamic parameter is varied, instead the entropy varies continuously
and its slope changes discontinuously at the transition (and then the Gibbs free energy would have
a continuous first but discontinuous second derivative with respect to T at the phase transition). A
transition that involves a latent heat and a finite jump in entropy (like the melting of ice into water)
is called “first-order phase transition” while a transition for which the entropy varies continuously is
called a “higher-order phase transition” with the order depending on how many derivatives of G are
continuous at the transition. An example of a second-order phase transition would be the transition
of a ferromagnet to an unmagnetized piece of iron as magnet’s temperature is raised above a critical
temperature Tc ≈ 1043K known as the Curie temperature; there is no latent heat during this phase
transition.
A huge amount of interesting theory and experimental work was discovered in the context of under-
standing second-order phase transitions, try googling “critical phenomena” to get a sense of how big
and influential this subject is. In particular, many features of second-order transitions have remarkable
“universal” properties in that the properties do not depend on precise chemical or quantum details
of the material, but only on the dimensionality of the medium (say 2D vs 3D) and on the symmetry
of how the components are arranged inside the medium (for a 2D medium, a square lattice of atoms
would have different critical properties than an hexagonal lattice of the same atoms).
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2. (20 points) Consider the following 3-step cyclic process A → B → C → A in the volume-pressure
plane that characterizes an ideal monoatomic gas: the gas starts at point A = (V0, P0) with ini-
tial temperature T0, initial pressure P0 and initial volume V0. The gas then expands isobarically to
point B = (2V0, P0), is then compressed by following a straight line segment from point B to the
point C = (V0, 2P0), and finally the gas is brought back to the the point A by an isochoric process.
After this cycle is carried out once, determine

(a) the total change in energy ∆U of the gas;

(b) the total heat Q added to the gas;

(c) the total work W done on the gas;

(d) the total change in temperature ∆T of the gas;

(e) the total change in entropy ∆S of the gas.

Assume that each step is carried out quasistatically (the gas and environment are always in thermo-
dynamic equilibrium).

Answer:

∆U = 0, Q = −(1/2)P0V0, W = (1/2)P0V0, ∆T = 0, ∆Sgas = 0. (7)

With a little thinking before starting to calculate, one can find all the answers fairly quickly without
computing the values of ∆U , W , and Q for each of the three steps:

(a) The internal energy1 U of an ideal monoatomic gas is given by the equipartition theorem re-
sult U = Nf(kT/2) = (3/2)NkT = (3/2)PV where I used the equation of state PV = NkT
for an ideal gas and the fact that the number of degrees of freedom f = 3 for an atom that has
no internal structure that can rotate or vibrate. Expressing U = (3/2)PV in terms of PV pro-
vides a useful way to calculate changes of energy between any two points in the volume-pressure
parameter plane of an idea gas since

∆U =
3
2
∆(PV ) =

3
2

(PfVf − PiVi) , (8)

where the subscripts f and i mean the “final” and “initial” points of some process of interest.
Eq. (8) immediately implies that the energy change for any cyclic process that ends up at the
same starting point must be zero. Noting that U = (3/2)NkT implies

∆U =
3
2
Nk ∆T, (9)

1Recall that U denotes the internal energy that can respond to heat and work, so does not include energy associated with
the rest mass of particles or of electric and magnetic fields.

3



and so the temperature change caused by following any cycle back to some starting point must
also be zero, ∆T = 0.
More generally, since 1/T = (dS/dU)V,N and since S and U are state variables, T must be a state
variable and so must have a unique value at each point of an equilibrium system in the V − P
parameter plane, not just for a gas, and even if equipartition does not hold.

(b) After calculating the total energy change ∆U , the next easiest quantity to calculate is the work W
done on the gas since we have the formula:

W = −
∫ Vf

Vi

P (V ) dV, (10)

which is useful if we know the pressure as a function of volume. For a cyclic process, Eq. (10)
tells us that the total work done on the gas during some closed cycle is the area enclosed by the
path in the PV plane that defines a cycle. The work is positive if the higher part of the cycle
corresponds to a compression, negative otherwise. The work done during this three-step cycle is
thus the positive area of the triangle in the figure

W =
1
2
P0V0. (11)

(c) After one has calculated ∆U and W , the heat transfer to the gas can be computed from conser-
vation of energy:

Q = ∆U −W = −W = −1
2
P0V0. (12)

A negative value for Q means that heat is transferred from the gas to something in the environ-
ment, which in turn implies that at least once during the cycle, an object colder than the gas
(although not necessarily colder than the starting temperature T0) was brought in contact with
the gas to extract the heat. When during the cycle this occurred requires finding the details for
each step, which is interesting but again not necessary for this particular problem.

(d) We already determined that there is no change in temperature, ∆T = 0, if there is no change in
energy, ∆U = 0, which is always the case for a cyclic process that ends up at the starting point.

(e) An important insight about thermodynamic variables like the energy U and entropy S is that
these are so-called “state variables” that depend only on the state of the thermodynamic system
(values of thermodynamic parameters like V , P , T , or µ) but not on how one arrived at that state.
More precisely, some thermodynamic quantity is a state variable if its value does not depend on
the path P (V ) in the PV parameter plane (or some other parameter space) that “brought” the
system from some other set of conditions to the existing conditions.
In contrast, the heat Q added to a gas or the work W done on a gas are not state variables, their
values can depend on the path P (T ) traced in the PT plane.
That the entropy S is a state variable was never clearly discussed in Schroeder (a minor but
unfortunate weakness of this book) but should have been clear to you from looking at the Sackur-
Tetrode equation for a monoatomic gas:

S(U, V, N) = Nk

[
5
2

+ ln

(
V

N

(
4πmU

3Nh2

)3/2
)]

, (13)

which depends only on the current values of the thermodynamic variables U , V , and N , not on
the history of how one arrived at this state.
Given that S is a state variable, there is no calculation to make: if after a cycle, we end up with
the same thermodynamic values, the entropy of the system must be the same and so ∆S = 0.
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Some students made an incorrect statement, that the entropy change would be the total heat Q
added to the gas divided by the initial temperature T0:

∆S =
Q

T0
= −1

2
P0V0

T0
. (this is wrong). (14)

One reason why this cannot be correct is that the gas does not have a constant temperature
during the cycle, none of the three steps is isothermal.

What if I had asked you to determine in addition the total change of entropy during this cycle, arising
from the gas and environment? This would reduce to calculating the change of entropy of the envi-
ronment since ∆Sgas = 0 for any cycle. But there is not enough information given in the problem to
compute the entropy change to the environment, we would have to know whether various steps of the
cycle were carried out reversibly or not and, if not, we would have to know some details of how heat
was added or removed from the gas.

For example, one way to add or withdraw heat from the gas would be to put the gas in contact with
a large constant temperature reservoir that has some arbitrary temperature TR, in which case the
entropy change of the environment would be −Qs/TR where Qs would be the heat that flows from the
reservoir to the gas (and Qs itself could be a negative quantity). Without specifying the value of TR,
you can’t calculate the entropy change. Alternatively, you could add or withdraw heat from the gas
by putting some finite size object with initial temperature To in contact with the gas. You would then
have to know the heat capacity C(T ) as a function of temperature T for the finite object to compute
its change in entropy.

So you can see why I didn’t ask you to compute the total change in entropy (system plus world), the
problem would have become much more detailed.

3. (10 points) Estimate to the nearest power of ten how many candy bars you would have to eat during
a 24-hour period to supply the energy that you lose to the surrounding environment via blackbody
radiation from your skin. To simplify this problem, assume that during this 24-hour period you are
floating in outer space without clothes so that no heat is returned to your body by clothes, reflection,
or by surrounding air, and assume that your skin is a perfect blackbody emitter (emissivity e = 1).

Note: a typical candy bar provides about 250 Calories, one Calorie is about 4,200 J, and the Stefan-
Boltzmann constant has the value σ ≈ 6× 10−8 W/(m2 K4).

Answer: You would have to eat approximately 100 candy bars over a 24-hour period to supply the
energy that you radiate by blackbody radiation to the surrounding vacuum.

Note: Eating this many candy bars over 24 hours should be possible, for example the 2009 world record
by Joey Chesnut for eating hot dogs is 68 dogs in 10 minutes, which is close to eating 100 candy bars
in volume. (It is a surprise to me that someone’s stomach can contain such a large volume of food over
such a short time without suffering harm.)

This problem was a straightforward application of the Stefan-Boltzmann radiation law: if an opaque
body is in thermodynamic equilibrium with a uniform surface temperature T and has a surface area A,
then the power P radiated by the body is given by

P = A× σT 4, (15)

where I have assumed a perfect emissivity of e = 1. Here σ is the Stefan-Boltzmann constant, which
in turn implies that P has units of watts or J/s and that you want the area A in units of m2. Part of
the challenge of this problem was for you to estimate the temperature T and surface area A of your
body, and for you to practice the skill of rounding numbers to make a quick insightful estimate.

As a science or engineering student, you should know some basic human scales in SI units, e.g., that
a healthy person’s body temperature is about 37◦C (with variations of order two degrees), that a
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person’s height is about 1.5-1.8 m (unless you are a Duke basketball player, for which 2 m would be
about right), and that a typical adult weight is about say 70 kg (150 pounds). Your skin temperature
is not quite the same as your internal temperature (your skin is somewhat cooler) but to one significant
digit, 40◦C would be fine. If you didn’t know your body temperature in Celsius, you could still make a
reasonable estimate by knowing that your body temperature is a bit warmer than room temperature,
which is 20◦ C, and substantially colder than boiling water (100◦ C) which would lead to an estimate in
the 30− 50◦C range. Since what is needed in Eq. (15) is the absolute temperature, the corresponding
range of absolute temperature would be 303−323K, which would be 300 K to one significant digit. So
it really doesn’t matter what body temperature you chose as long as it was close to room temperature
and substantially less than boiling water.

Note: some students took the harder path of converting 98.6◦ Fahrenheit to Celsius and got the
conversion wrong, ending up (in one case) with a body temperature of 200◦ C, which is just not
physically reasonable. I think it was easier to use the fact that your body is a bit warmer than room
temperature to get an estimate.

As to estimating their surface area, students took several reasonable approaches. One was to approxi-
mate their body as a cylinder of height about h = 2m and radius of about 0.3 m (the distance from the
center of your neck to one of your shoulders is about a foot or 0.3 m) , which gives A = (2πr)h ≈ 4m2,
a bit on the high side but fine to the nearest power of ten. Other students approximated themselves
as a thin rectangular box of height h ≈ 2m, width w ≈ 0.5m and thickness t ≈ 0.1m which gives an
approximate area of A = 2(hw + ht + wt) ≈ 3 m2 to one significant digit. The Wikipedia page

http://en.wikipedia.org/wiki/Body_surface_area#Normal_values

gives 1.7m2 ≈ 2m2 as typical value for adults. Some students—these must be the ones who solve
the New York Times Sunday crossword puzzle in under an hour—just stated that A = 2 m2 without
justification, in which case they lost some points since an essential part of this problem was practicing
the skill of estimation.

With T ≈ 300 K and A ≈ 2 m2 to one significant digit, we can substitute into Eq. (15) and get an
order-of-magnitude estimate of the number of candy bars. Let’s do the calculation two ways, first by
rounding all numbers immediately to the nearest power of ten so that no arithmetic is needed, and
second by rounding all numbers first to one significant digit and then retaining only one digit as various
numbers are combined. The first approach leads to:

# of candy bars ≈ [(
AσT 4

)× 1 day
]×

[
1 candy bar

250Cal
× 1 Cal

4, 200 J

]
(16)

≈
[
2m2 · 6× 10−8 W

m2 K4
· (300K)4 · 20 hrs

day
× 60min

1 hr
× 60 sec

1min

]
(17)

× 1 bar
(3× 102) (4× 103 J)

≈ [
1m2 · 10−7 · (100)4

]× [
101 × 102 × 102

]× 1
102 × 103

(18)

≈ 10. (19)

In line Eq. (16), the first bracket is the total energy in joules consumed over a day, the second bracket
is the number of candy bars per joule.

In this calculation, note how I first collected all the numerical data together in line Eq. (17) although
just retaining one significant digit2. It is actually important and significant that I did not try to
calculate any intermediate numbers, such as the number of seconds in a day or the number of joules
in a candy bar. These intermediate numbers are not needed for the answer and the chances for errors

2In general, it is ambiguous how to round a number like 250 to one significant digit since it is halfway between 200 and 300.
But in the context of this problem, it makes sense to round 250 Cal up to 300 Cal to compensate a little bit for rounding 4,200 J
down to 4,000 J.
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increase when I break a calculation into several pieces since it is easy to miss-copy a number from
one place to another. Another reason for combining all data in one place is that it increases the
opportunities to discover cancellations that reduce the amount of calculation, or to balance rounding3

to give a more accurate final estimate.

After collecting all the numbers, I then replaced in line Eq. (18) each number in the previous line by
the nearest power of ten, and only then did I start multiplying out numbers to get a final estimate.
Note that by this approach, I did not have to multiply out any digits to get the answer, just add up
powers of ten which is quick and easy. In replacing each number by the nearest power of ten, the
most dangerous approximation was replacing 3004 with 1004 since the temperature is being raised to
a fourth power so small changes get magnified. A better approximation would have been to note that
3004 = (3× 100)4 = 34 108 = 92 108 ≈ 102 108 = 1010, an estimate that is 100 times bigger than what
I get if I round 300 to 100 right away and then compute 1004.

If we repeat this calculation but retain one significant digit, we would start from Eq. (17) and get the
following estimate:

# of candy bars (20)

≈
[
2m2 · 6× 10−8 W

m2 K4
· (300K)4 × 20 hrs

day
× 60min

1 hr
× 60 sec

1min

]
(21)

× 1 candy bar
3× 102 · 4× 103 J

≈ 2× 6× 34 × 2× 6× 6
3× 4

× 10−8+8+1+1+1−2−3 (22)

≈ 2× 92 × 62 × 10−2 (23)
≈ 2× 62 ≈ 2× 40 = 80. (24)

A calculation to two significant digits gives 84 candy bars, so 100 is indeed a good estimate to the
nearest power of ten. I accepted 10 or 100 candy bars as reasonable estimates.

In obtaining line Eq. (23) from the previous line, I used the 4 in the denominator to cancel two of the
2’s in the numerator, and I used the 3 in the denominator to divide into one of the factors of 6 in the
numerator. I also approximated 9 ≈ 10 to replace 92 ≈ 102 to one significant digit.

I took points off if I saw that you wrote out some multiplications or divisions the long inefficient way,
digit by digit, holding onto many significant digits. For example, some student fully multiplied out
24×60×60 = 86, 400 to get the approximate number of seconds in a day. This was a waste of valuable
time and the multiplication provides more digits than was scientifically justified. (Because the surface
area is known to only one significant digit, one only needs to retain one digit in all other quantities.)
So round to one digit first, then calculate.

A conclusion of this problem is that, with a surface temperature of about 310 K, you have enough
skin to radiate a lot of energy by blackbody radiation, about 1,000 watts. You don’t have to eat
100 candy bars a day because you are surrounded by air which is close to your body temperature (so
energy is returned to you from the environment), and because you wear clothes that reduce convection
currents that would efficiently deplete you of energy (convection is much more efficient than thermal
conduction in transporting heat). I will leave it to you as a challenge to see if clothes act like one of
the heat blankets that we discussed in the context of Figure 7.25 on page 306 of Schroeder (greenhouse
warming), and if this therefore plays a role in why clothes are useful.

4. (15 points) In one of the other universes of the multiverse, there is a particle (let’s call it a mirron)
that obeys the laws of quantum mechanics but unlike a boson or fermion, a mirron has the property

3Another example of balanced rounding would be if I had a ratio 2.5/3.5 that I wanted to approximate to one significant
digit. If I round the numerator up to 3 which would give me an overestimate, I would then want to round the denominator up
also, to 4, which would help to compensate for the overestimate.
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that, for any single-state quantum energy level ε, there can be 0, 1, or 2 mirrons in that energy level.
Mirrons have the further properties that their total number is not conserved and that each mirron
can exist in three distinct polarization states. If a finite volume V of mirrons is in thermodynamic
equilibrium with temperature T and if mirrons interact weakly so that they form an ideal gas, determine
the energy distribution function D(ε) for mirrons (i.e., the amount of energy contributed by mirrons
whose energies lie in the range [ε, ε + dε]). Determine also how the pressure P and heat capacity CV

of a mirron gas vary with the temperature T (your answers here will be simple powers of T ).

Note: In a cubic box of volume V = L3, the quantum states of this particle are labeled by positive
integers nx, ny, and nz, and the energy of a given mirron state is given by ε(nx, ny, nz) = ε(n) = αn2/L2

where α > 0 is a constant, L is the size of the cubic box, and n =
√

n2
x + n2

y + n2
z.

Answer: This problem has many similarities to what you learned about an equilibrium gas of
photons, with the main difference being that you had to derive and use a number distribution n(ε)
that was different from the Fermi-Dirac, Bose-Einstein, and Boltzmann distributions.

A useful starting point for all quantum ideal gases (electrons, photons, phonons, mirrons) is to assume
that the particles move freely and independently in a cubic volume, in which case it is easy to label
each single-particle energy state by quantum numbers (nx, ny, nz) that are positive integers. The total
energy of the system is then given by a triple sum:

U = cp

∑
nx

∑
ny

∑
nz

ε(nx, ny, nz) n [ε(nx, ny, nz)] , (25)

where the coefficient cp counts the number of independent polarizations (and also possibly the number
of particle types if there is a degeneracy, such as matter and antimatter), ε(nx, ny, nz) is the single
particle energy level for given quantum numbers, and n(ε) is the occupation number or average number
of particles with energy ε.

Given Eq. (25), there were then three steps to carry out to answer this problem:

(a) Determine the occupation number n(ε) for mirrons.

(b) Substitute your expression for n into Eq. (25) and evaluate the sum by changing to spherical
coordinates in number space, (nx, ny, nz) → (n, θ, φ).

(c) Change the integration variable to determine the temperature dependence of U .

To compute the occupation number n(ε) for mirrons, we follow Schroeder’s discussion in Chapter 7 and
assume that a single energy level ε can be treated as a small physical system that is in thermodynamic
equilibrium with all the other particles (mirrons) that constitute a reservoir with constant tempera-
ture T and constant chemical potential µ. Since the problem states that the number N of mirrons is
not conserved, we conclude that the chemical potential is zero,

µ = 0, (26)

just as was the case for photons and phonons. (Recall that if particle number is not conserved, the
mean number will keep changing until, in equilibrium, the free energy F (N) reaches a minimum at
which point 0 = ∂F/∂N = µ.)

We are told that a given energy level can be occupied by up to two mirrons. The grand partition
function for that energy level is then given by

Z =
∑

s

e−β(Es−µNs) = 1 + e−βε + e−2βε = 1 + e−x + e−2x, (27)

where x = βε. There are three terms since there are three possible mirron states for a single energy
level: no occupation (ns = 0, Es = 0), one mirron (ns = 1 and Es = ε), and two mirrons (ns = 2
and Es = 2ε). The µNs terms in the exponents all vanish since µ = 0.
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The occupation number is the average number n of particles for a given energy level, which we can
compute from the partition function Eq. (27) via the relation

n = − 1
Z

∂Z
∂x

. (28)

A straightforward calculation gives

n(ε) =
e−βε + 2e−2βε

1 + e−βε + e−2βε
. (29)

Although not needed for the solution of this exam problem, it is good practice to figure out the
qualitative shape of the curve n(ε) as a function of energy. For a fixed finite temperature T , you
can verify that n(0) = 1 so the lowest energy state ε = 0 always has an occupation of one. For the
same fixed temperature, for large energies βε À 1 ⇒ e−βε ¿ 1 so 2e−2βε = 2

(
e−βε

)2 ¿ e−βε can be
ignored in the numerator compared to e−βε. In the denominator, both powers of e−2βε can be ignored
compared to one. So n ∝ e−βε decays exponentially for large energies, which we could have guessed
since all occupation numbers look like the Boltzmann distribution for large enough energies. It is less
clear what happens for intermediate energies but you can verify that the derivative of Eq. (29) w.r.t. ε
is always negative so the occupation number decreases monotonically from 1 and eventually decays
exponentially, so roughly looks like exponential decay over its entire range.

Given the occupation number expression Eq. (29), we can substitute into Eq. (25) and proceed to
calculate the energy U of an ideal gas of mirrons that is in thermodynamic equilibrium with temper-
ature T . At a finite temperature, the sums in Eq. (25) each extend from 1 to ∞ since the number of
particles is not conserved. We then have:

U = cp

∑
nx

∑
ny

∑
nz

ε(nx, ny, nz)n [ε(nx, ny, nz)] (30)

= 3
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

αn2

L2
n

(
αn2

L2

)
(31)

= 3× 1
8
(4π)×

∫ ∞

0

αn2

L2
n

(
αn2

L2

)
× n2 dn (32)

=
∫ ∞

0

[
V

3π

4 α3/2
ε3/2 e−βε + 2e−2βε

1 + e−βε + e−2βε

]
dε. (33)

Eq. (31) is obtained from the previous line by simple substitution of known expressions. Eq. (32) is
obtained from Eq. (31) by changing to spherical coordinates and by observing that since the integrand
doesn’t depend on angles (it depends only on the “radius” n), the angular integrals must evaluate
to 1/8 of the surface area 4π of a unit sphere. Eq. (33) is obtained from Eq. (32) by changing variables
from n to energy ε:

ε =
α

L2
n2 ⇒ n =

L

α1/2
ε1/2 ⇒ dn =

L

α1/2

1
2
ε−1/2 dε. (34)

The final line Eq. (33) answers the question of what is the energy distribution of mirrons, it is the
expression in brackets

D(ε) = V
3π

4 α3/2
ε3/2 e−βε + 2e−2βε

1 + e−βε + e−2βε
. (35)

You should compare this expression with Eqs. (7.83) and (7.84) on page 292 of Schroeder where the
analogy should be clear. The 3/2 power of ε in Eq. (35) differs from the power of 3 for photons because
mirrons have a different energy dependence, with ε ∝ n2 like an electron, as opposed to ε ∝ n as the
case for photons and phonons.

Some students didn’t appreciate that this problem involved quantum statistics and tried to deduce the
energy distribution D(ε) in analogy to how Schroeder derived the Maxwell speed distribution:

D(ε) ∝ probability of mirron to have energy ε× degeneracy of energy ε. (36)
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The wording in the problem where it said that up to two mirrons could occupy a given energy level
was the giveaway that you had to use the ideas of Chapter 7 related to dense quantum ideal gases since
once multiple particles can occupy an energy level, the approximation ZN ≈ ZN

1 /N ! fails.

The remaining parts of this problem are straightforward to obtain once the integral Eq. (33) is ob-
tained. To get the temperature dependence of the energy U , all we have to do is change variables to a
variable x = βε that eliminates the presence of temperature (β) in the integral:

x = βε ⇒ ε =
1
β

x = (kT )x ⇒ dε =
dx

β
= kT dx. (37)

Eq. (33) then becomes

U = V
3π

4 α3/2

∫ ∞

0

(kTx)3/2 n(x) (kT )dx (38)

= V
3π

4 α3/2
(kT )5/2 ×

∫ ∞

0

x3/2 n(x) dx (39)

where the integral over x is just some pure number; you should now appreciate that the functional
form Eq. (29) does not affect the temperature dependence for particles whose number is not conserved.
We thus conclude that

U ∝ V T 5/2. (40)

We now see that the pressure P = −(∂U/∂V )T has the same temperature dependence, P ∝ T 5/2, and
that the heat capacity CV = (dU/dT )V ∝ T 3/2.

5. (10 points total) Consider a magnetic substance of volume V that responds to the presence of a
magnetic field B of strength B inside the substance by becoming magnetized along the direction of B
with a magnetization of magnitude M . In studying the thermodynamics of magnets, it turns out that
a key variable is an auxiliary magnetic field H defined by

H =
1
µ0

B − M

V
, (41)

where µ0 is the vacuum permeability. It then turns out that the thermodynamic potential Gm that is
minimized when the magnetic system is in thermodynamic equilibrium for constant temperature T and
constant fieldH is a magnetic analog of the Gibbs free energy that satisfies the following thermodynamic
identity:

dGm = −S dT − µ0M dH. (42)

(a) (5 points) Derive an analog of the Clausius-Clapeyron relation for the slope of a phase boundary
in the H − T plane of this magnetic substance. You should write your equation in terms of the
difference in entropy of the two phases.

Answer: I adapted this problem from Problems 5.17 and 5.47 on pages 160 and 179 respectively
of Schroeder.
The Clausius-Clapeyron equation is an equation that relates the slope of a phase line at a certain
point in some parameter plane (that characterizes a thermodynamic system) to thermodynamic
properties of the phases on either side of the phase line. A point on the phase line is defined by
where the chemical potential µ1 of one phase is equal to the chemical potential µ2 of the other
phase. (Recall that a necessary condition for thermodynamic equilibrium is that the chemical
potential of each particle type be the same for all macroscopic subsystems.) An expression for
the slope of the phase line can be obtained by choosing two points on the phase line that are
infinitesimally close to each, subtracting the conditions that the chemical potentials are equal at
each of the two points, and then expanding the difference to lowest order in a Taylor series.
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For example, assume that the two thermodynamic parameters that characterize some given system
are α and β, which could be volume and pressure for a gas or here temperature T and magnetic
field H. The conditions for equilibrium of phase 1 with phase 2 at a point (α, β) and at an
infinitesimally nearby point (α + ∆α, β + ∆β) are:

µ1(α, β) = µ2(α, β), (43)
µ1(α + ∆α, β + ∆β = µ2(α + ∆α, β + ∆β). (44)

Subtracting the first equation from the second gives

µ1(α + ∆α, β + ∆β)− µ1(α, β) = µ2(α + ∆α, β + ∆β)− µ2(α, β). (45)

Expanding each side to lowest (linear) order in a two-variable Taylor series in the small quanti-
ties ∆α and ∆β then gives

∂µ1

∂α
∆α +

∂µ1

∂β
∆β ≈ ∂µ2

∂α
∆α +

∂µ2

∂β
∆β. (46)

Solving for the ratio ∆β/∆α and taking the limits ∆α → 0 and ∆β → 0, we obtain an equation
for the slope dβ/dα at a given point (α, β) where two phases are in thermodynamic equilibrium:

dβ

dα
=

∂µ1
∂α

− ∂µ2
∂α

∂µ2
∂β

− ∂µ1
∂β

. (47)

Note how the indices 1 and 2 are reversed in the denominator compared to the numerator. Eq. (47)
is the general form of the Clausius-Clapeyron equation.
The various derivatives ∂µi/∂x where i = 1, 2 and x = α, β can be evaluated by using the
thermodynamic identity for the Gibbs free energy G. For the given problem, we can choose
α = T , and β = H. By dividing both sides of the given thermodynamic identity Eq. (42) by the
number N of particles in a given phase, we obtain

dµm = −sdT − µ0mdH, (48)

where µ = G/N is the chemical potential, s = S/N is the intensive entropy per particle in a given
phase, and m = M/N is the intensive magnetization per particle in a given phase. We thus see
that

∂µ

∂α
=

(
∂µm

∂T

)

H
= −s, (49)

and similarly
∂µ

∂β
=

(
∂µm

∂H
)

T

= −µ0m. (50)

The Clausius-Clapeyron equation Eq. (47) for this magnetic system then becomes

dH
dT

=
s1 − s2

µ0 (m2 −m1)
. (51)

Note that Schroeder’s discussion of the Clausius-Clapeyron equation on pages 172-173 is slightly
flawed. Eq. (5.43) on page 172 is correct only if both phases have the same number of particles,
which generally is not the case since one could have a little bit of ice in equilibrium with a large
amount of water. Schroeder’s Eq. (5.43) should be replaced by Eq. (43) above for the chemical
potentials, which is the same as the Gibbs free energy per particle for each phase. I did not take off
any points if you did not realize this subtlety and had written dH/dT = (S1−S2)/[µ0(M2−M1)]
for your answer since I did address this point in class.
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Most student followed Schroeder’s discussion of Clausius-Clapeyron to get a quick answer: equate
the differential change dG in the Gibbs energy for each phase:

dG1 = dG2 ⇒ −S1dT − µ0M1dH = −S2dT − µ0M2dH, (52)

to get
dH
dT

=
S2 − S1

µ0 (M1 −M2)
. (53)

But again, this is strictly correct only for equal numbers of molecules in each phase and it is better
to use Eq. (51) above.

(b) (5 points) When certain metals are cooled to a sufficiently low temperature in the presence of
an external magnetic field, the metal can become a so-called type-I superconductor in which the
resistance decreases enormously. (Superconducting wires are used in the magnets at the Large
Hadron Collider and have been proposed for use in national power grids, to transport electricity
over long distances without loss.) A representative phase diagram for a type-I superconductor is
given by the following figure

In such a superconductor, surface currents flow in such a way so as to completely cancel the
magnetic field inside (that is B = 0 butH is not zero in Eq. (41)). Given that the magnetization M
of the metal is essentially zero in its normal state (“normal” means “non-superconducting”):

i. Use your magnetic version of the Clausius-Clapeyron equation to determine which phase has
the greater entropy, superconducting or normal.

Answer: This problem should have been worded to ask instead “which phase has the
greater entropy per particle s = S/N” since the entropy is extensive and its numerical value
depends on the number of particles in a given phase. Or you could have interpreted the
question as asking which phase has the greater entropy, assuming equal numbers of particles
in each phase.
Let us arbitrarily label the normal phase to be 1 and the superconducting phase to be 2. The
problem tells us that the magnetization per particle m1 = 0 in the normal phase, and that
the magnetic induction4 B = 0 inside the superconducting phase (because of surface currents
that flow without resistance and that generate a canceling magnetic field). If we set B = 0

4When one has a material substance (solid, liquid, gas) in the presence of an external magnetic field, it becomes subtle what
one means by the magnetic field inside the substance, you cannot just insert a probe since a physical probe would alter the local
atomic environment of the substance. It is traditional to call the magnetic field in the absence of the substance “the magnetic
field” and to denote that field by the symbol H. (A better phrase would have been “applied magnetic field”, e.g., the field
generated at the center of a solenoid.) The magnetic field at some location inside the substance is defined by averaging the
microscopic magnetic field over some small macroscopic volume and is somewhat confusingly called by a different name, “the
magnetic induction”, and is denoted by the symbol B. The magnetic field and magnetic induction are related to one another
via the substance’s local magnetization M by B = H + µ0M. For paramagnetic and ferromagnetic substances, M is parallel
to H but points in the opposite direction for a diamagnetic substance, which is the case for a superconductor.
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in Eq. (41), we find that in the superconducting phase, H = −M2/V or M2 = −VH. The
Clausius-Clapeyron equation Eq. (51) then becomes

dH
dT

=
s1 − s2

µ0([−vH]− 0)
, (54)

where v = V/N is the volume per particle in a given phase. We can rewrite this as

s1 − s2 = −µ0vHdH
dT

(55)

The given experimental curve shows that dH/dT is negative everywhere (I unfortunately did
not clarify in this problem how the external magnetic field mentioned in the above figure was
related to H and B) which implies that s1 − s2 > 0, so the normal phase has the greater
entropy per particle.
The bigger picture here is that experiments give knowledge of the slope of phase lines. The
Clausius-Clapeyron equation can then be used to deduce how some property changes upon
crossing a phase line, e.g., does the entropy or magnetization increase or decrease.

ii. Determine what are the differences in entropy of the two phases at the two end points of the
superconducting-normal phase line.

Answer: The differences in entropy are zero at both ends of the superconducting-normal
phase line. This is an interesting result: although a phase line generally implies that some-
thing must change in crossing the line from one phase to another (e.g., typically the entropy
jumps by a finite amount because of latent heat that has been added or removed), in certain
situations typically corresponding to specific points on a phase line, certain quantities do not
change across the phase line.
At the T = 0 end of the line (labeled Bc in the above figure), the third law of thermodynamics
implies that the entropy of any phase must go to zero. So S1 = 0 and S2 = 0 for T = 0 and
their difference vanishes.
At the H = 0 end of the line labeled Tc in the above figure, the absence of an external field
implies that the superconducting phase has no magnetization, just like the normal phase, and
so there is no difference in entropy between the two phases.

6. (15 points) During the semester, we discussed how to calculate the fractional coverage θ of a surface
that was in equilibrium with a surrounding ideal gas of identical atoms of mass m that had a fixed
temperature T and fixed chemical potential µ. We first assumed that the surface resembled an egg
carton with specific fixed locations where an atom could adsorb with binding energy εs < 0. (The
subscript s means “surface”.) We then calculated the grand partition function Z for the surface, from
which we were able to calculate the average number of occupied sites, which then gave the coverage.

Solve this problem again—calculate the surface particle density ns = Ns/A as a function of the external
gas pressure P where Ns is the number of adatoms and A is the surface area—but now make a different
assumption about the surface: instead of having specific binding sites like an egg carton, assume that
the surface is perfectly smooth so that, once an atom adsorbs (again with a binding energy εs < 0),
the adatom can glide around as a free particle and all the adatoms together form a two-dimensional
ideal gas in a finite surface area A.

Is your answer again a Langmuir isotherm, with ns ∝ P/(P0 +P ) where P0 is some constant? That is,
does the behavior of surface coverage with pressure depend on whether adatoms bind in fixed locations
or are free to move about?

Two hints: thermodynamic equilibrium between the two-dimensional surface gas and surrounding gas
requires that their chemical potentials be equal, and the energy of an adatom can be written in the
form E = ε+(p2

x +p2
y)/(2m) (if we assume that the surface is the xy plane of some coordinate system).
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Answer:

For some reason, this problem turned out to be exceptionally difficult for the class, few students had a
sense of what to do. I took this into account when scaling the grades, so students were not penalized.

The goal of this problem was for you to explore a consequence of the fact that, for a macroscopic
system to be in thermodynamic equilibrium, the chemical potential µ for a given kind of particle must
have the same value in all macroscopic subsystems. Here there are two subsystems, a two-dimensional
gas of adatoms that are bound to a surface, and a surrounding three-dimensional gas of the same kind
of atoms. Equating the chemical potential of the surface gas to the chemical potential of the 3D gas
gives an equation that allows one to relate the equilibrium particle density ns = NS/A (analogous to
the number density n = N/V for a 3D gas) to the gas pressure P of the 3D gas.

Before getting into details and algebra, let’s try to reason physically what the answer might be: should
we expect a Langmuir isotherm? The problem gives no information about the size of the atoms or
about how many atoms can fit on a surface. The implication is then that we should treat the atoms
as point particles5 that move about in a continuous finite area A so that an infinite number of atoms
can occupy the finite surface area. Without an upper limit on the number Ns of surface atoms, there
is no reason to expect Ns to saturate with increasing pressure P of the surrounding gas, which means
that the surface density ns(P ) as a function of pressure should not behave like a Langmuir isotherm,
which does saturate with a maximum value for sufficiently large pressures.

We can try to be a bit bolder and try to guess the functional form of ns(P ) as a function of P .
Since ns = 0 for P = 0, we would expect ns ∝ P for small enough P . (That is, the first term n0

s in
the Taylor series of ns(P ) = n0

s + n1
sP + n2

sP
2 + . . . about P = 0 must vanish if ns(0) = 0, so the first

nonzero term is likely proportional to P .) If the atoms have no size and there is no limit to the number
of atoms we can pack into the area A, there is no reason for the functional form of ns to change as P
increases (there is no length or energy scale that would cause the physics to change as ns increases).
So we could guess that ns might be proportional to P for all P , not just for small pressures.

The analysis below shows that this physical thinking is correct: ns ∝ P for all pressure values and does
not saturate like a Langmuir isotherm. This is not how the coverage behaves experimentally, which
tells us that the assumption of point particles on a continuous surface is not physical. The egg-carton
model that we discussed in class starts with the assumption of a finite number of binding sites, which
automatically leads to saturation when all sites are occupied, and so is a more accurate model. And
indeed, the surface coverage of many surfaces is accurately described by a Langmuir isotherm of the
form P/(P + P0).

Let’s proceed with working out the details. The main challenge of this problem was to calculate the
chemical potential µ2D of a 2D ideal atomic gas with the wrinkle that the energy of a particle on the
surface includes a binding energy εs < 0 so

ε2D =
p2

x + p2
y

2m
+ εs. (56)

We then need to equate µ2D to the chemical potential of an ideal three-dimensional gas with temper-
ature T and pressure P :

µ3D = −kT ln
(

V Zint

NVQ

)
= kT ln

(
P

P0

)
, (57)

where
P0 =

kTZint

VQ
=

kTZint

(h/
√

2πmkT )3
. (58)

Here Zint is the partition function over internal energy states of a molecule and has the value 1 for
an atom with no internal structure, N is the number of atoms in the gas phase, and VQ = L3

Q =

5Throughout the semester, we have used a similar assumption about our ideal molecular gases: we have ignored the finite
size of the molecules and so ignored the fact that, at large enough densities, the molecules must eventually be close enough to
interact in which case the gas is no longer ideal and may condense to a liquid or solid. And indeed, the ideal gas law PV = NkT
implies that the number density N/V = P/(kT ) ∝ P for all P which incorrectly does not saturate for large enough P .
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(h/
√

2πmkT )3 is the quantum volume. You would know Eqs. (57) and (58) formula from your formula
sheet or should be able to derive them from what you learned in Chapter 6.

There is a valuable insight here worth discussing: in using ideas from Chapter 6 (a “canonical en-
semble”) to calculate the chemical potential for the 2D gas and in equating that potential to that of
the 3D gas Eq. (57), I am assuming that the number N of particles in the gas and the number of
particles Ns on the surface are each constant. This is of course not the case, the number of atoms in
the gas and on the surface fluctuate around their average equilibrium values as atoms leave the gas to
bond to the surface, or break away from the surface to join the gas. (However, the total number of
particles N + Ns is conserved.) But if N and Ns are sufficiently large, the deviations of their values
from their average values at any given moment are tiny—of order 1/

√
N or 1/

√
Ns respectively—so

only a small error is made by assuming that the numbers are fixed.

More generally, for systems with sufficiently many components N , one can solve a given thermodynamic
problem using the methods of Chapter 3 (a microcanonical ensemble with fixed total energy, total
volume, and total number of particles), or by using the methods of Chapter 6 (a canonical ensemble,
with fixed volume and total number of particles, but the energy fluctuates as the system exchanges
energy with a reservoir), or by using the methods of Chapter 7 (a grand canonical ensemble such that
energy and number of particles can vary). One has to get the same average values for E, N , and other
macroscopic quantities in all three cases for N sufficiently large.

For example, in Chapter 3 we derived the entropy S of an atomic gas by deriving a formula for the gas’s
multiplicity Ω(N, V, U) under the assumption that the gas’s energy U was constant. In Chapter 6, we
later calculated the entropy of a gas of molecules (see Eq. (6.92) on page 255 of Schroeder) under the
assumption that the gas was in contact with a thermal reservoir, so its energy was not constant. But we
got the same formula—the Sackur-Tetrode equation Eq. (13) above—despite the different assumptions.
What would not be the same are the statistical deviations from the average behaviors, but, again, those
are negligibly small if an equilibrium system has enough particles.

For problems in which particle number can vary, it is often easier to use a Gibbs sum Z but the present
problem is an example where it is more direct to assume constant particle numbers since we already
know Eqs. (57) and (58). You did not need to realize this point to get the answer, and indeed one
reason for my choosing this problem was to have you work through an example of solving a problem
involving variable particle numbers by using methods in which the particle numbers were assumed
constant.

So let’s calculate the chemical potential µ2D for an ideal gas whose particles have energy states given
by Eq. (56). Assuming that the Ns adatoms on the surface lie in a square area A = L2 of side L, you
learned during the semester (see pages 252-253 of Schroeder) that free particles in a square box have
a quantized momentum vector given by

(px, py) =
h

2L
(nx, ny) , (59)

and so a state s of the system is characterized by two quantum numbers nx and ny that are positive
integers. The energy states Eq. (56) can then be written as

Es = E(nx, ny) =
p2

x + p2
y

2m
+ εs =

h2

8mL2

(
n2

x + n2
y

)
+ εs. (60)

The single particle partition function Z1 of the 2D gas is then given by the analog of the single particle
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partition function for the 3D ideal gas, see Eq. (6.82) on page 253 of Schroeder:

Z1 =
∑

s

e−βEs (61)

=
∞∑

nx=1

∞∑
ny=1

exp
[
−β

(
h2

8mL2

(
n2

x + n2
y

)
+ εs

)]
(62)

=
∞∑

nx=1

∞∑
ny=1

e−βh2n2
x/(8mL2) e−βh2n2

y/(8mL2) e−βεs (63)

= e−βεs

∞∑
nx=1

∞∑
ny=1

e−βh2n2
x/(8mL2) e−βh2n2

y/(8mL2) (64)

= e−βεs

∞∑
nx=1


e−βh2n2

x/(8mL2)
∞∑

ny=1

e−βh2n2
y/(8mL2)


 (65)

= e−βεs

( ∞∑
nx=1

e−βh2n2
y/(8mL2)

) ∞∑
ny=1

e−βh2n2
x/(8mL2) (66)

≈ e−βεs ×
∫ ∞

0

e−βh2n2
y/(8mL2) dny ×

∫ ∞

0

e−βh2n2
x/(8mL2) dnx (67)

= e−βεs × L

LQ
× L

LQ
(68)

= e−βεs
A

AQ
. (69)

Here the area A = L2 and the two-dimensional quantum area is AQ = L2
Q = (h/

√
2πmkT )2. Now that

we see the form of the answer, we perhaps could have guessed Eq. (69) from the 3D case Z1 = V Zint/VQ

by making the substitutions V → A, VQ → AQ, and Zint → e−βεs .

Note that the double sum in Eq. (62) could alternatively be approximated by a double integral over
the positive quadrant nx, ny ≥ 0 and evaluated in polar coordinates (n, θ) involving the radial coordi-

nate n =
√

n2
x + n2

y. One would use the substitution dnx dny → ndn dθ and the θ integral would go

from θ = 0 to θ = π/2.

We can also obtain the result Eq. (69) more quickly and easily by using a semiclassical approximation
for a partition function that involves continuous classical variables like x and p (see Problem 6.51 on
page 256 of Schroeder):

Z1 ≈
∫

d2x d2p
h2

e−β(ε0+p2/(2m)) ≈ 1
h2

∫ L

0

dx

∫ L

0

dy

∫ ∞

−∞
dpx

∫ ∞

−∞
dpy e−β(ε0+p2/(2m)), (70)

which you can verify also gives Eq. (69).

Once we know the single particle partition function Eq. (69), we compute the chemical potential µ2D

in terms of the partition function ZN for the entire two-dimensional gas of Ns indistinguishable atoms:

ZNs =
1

Ns!
(Z1)

Ns and µ2D =
(

∂F

∂Ns

)

T,A

= −kT
∂ ln(ZN )

∂Ns

∣∣∣∣
T,A

. (71)

I leave you to use Stirling’s formula Ns! ≈ Ns ln(Ns)−Ns and show that

µ2D = −kT ln
(

A

NsAQ
e−βεs

)
. (72)

This is similar to the 3D formula Eq. (57) except for the exponential factor. Again, now that we see
this answer, we could have bypassed the above algebra by using the analogous form of the 3D formula
for µ and by realizing that the binding energy can be treated as an internal energy state.
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The equilibrium state is determined by the condition µ2D = µ3D. Equating Eq. (72) to Eq. (57) and
rewriting a little bit gives the answer to this exam problem:

ns =
Ns

A
=

P

P0

1
AQ

e−βεs =
(

LQ

kT
e−βεs

)
P, (73)

the surface density is simply proportional to the surrounding gas pressure, and not proportional to a
Langmuir isotherm P/(P + Pc) that saturates with value 1 as P → ∞. But we have learned more:
the proportionality constant (LQ/(kT ))e−βεs ∝ T−3/2e−ε/(kT ) depends on temperature in an explicitly
calculated way.

We could try to fix the lack of saturation by assuming that the adatoms have a finite size but this leads
to a new difficulty, which is that when the spacing between adatoms becomes comparable to their size
(high surface density), attractive interactions occur, the surface gas is no longer ideal, and we could
expect condensation of the gas into a new phase, say liquid or solid. One could then try to use a van
der Waals-like equation that takes into account the finite size of atoms and their interactions, and that
includes a qualitative transition from a gas to liquid at high densities or low temperatures. Some of
you might find this interesting to explore further on your own.

To wrap up the discussion for this problem, let me discuss briefly how we could solve this surface
problem using the methods of Chapter 7, in which we take into account directly the fact that the
number Ns of surface atoms can fluctuate. A useful insight here is that the Gibbs sum Z can be
rewritten as a weighted sum that involves all the partition functions ZN for N fixed particles, with N
varying over all possible values:

Z =
∑

s

e−β(Es−µNs) =
∑

s

eβµNse−βEs =
∞∑

N=0

eβµN
∑

n

dne−βEn(N) =
∞∑

N=0

eβµNZN , (74)

where the notation En(N) denotes the nth energy level above the ground state for a system with N
particles, and dn is the degeneracy of that level. For indistinguishable particles, we know further that

ZN ≈ ZN
1

N !
. (75)

which allows us to write Eq. (74) in terms of the single particle partition function Z1:

Z =
∞∑

N=0

eβµN ZN
1

N !
=

∞∑

N=0

1
N !

(
eβµZ1

)N
= exp

[
eβµZ1

]
, (76)

which is a satisfyingly simple and concise form. We can now interpret the 3D gas as a reservoir of
atoms with constant temperature T and constant chemical potential µ. The surface is the “small”
system in equilibrium with this reservoir and exchanges energy and particles with this reservoir. The
average number of particles Ns on the surface is given by the usual derivative of Z, Eq. (76):

Ns = kT
∂ ln(Z)

∂µ
= kT

∂
(
eβµZ1

)

∂µ
= eβµZ1 = eβµ × e−βεs

A

AQ
. (77)

This leads to the same answer we had before, Eq. (73), after we eliminate eβµ in terms of the pres-
sure P/P0 via Eq. (57). This discussion basically justifies that it is ok to fix the number of particles in
each subsystem and to equate their chemical potentials to get the same answer as what one would get
by allowing particle numbers to vary. Note that this argument would fail for quantum gases because
of the critical use of Eq. (75), which only holds for low-density high-temperature gases.
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7. (35 points total) As a simple model of a so-called antiferromagnet, consider three identical spin-
1/2 magnetic dipoles that are placed at the coordinates (x, y) = (−1, 0), (0, 0), and (1, 0) of an xy
Cartesian coordinate system. The entire system is immersed in a uniform magnetic field B = Bŷ of
strength B that points in the positive y direction of the coordinate system. Unlike the dipoles of a
paramagnet, these magnetic dipoles are so close to one other that adjacent spins interact (but spins
further separated in space than nearest neighbor do not interact). If we describe the state of each
dipole by a spin variable si = ±1/2 that has the value +1/2 if the spin is up (points in the ŷ direction)
and has the value −1/2 if the spin is down, the energy of a particular state of this system can be
written in the form:

E(s1, s2, s3) = J (s1s2 + s2s3)− 2µB (s1 + s2 + s3) . (78)

The constant J > 0 is called a “coupling constant” that measures how strongly one spin couples to its
neighbor, and a positive J favors antiparallel nearest neighbors. The term −2µB(s1 + s2 + s3) is the
one you have seen before in our discussion of a paramagnet.

(a) (10 points) Summarize in a table with several columns all the microstates of this system. For
each microstate, give its energy for general values of J and B. Then list the degeneracy of each
state for the case of zero external magnetic field B = 0, and separately for the case of a small
external magnetic field such that 0 < B ¿ J/µ (nearest neighbor interactions are much stronger
than the interaction of each spin with the external magnetic field).

Answer:
There are three spins that each have two possible states (up or down) so there are 23 = 8
microstates all together. It is straightforward to evaluate the energy Eq. (78) for all eight states.
For the general case 0 < B ¿ J/µ, the different energy values (from lowest to highest) and their
degeneracies are :

E degeneracy states

−J/2− µB 1 ↑↓↑
−J/2 + µB 1 ↓↑↓

−µB 2 ↓↑↑, ↑↑↓
µB 2 ↓↓↑, ↑↓↓

J/2− 3µB 1 ↑↑↑
J/2 + 3µB 1 ↓↓↓

The assumption µB ¿ J makes it easy to order the energy values without knowing the values
of J and µ, and also ensures that there is not some accidental degeneracy that might arise because
of a numerical coincidence, e.g. because −J/2 − µB = J/2 − 3µB or −J/2 + µB = −µB. Note
how reducing the number of spin pairs that are antiparallel raises the energy.
For the case B = 0, the energies (again from lowest to highest) and degeneracies become:

E degeneracy states

−J/2 2 ↑↓↑, ↓↑↓
0 4 ↓↑↑, ↑↓↓, ↑↑↓, ↓↓↑

J/2 2 ↑↑↑, ↓↓↓
Note that in the absence of a magnetic field, the energy of any given microstate does not change
if you reverse the directions of all the spins (up spins become down spins and vice versa) since it
is the orientation of an external magnetic field that defines a specific sense of “up” versus “down”
for the spins.

(b) (10 points) Assume now that this spin system is allowed to reach thermodynamic equilibrium
by placing it contact with a thermal reservoir with constant temperature T . For each of the
following three conditions, determine the values of the total internal energy U , the entropy S, and
the magnetization M = 2µ(s1 + s2 + s3) (so nine numbers in all).
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i. T = 0 and B = 0.

Answer: The condition T = 0 (absolute zero) implies that this spin system must be in its
lowest energy ground state. Looking at the above table for the case B = 0, we see that the
ground state has energy −J/2 which is then the value of U . The ground state indeed is a
small antiferromagnet, in which the spins alternate up-down-up or down-up-down. In a three-
dimensional antiferromagnet, each up spin at a certain lattice point is typically surrounded
by downspins at the nearest neighbor lattice sites.

The entropy S = k lnΩ where the multiplicity Ω is the number of different microstates
consistent with U = −J/2 which is Ω = 2 so S = k ln 2. Note that this system is an example
for which the entropy S 6= 0 in the ground state. In practice, magnetic fields in the universe are
never truly zero and an extremely small magnetic field would “break the symmetry” and favor
one of the degenerate states over the other so that the entropy would really be zero at T = 0.
(This is the situation in the next case below for which T = 0 and 0 < B ¿ J/µ.) And even
if there were no symmetry-breaking magnetic field, the degeneracy of the ground state of a
macroscopic system is usually a small integer and so S = k lnΩ is effectively zero (extremely
tiny) compared to the entropy of a finite temperature system for which typically S ∝ N
where N , the number of components in the system, may be of order Avogadro’s number. So
the flavor of the third law of thermodynamics still holds, the entropy becomes extremely tiny
at sufficiently low temperatures.

Because there are two distinct ground states, there are two possible values for the magnetiza-
tion, ±µ. A degenerate ground state is a situation you have not faced before. An acceptable
answer was that the magnetization would be either µ or −µ, or that the magnetization would
be the average of the two possibilities, µ = 0. A more accurate answer, but one that goes be-
yond the assumed knowledge for this course, is that the ground state would be some quantum
superposition of the two possible ground states, and a measurement of the total magnetization
in the ẑ direction would yield either µ or −µ values randomly, with equal probability.

ii. T = 0 and 0 < B ¿ J/µ.

Answer: Again T = 0 implies that the system must be in its ground state. Looking at the
above table for the case 0 < B ¿ J/µ,, the lowest energy state is now given by U = −J/2−µB
which has a degeneracy Ω = 1 so S = 0. The magnetization corresponds to the choice of
spins ↑↓↑ for which M = µ.

iii. B = 0 and kT À J .

Answer: From an earlier quiz problem, you figured out that, in the limit of high tempera-
ture, all the Boltzmann probabilities e−βEs/Z become equal and equal to 1/N where N is the
number of states. Further, in this limit, the average thermal energy E becomes the average
of the energy values themselves. We conclude that, for B = 0,

U =
1
8

(
2× J

2
+ 2× −J

2
+ 4× 0

)
= 0. (79)

For sufficiently high temperatures, all states become equally likely so the multiplicity is Ω = 8
and the entropy is S = k lnΩ = k ln 8 = 3k ln 2.
Just as the thermal energy becomes the average of the energy values, the thermal magnetiza-
tion becomes the average of the possible magnetizations. But because of the spin symmetry
that exists when with B = 0 (reversing all the spins doesn’t change the energy), there is a
negative magnetization of equal magnitude for each positive magnetization so the net high-T
magnetization must be zero, M = 0.

(c) (15 points) For the case of zero external magnetic field (B = 0), deduce and sketch how the heat
capacity C(T ) of this system varies with temperature for T ≥ 0. Also calculate the approximate
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functional behavior of C(T ) for low temperatures (kT/J ¿ 1) and for high temperatures (kT/J À
1).

Note: “approximate functional behavior” in some limit means carrying out some kind of Taylor
series approximation to the lowest-order nontrivial term. You can also be efficient by avoiding an
explicit calculation of C(T ) (which is a bit unwieldy). Instead, figure out qualitatively how the
energy E(T ) varies with temperature and also deduce the functional forms of E(T ) for small and
large T . You can then differentiate those limiting expressions of E to get the limiting behaviors
of C(T ).

Answer: For B = 0, the energy levels you calculated in part (a) reduce to three distinct values:
E1 = −J/2 with degeneracy 2, E2 = 0 with degeneracy 4, and E3 = J/2 with degeneracy 2. The
partition function Z for this three-spin system with B = 0 is therefore

Z = 2e−β(−J/2) + 4e−β(0) + 2e−β(J/2) (80)

= 4 + 2
(
eβJ/2 + e−βJ/2

)
(81)

= 4 + 4
(

eβJ/2 + e−βJ/2

2

)
(82)

= 4
[
1 + cosh

(
βJ

2

)]
. (83)

This is similar mathematically to the partition function Z = 2 cosh(βµB) of a two-state paramag-
net except for an additive constant. So you might guess correctly that the dependence of energy
and heat capacity on temperature should be similar to a paramagnet.
Let’s work out the details. The average energy of this system is given by the usual formula:

E = −∂ ln(Z)
∂β

= −J

2

(
sinh(βJ/2)

1 + cosh(βJ/2)

)
= −J

2

(
eβJ/2 − e−βJ/2

2 + eβJ/2 + e−βJ/2

)
. (84)

As T → 0, βJ/2 becomes large, eβJ/2 becomes much larger than e−βJ/2 = 1/eβJ/2 and much
larger than 2. So the numerator eβJ/2−e−βJ/2 becomes dominated by eβJ/2 , the denominator 2+
eβJ/2 + e−βJ/2 becomes dominated by the same term eβJ/2 so E ≈ −J/2, which we know is the
ground state of this system for B = 0.
As T →∞, βJ/2 becomes small and the numerator tends toward e0 − e−0 = 0 so E → 0. From
the general shapes of sinh(x) and cosh(x), we can also conclude that E must be increasing for
increasing T . (One can just calculate dE/dT and verify that the derivative is always positive,
so the energy is monotone increasing.) So we guess that E(T ) is close to −J/2 for T ≈ 0 and
increases monotonically toward 0 as T →∞. Here is the actual shape of E versus kT according
to Mathematica (with the choice J = 2):
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The heat capacity C(T ) = dE/dT is the local slope of this curve so must be zero close to T = 0,
must be zero for large T , and must approach some maximum for intermediate T . Its form must
indeed be similar to the heat capacity C(T ) of a paramagnet.
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If you remembered an earlier homework problem, the heat capacity of any system whose energy
levels Es lie within a finite range must decay as 1/T 2 for large T . This is a consequence of the
relation

CV =
1

kT 2
σ2

E =
1

kT 2

(
E2 − (

E
)2

)
, (85)

which was Problem 6.18 on page 231 of Schroeder. Our simple spin system definitely has a finite
range of energy values since it has a finite set of energies and so we expect C ∝ 1/T 2 for large T .
Since C(T = 0) = 0 by the third law of thermodynamics, we again anticipate that the heat
capacity of this small antiferromagnet must have the same qualitative shape as a paramagnet.
To complete this problem, let’s work out the leading order behavior in the low- and high-
temperature limits. Following my clue that the Taylor series of the derivative of a function f ′(x)
is the derivative of the Taylor series of f(x), it is easier to work out the low- and high-temperature
behaviors for E from Eq. (84) and then differentiate those to get the leading behaviors of C(T ).
For the high temperature case, kT is large so βJ/2 is small and we can get the leading nontrivial
(non-constant) term from the Taylor series approximation for the exponential ex ≈ 1 + x. If we
define x = βJ/2, we have from Eq. (84):

E ≈ −J

2

(
(1 + x)− (1− x)

2 + (1 + x) + (1− x)

)
≈ −J

4
x ≈ −J2

8
1

kT
∝ −T−1. (86)

So the heat capacity C = dE/dT ∝ T−2 at large temperatures, just as we argued above.
For the low temperature case, kT is small, x = βJ/2 is large and we can not use a Taylor series
approximation for ex or for e−x in an practical way since many terms would have to be included
in the series. Instead, we recognize that x large implies that y = e−x is small so we Taylor expand
in the small quantity y instead. Rewriting Eq. (84) in terms of y we find:

E = −J

2

(
1− y2

1 + 2y + y2

)
≈ −J

2

(
1

1 + 2y

)
≈ −J

2
(1− 2y), (87)

to the lowest nontrivial power in y. To get the second equality, I dropped the y2 in the numera-
tor 1 − y2 as being small compared to 1, and dropped the y2 in the denominator 1 + 2y + y2 as
being small compared to 1 + 2y. I then used the approximation 1/(1 + u) ≈ 1− u with u = −2y.
The corresponding behavior of the heat capacity for small T is obtained by differentiating Eq. (87)
with respect to T . This gives:

C =
d

dT

[
−J

2

(
1− 2e−J/(2kT )

)]
=

J2

2
1

T 2
e−J/(2kT ). (88)

The exponential term e−J/(2kT ) decays to zero much faster than 1/T 2 diverges as T → 0 so
Eq. (88) decays to zero rapidly (faster than any polynomial) as T → 0. These insights can be
compared with the actual functional form of C(T ) as obtained by differentiating Eq. (84) w.r.t. T
and plotting with Mathematica:
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This curve is consistent with the qualitative behavior of the slope of the E versus T plot above,
and is indeed similar to the paramagnet heat capacity, see Figure 3.10 on page 103 of Schroeder.

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate whether a given statement is true or
false respectively.

1. T / F It is possible for the phase line separating a crystalline solid phase from a liquid phase in
a temperature-pressure phase diagram to end abruptly in a critical point.

Answer: F The phase line separating a solid from a liquid can not end at a critical point, which
was mentioned briefly in Schroeder but not explained. The reason is that a critical point implies that
one can continuously vary from one phase to another phase (say water to steam) by simply following
a path in the temperature-pressure phase diagram that swings around the critical point. But there is
no way to vary T and P so as to continuously change from a gas, which has no regular order in the
locations of its atoms, to a crystalline solid, which has such order. So a critical point generally can’t
occur for a phase line separating any two phases that have different symmetries: gas-solid, liquid-solid,
and even solid-solid phases if the two solid phases have different symmetries (say one phase has a face
centered cubic lattice while another phase has a body centered cubic lattice).

2. T / F A system can be in thermodynamic equilibrium in the presence of a time-independent but
spatially varying electric field.

Answer: T This situation is no different than a a gaseous atmosphere being in thermodynamic
equilibrium with a spatially varying gravitational field. For such a system, the condition that the
pressure be the same everywhere for different subsystems is replaced by the condition that the chemical
potential µ be the same everywhere. This typically implies that the pressure (and particle density) are
spatially varying. This makes sense in that a local force induced by the electric field (say on a liquid
dielectric in some non-planar capacitor) must be balanced by the local pressure so that there is no net
force that would cause a time dependent bulk motion that would violate thermodynamic equilibrium,
which requires time independence and no relative motion of subsystems.

3. T / F A gas of N identical particles is ideal if and only if the single particle partition function Z1

satisfies Z1 À N .

Answer: F The single particle partition function Z1 has the physical meaning of the approximate
number of quantum levels that are within an energy distance kT of the ground state, i.e., it is the
number of levels that are physically relevant for a system in thermodynamic equilibrium with tem-
perature T . The condition Z1 À N implies that there are many more levels than particles, which is
the same as saying it is unlikely that two or more particles can occupy the same energy level. This
statement is not the same as saying that the particles don’t interact with each other, which is the key
assumption of an ideal gas. The statement Z1 À N is a necessary condition for the approximation
ZN ≈ ZN

1 /N ! to hold.

4. T / F At a low temperature of 10−3 K, metals have a higher heat capacity than insulators.

Answer: T Insulators have no free electrons and so their heat capacities are due mainly to phonons,
which means C ∝ T 3 at low temperatures. (At higher temperatures, the heat capacity eventually looks
like the equipartition result C = Nf(kT/2) with f = 6 and becomes independent of temperature.)
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Metals have electrons and phonons, and their heat capacity has the form C ≈ c1T + c3T
3. For

sufficiently low temperatures, the T 3 term is ignorable compared to the linear term and a metal will
have a higher heat capacity than an insulator. For a metal like copper, the phonon contribution to the
heat capacity becomes less than the electron contribution around 5 K. At the much lower temperature
of 10−3 K, the T 3 term is negligible than the T term and metals have a higher heat capacity than
insulators.

5. T / F The root-mean-square variation ∆n(f) of the number of photons in an equilibrium photon
gas that have frequency f (i.e., are in the energy level ε = hf) is smaller than the average number n(f)
of photons that have frequency f .

Answer: F This was a true-false question that required a calculation and so could not be answered
just by qualitative reasoning or by background knowledge. The intent here was for you to realize that
the Bose-Einstein and Fermi-Dirac distributions n(ε) were obtained by calculating the average number
of particles that occupy a particle energy level ε, based on a Gibbs sum (grand partition function):

n =
kT

Z
∂Z
∂µ

. (89)

Because this is an average number, the actual number can vary from moment to moment and so one
can study the variations or fluctuations in n for a given energy level. For example, we can calculate
the variance of the occupation number:

σ2
n = (n− n)2 = n2 − (n)2 =

(kT )2

Z
∂2Z
∂µ2

−
(

kT

Z
∂Z
∂µ

)2

. (90)

So one has to plug and chug, and then think a little. A single photon energy level with energy ε can be
occupied by zero photons with energy 0, by one photon with energy ε, by two photons with energy 2ε,
etc. The corresponding partition function Z for a single photon level in equilibrium with a reservoir of
temperature T is obtained by adding up a geometric series for energy levels 0, ε, 2ε, etc (see pages 267
and 289 of Schroeder):

Z = 1 + e−βε + e−β(2ε) + e−β(3ε) + . . . =
1

1− e−βε
. (91)

There are no terms −µNs in the exponents since the chemical potential µ = 0 for a photon gas. This
also means that we can’t use Eq. (90) directly since there is no µ in Eq. (91) to differentiate with
respect to. Instead, we can observe from Eq. (91) that

σ2
n = n2 − (n)2 =

(kT )2

Z
∂2Z
∂ε2

−
(−kT

Z
∂Z
∂ε

)2

. (92)

Substituting Eq. (91) into Eq. (92) and evaluating the derivatives, we find the relative fluctuation
squared to be:

σ2
n

n2 = 1 +
1
n

= eβε, (93)

where I have used the fact that n = 1/(eβε − 1), which is the Planck distribution. Eq. (93) is greater
than one since the exponent βε is positive. This result also implies that the relative fluctuation increases
rapidly with photon energy for a fixed temperature.

So the variation σn in photon number for a given energy level is greater than the mean n. This result
has experimental consequences that allow one to test directly the hypothesis that photons are bosons
and so tend to bunch together. Try googling the “Hanbury, Brown, and Twiss effect” which is a famous
and originally controversial experiment that helped to establish that photon fluctuations had unusual
statistics that could be explained by the assumption that they were bosons.
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6. T / F In a temperature-pressure phase diagram, the solid-gas phase transition line always passes
through the origin P = T = 0.

Answer: F The phase transition diagrams for water and CO2 on page 167 of Schroeder were not
drawn well: they suggest visually that the solid-gas phase line goes through the origin but the origin
in these plots is not absolute zero but some finite temperature. With the exception of liquid helium
below about 25 atmospheres of pressure, all substances solidify before reaching absolute zero.

Your knowledge of the He4 phase diagram (from a homework problem, see Fig. 5.13 on page 168 of
Schroeder)) also would be sufficient to determine that the answer is “false” since there the phase line
involving a solid definitely does not go through the origin at T = 0.

7. T / F If three tiny holes are punched in the sides of a tall vertical enclosed cylinder near
the cylinder’s bottom, middle, and top, and if the cylinder contains an ideal gas in thermodynamic
equilibrium, then the loss of gas by effusion will occur at the same rate for all three holes.

Answer: F If the gas inside the cylinder is in thermodynamic equilibrium, the temperature T is
everywhere the same. This implies that the average molecular speed v, which shows up in the effusion
flux formula

Φ =
1
4
nv, (94)

is the same everywhere and so is independent of height. But the particle density n = N/V is not inde-
pendent of height, it satisfies the “exponential atmosphere” law and decreases exponentially as e−βmgz

where z is the height of the particle above the ground. So the rate of effusion is not the same at
different heights: it is largest near the bottom of the cylinder (largest particle density) and smallest
near the top, and the ratio of effusion rates is e−βmg∆z where ∆z is the difference in height between
two effusion holes.

By the way, a similar answer holds for fluid flow but with quantitatively different behavior than effusion.
If you fill a container with water, and punch three holes (say the width of a nail) near the bottom,
middle, and top of a wall of the container, then the water will jet out the furthest at the bottom and
least at the top. (Try this, say with a milk carton filled with water.) You can calculate quantitatively
how far the jets go: when a small parcel of fluid of volume ∆V and mass M descends a distance ∆z
from the top of the fluid and reaches a hole, the parcel releases an amount of potential energy Mg∆z.
This potential energy is converted into kinetic energy as the parcel flows out of the hole:

1
2
Mv2 = Mg∆z, (95)

where M = ρ∆V and ρ is the mass density of water. The speed v is the horizontal speed of the fluid
just as it leaves the container. The mass ∆M of water that flows through a hole of area A in time ∆t
is ρ(Av∆T ) so the fluid mass flux is ∆M/(A ∆T ) = ρv ∝ √

∆z. So the ratio of fluxes for a fluid
varies much less strongly, as the square root of the difference in heights of the holes, rather than as an
exponential of the height difference.

8. T / F If two identical blocks of metal are welded to form a single larger metal block, the Fermi
energy EF will now be larger.

Answer: F The formula for the Fermi energy of a metal

εF =
~2

8m

(
3N

πV

)2/3

, (96)

depends on the intensive number density N/V so is an intensive quantity itself. Since welding two
identical blocks together doubles N and doubles V , the Fermi energy does not change.
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9. T / F The chemical potential µ of an ideal gas is zero if and only if the particles that make up
the gas have zero mass.

Answer: F It is true that massless particles (photons, phonons) have a zero chemical potential
since particle number is not conserved. But it is possible for massive particles to also have a zero
chemical potential if the kinetic energy of the particles exceeds their rest mass energies mc2 in which
case particle number is also not conserved (particles can be created or destroyed during high-energy
collisions). This point was never explicitly made by Schroeder but was mentioned in some of the
problems in the section on blackbody radiation, e.g., Problem 7.48 on page 298 on a neutrino gas and
Problem 7.49 on electron-positron pair creation in the hot early universe.

10. T / F When a star supernovas and most of its mass collapses into a black hole (which is then
characterized by just its mass M , charge Q, and angular momentum Ω), the entropy of the hole is
much less than the entropy of the original star.

Answer: F This was a “did you remember” true-false based on an earlier homework problem,
Problem 2.42 on page 83, in which you estimated the entropy of a one-solar-mass black hole and found
remarkably that it was of order 1020 times the entropy of a corresponding star with the same mass.
So although black holes are almost completely empty (all matter in a black hole gets crushed to an
extremely dense region near the center of the hole), the entropy is enormous. The intuitive reason is
that a black hole obliterates all knowledge of the matter that falls inside (only the mass and charge of
a black hole can be measured from outside the event horizon) so its entropy must exceed the entropy
of any type of matter or particles that were used to make the black hole.

11. T / F For N of order Avogadro’s number, ln[(N !)!] ≈ N ! ln(N).

Answer: T Using Stirling’s formula in the logarithmic form ln(M !) ≈ M ln(M)−M , we have:

ln[(N !)!] ≈ N ! ln(N !)−N ! (97)
≈ N ![N ln(N)−N ]−N ! (98)
= NN ! ln(N)− (N + 1)N ! (99)
≈ (N + 1)! (ln(N)− 1) (100)
≈ N !(ln(N)− 1). (101)

Here I have used the fact that N + 1 ≈ N for N À 1 so NN ! ≈ (N + 1)!, and I used the fact that
(N + 1)! = (N + 1)N ! ≈ N ! since N + 1 is a large number multiplying a very large number N !.

For N ≈ 1023, ln(N) ≈ 23 ln(10) ≈ 23 × 2.3 ≈ 50 so ln(N) − 1 ≈ ln(N) and we have approximately
ln[(N !)!] ≈ N ! ln(N). So the statement is true.

A variation of this problem would have been to work out a low-order approximation to ln ln[(N !)!)],
which would have required using in addition the approximation ln(1 + x) ≈ x for x sufficiently small.
Then

ln ln[(N !)!] ≈ ln[N !(ln(N)− 1)] (102)
= ln(N !) + ln[ln(N)− 1] (103)

= ln(N !) + ln ln(N) + ln
(

1− 1
ln(N)

)
(104)

≈ ln(N !) + ln ln(N)− 1
ln(N)

(105)

≈ N ln(N)−N − 1
ln(N)

+ ln ln(N). (106)
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12. T / F For an equilibrium low-density ideal gas that consists of N identical molecules, the
single-particle partition function Z1 is an extensive variable.

Answer: T From the expression on page 254 in Section 6.7 of Schroeder

Z1 =
V Zint

VQ
, (107)

we conclude that Z1 is an extensive quantity since Z1 ∝ V and Zint = Zint(T ) and VQ = VQ(T ) are
functions only of T and so are intensive variables.

This could also be deduced more generally from thermodynamic considerations. We know that the
free energy F = U − TS is an extensive quantity (since U and S are extensive), we know that
F = −kT ln (ZN ), and for a low-density high-temperature gas, ZN ≈ ZN

1 /N !. Combining these
ideas and using Stirling’s formula, we find that

F = −NkT ln
(

1 +
Z1

N

)
. (108)

Because of the overall N factor, Eq. (108) will be extensive only if Z1/N is intensive, which in turn
implies that Z1 must be extensive since N is extensive.

13. T / F In a universe with ten spatial dimensions (a possibility suggested by string theory), the
heat capacity CV of an equilibrium ideal gas consisting of N identical atoms with temperature T has
the same value (3/2)Nk that the same gas would have in our three dimensional universe.

Answer: F The equipartition theorem says that the heat capacity CV = Nf(kT/2) where f is the
number of degrees of freedom. For an atom, f is the number of independent coordinates needed to
locate the atom’s of center of mass. In our three-dimensional universe, f = 3 while in a 10-dimensional
universe, f = 10 in which case the heat capacity is about 10/3 ≈ 3 times larger.

14. T / F The temperature dependence of the pressure of a photon gas does not depend on whether
the gas is three-dimensional or two-dimensional.

Answer: F The pressure of an ideal gas is given by the derivative of energy U with respect to
volume V with constant temperature

P = −
(

∂U

∂V

)

T

(109)

and so has the same temperature dependence as the energy U itself. The energy is given by an
expression similar to Eq. (30) above. For three dimensions, we have

U = 2
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

hcn

2L

1
eβhcn/(2L) − 1

(110)

U ≈ 2
∫ ∞

0

dnx

∫ ∞

0

dny

∫ ∞

0

dnz
hcn

2L

1
eβhcn/(2L) − 1

(111)

≈
(

1
8
× 4π

) ∫ ∞

0

dnn2 hcn

L

1
eβhcn/(2L) − 1

(112)

= V
8π(kT )4

(hc)3

∫ ∞

0

x3 dx

ex − 1
. (113)

Here I switched from Cartesian to spherical coordinates, (nx, ny, nz) → (n, θ, φ) and recognized that,
since the integrand does not depend on the spherical angles, the angular integrals evaluate to 1/8 the
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area of a unit sphere. I also changed variables from quantum number n to the dimensionless energy x =
βε = βhcn/(2L). We conclude that in 3D, U and so P are both proportional to T 4.

In two dimensions, we have two summations instead of three and the analogous calculation becomes:

U = 2
∞∑

nx=1

∞∑
ny=1

hcn

2L

1
eβhcn/(2L) − 1

(114)

= 2
∫ ∞

0

dnx

∫ ∞

0

dny
hcn

2L

1
eβhcn/(2L) − 1

(115)

≈
(

1
4
× 2π

) ∫ ∞

0

dnn
hcn

L

1
eβhcn/(2L) − 1

(116)

= V
8π(kT )3

(hc)3

∫ ∞

0

x3 dx

ex − 1
. (117)

Here I changed Cartesian to cylindrical coordinates, (nx, ny) → (n, θ) and dnx dny → ndn dθ. The
angular integral now goes over 1/4 the circumference of a unit circle so gives π/2. The change in
dimensionality causes the n2 factor in 3D to change to n in 2D (see line Eq. (116) above) and this
directly changes the temperature scaling when we change variables from n → x = βε = βhcn/(2L). So
the temperature dependence definitely depends on the spatial dimensionality.

It is not too hard to work out the general case, using what you learned when we discussed the
surface area of a hyperdimensional sphere. In N spatial dimensions, Eq. (110) will involve N
summations which will be approximated by N integrals. The change from Cartesian to “hyper-
dimensional spherical” coordinates, (n1, n2, . . . , nN ) → (n, θ1, . . . , θN−1), will cause the substitu-
tion dn1 dn2 . . . dnN → nN−1f(θ1, . . . , θN−1) dn dθ1 . . . dθN−1 for the infinitesimal volume, i.e., the
integrand is multiplied by the radial power nN−1 and by a complicated bunch of sines and cosines.
Since the the integrand just depends on the length n of the quantum state vector, the N − 1 angular
integrals evaluate to some multiplicative constant (1/2N times the surface area of a N -dimensional
unit sphere) that does not affect the temperature scaling. The remaining radial integral has the form

U ∝
∫ ∞

0

dnnN−1 hcn

L

1
eβhcn/(2L) − 1

. (118)

Changing variables n → x = βε = βhcn/(2L) then reveals a TN+1 temperature dependence, which
reduces correctly to the 2D and 3D cases.

We conclude that the temperature scaling of the photon energy density and pressure does depend on
the spatial dimension.

15. T / F There are 130 distinct ways to place three identical bosons in ten degenerate energy levels.

Answer: F The number of distinct ways includes
(
10
3

)
= 120 ways to place three bosons in three

distinct energy levels, 10 × 9 = 90 ways to place two bosons in one energy level and the third boson
in some different level, and

(
10
1

)
= 10 ways to place all three bosons in the same energy level. The

total number of ways is 120 + 90 + 10 = 220. In this case, nearly half the energy levels have multiple
occupations so the approximation ZN ≈ (1/N !)ZN

1 will strongly fail.

16. T / F The equilibrium temperature of the Earth due to absorption of sunlight and blackbody
emission depends on the radius of the Earth.

Answer: F The equilibrium temperature TE of the Earth is determined by balancing the amount
of blackbody radiation received from the Sun (of radius RS , distance from Earth dS , and absolute
temperature TS) by the blackbody radiation emitted by an Earth of radius RE . This balance takes
the mathematical form (

4πR2
E

)
σ T 4

E =
(

πR2
E

4πd2
S

) (
4πR2

S

)
σ T 4

S , (119)
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where I have assumed that the Earth and Sun have uniform surface temperatures and both are perfect
blackbody emitters. The radius RE of the Earth cancels from both sides to the answer is false, the
equilibrium temperature of the Earth does not depend on the size of the Earth.
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