
Final Exam for Physics 176: Answers

Professor Greenside
May 3, 2009

Note: with a few exceptions, the following answers are far more detailed than what were required to get full
credit. The answers should help you realize that it is possible to understand and solve each problem rather
thoroughly, using what you have learned over the semester.

Problems That Require Writing

Please write your answers to the following problems on extra blank sheets of paper, and make sure to write
your name and the problem number at the top of each sheet. Unless otherwise stated, you need to justify
your answers to get full credit.

1. (6 points) List six distinct criteria that a system has to satisfy to be in thermodynamic equilibrium.
(No justification needed here.)

Answer: I had not worded this problem carefully since what I had intended was for the class to
give six practical criteria that an experimentalist or computational scientist could use to determine
empirically whether a system was in thermodynamic equilibrium. Answers I had mind include:

(a) All macroscopic properties of the system are time independent.

(b) All parts of the system have the same temperature.

(c) All parts of the system have the same pressure unless the system is in an external time-independent
inhomogeneous field (say gravitational or electrical), in which case the pressure will vary spatially
throughout the system. (Think about the isothermal exponential atmosphere discussed several
times in Schroeder.)

(d) All parts of the system have the same chemical potential. This criterion replaces the condition
that the pressure is the same everywhere if the system is in an external time-independent spatially
varying field like gravity.

(e) There is no relative motion of one macroscopic part of the system with respect to another macro-
scopic part, i.e., the entire system moves or rotates rigidly. The time-independent isothermal flow
of water through some pipe is not in thermodynamic equilibrium since the speed of the water is
zero at the walls and finite in the center of the pipe, i.e. there is relative motion of the water.

(f) All macroscopic properties of the system are independent of the history of the sample, for example
how the system was warmed or cooled to its current temperature, or how an external magnetic
field was increased or decreased to its current value.
Note: This criterion is often the hardest to verify, in terms of time and effort. The idea here is
that a system may be time-independent but also metastable in that the free energy (or entropy
or Gibb’s free energy) may be an extremum but not a global extremum. An example would be a
supercooled fluid that has not yet transitioned to a solid phase.

Students gave some other answers such as multiplicity or entropy being a maximum, or the free energy
being a minimum. As this problem was worded, these are correct answers but they are more theoretical
or conceptual in value since it is not easy to measure the multiplicity or free energy and plot it as a
function of time and verify that it has reached an extremum.

Other answers given included statements like “the system must be isolated”, “energy must be con-
served”, “number of particles must be conserved”, “the system must be in its most likely macrostate”.
Some of these statements are wrong, an equilibrium system does not have to be isolated but can
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exchange energy or particles with some reservoir in which case these are not conserved quantities.
(Admittedly, the fluctuations around the mean values are of order 1/

√
N which is tiny for N of order

Avogadro’s number, but still conservation is not a requirement for equilibrium.)

Systems that can exchange energy with some reservoir do not have to be in their most likely macrostate,
since it is the free energy F = U − TS that needs to be minimized, and this now involves a trade-off
of an entropy term −TS (which when maximized by itself would give the largest multiplicity) and an
energy term. At low temperatures, the −TS term can be small compared to U and F = U − TS ≈ U
is dominated by the effects of energy, which may have nothing to do with multiplicity.

2. (8 points) Draw a representative phase diagram (with horizontal axis the temperature T and vertical
axis the pressure P ) that includes all the features that are typically observed in the phase diagram of
a pure substance like carbon dioxide. Make sure to label clearly all features and regions of your plot.
(No justification needed here.)

Answer: You can look up phase diagrams in Schroeder or on the Internet to confirm your answer.
You should have had at least eight items drawn and labeled:

(a) at least three phase regions representing solid, liquid, and gas phases, with the phases appearing
in reasonable locations. Even better, point out the possibility for multiple phases of the same
kind, e.g., water has numerous solid phases.

(b) at least three phase lines, which should have been labeled as sublimation or deposition (solid-gas),
vaporisation or condensation (liquid-gas), and melting or freezing (solid-liquid). Some of you just
labeled these phase lines with phrases like “solid-liquid phase line” which was a poor alternative
compared to “melting-freezing”.

(c) a critical point where the gas-liquid phase line ends.
Note: the solid-liquid phase line can not end at a critical point since there is no continuous way
for the periodic order of a crystalline solid to change to the non-periodic disordered structure of
a fluid.
By the way, it is possible for a physical system to have more than one critical point although I
don’t know if this has been found yet experimentally. For example, theoretical calculations show
that some substances like liquid carbon can have two liquid phases, a high density phase and a
low density phase. Both liquid phases can have their own critical point with respect to the gas
phase.

(d) at least one triple point, where three phases can be in equilibrium simultaneously. The water
phase diagram shown on the 176 homepage has many other triple points in addition to the gas-
liquid-solid triple point. The table on the web page http://www.lsbu.ac.uk/water/phase.html
in fact lists twelve other triple points that involve two solid phases in equilibrium with a liquid or
third solid phase.

For you to think about:

(a) Using the Clausius-Clapeyron equation, can you explain why the slope of the liquid-gas phase line
emerging from the triple point is always lower (less steep) than the slope of the solid-gas phase
terminating at the triple point? This was a question I had considered asking on the final exam.

(b) Figures 5.11 and 5.12 of Schroeder (page 167) show the gas-solid sublimation phase line passing
through the origin T = P = 0. Does this make sense: can a gas exist all the way down to absolute
zero? What is the actual experimental behavior for different substances?

(c) Can there be quadruple or higher points for a pure substance, where more than three phases
coexist?
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3. Over the semester, you learned about two models for which many thermodynamic details can be worked
out analytically, the Einstein solid and an ideal gas.

(a) (12 points) In some detail (6 points worth each!), describe what are these two systems. Your
discussion should state clearly what are the components of each system, and mention what assump-
tions, simplifications, and idealizations are made so that these models can be studied analytically.

Answer: Many students did not do a good job explaining the basic facts and assumptions
related to these two systems.
Einstein solid: This is a model invented by Einstein to explain the temperature-dependence
of the heat capacity of a solid, in particular why the heat capacity experimentally varied with
temperature, in contradiction to the prediction of the equipartition theorem. Einstein assumed
that the vibrations of N molecules in a crystal could be approximated as 3N independent and
identical quantum mechanical harmonic oscillators, all with the same oscillator frequency f . The
number 3N comes from the observation that a classical particle in a 3D lattice can vibrate in
three independent directions (although not necessarily parallel to the Cartesian axes since not all
periodic crystals have cubic symmetry), and each direction would correspond to one harmonic
oscillator.
As derived by a quantum mechanical calculation (discussed in the physics courses 143 and 211),
each quantum harmonic oscillator has an infinite number of equally spaced energy levels E =
hf(1/2 + n) with n a non-negative integer. The Einstein solid can then be thought of as having
a total amount of vibrational energy qε = q(hf) (q some non-negative integer) that is distributed
among the various quantum oscillators.
The key assumptions that allow analytical progress are that the oscillators are independent, that
the oscillators remain perfectly harmonic for arbitrarily large energies, and that they all have
the same frequency. The Debye theory addresses some of these assumptions, e.g., allowing the
frequencies to differ and allowing groups of atoms to move together (phonon excitations).

Ideal gas: The opening paragraphs of the Wikipedia article “Ideal gas” provide the intended
answer. In one sentence: the molecules of an ideal gas are treated as non-interacting point particles
in random motion. Most students failed to take into account the many different kinds of ideal
gases that we have discussed over the semester and talked only about the classical monoatomic
ideal gas that we discussed the first two weeks of class. What I wanted you to mention at least
briefly, was that we have discussed three kinds of ideal gases: classical (Maxwell-Boltzmann), and
two quantum ideal gases that are described by Bose-Einstein statistics (photons and phonons) and
Fermi-Dirac statistics (say electrons in a metal or nucleons in a nucleus). I especially wanted you to
mention an ideal gas of diatomic molecules, for which we were able to calculate all qualitative and
quantitative experimental details of the heat capacity (translational, rotational, and vibrational
behaviors) by using the partition function method of Chapter 6.

(b) (10 points) With appropriate sketches showing axes and key graphical details clearly labeled,
show how the normalized heat capacity CV /(Nk) varies with temperature for each of these two
systems. Be particularly careful to draw the low- and high-temperature behaviors of CV /(Nk)
correctly (e.g., if the curve approaches an axis, does it do so with a zero, finite, or infinite slope?).
Where possible and as is appropriate, also indicate quantitative details on your plot, e.g., where
room temperature (T = 300 K) lies on your plot, and the approximate values on the axes where
there is some physically relevant change in behavior.

Answer: What I was looking for was Figures 1.13 and 1.14 on page 30 of Schroeder’s book
and some comments about what was known about the functional dependence of the heat capacity
in the limit T → 0, e.g., that CV ≈ c1T + c3T

3 for a solid, that CV ≈ (3/2)NkT for the low-
temperature regime of a gas of diatomic molecules, in which case the rotational and vibrational
internal degrees of freedom “freeze” out, but not the translational degrees of freedom, which can’t
freeze out if the particles do not interact with each other.
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(c) (6 points) Give an example for each model of a prediction that is incorrect experimentally, and
explain briefly the reason for the incorrect prediction.

Answer: The Einstein model gives the correct high-temperature result corresponding to
equipartition, CV /(Nk) = 3, but gives an incorrect analytical behavior for low temperature, that
CV has the functional form (ε/kT )2e−ε/(kT ) as T → 0. As I mentioned earlier in the semester, a
function of the form e−c/x for c > 0 some constant is a non-analytic function as x → 0 in that
this function has a zero Taylor series around x = 0 (all the derivatives of this function are zero
at x = 0). So while CV for the Einstein model correctly goes to zero, as T → 0, it does so as
neither a polynomial nor an exponential. (It is not correct to say that T−2e−c/T is exponential
decay as T → 0, exponential decay would be e−cT as T →∞ for some constant c.) This behavior
contradicts experiments which show that the specific heat behaves as T 3 over some range (due
to phonons) and then switches to behaving as T at still lower temperatures (due to the electron
gas).
Two students nicely pointed out something that Schroeder and I had not mentioned, that, since
the Einstein solid can accept arbitrarily large amounts of energy (the integer q can be arbitrarily
big), this model fails to undergo a phase transition to a liquid, gas, or plasma state at sufficiently
high temperatures (large q values). This indeed severely contradicts experiment.
A simple and often useful rule for predicting at what temperature a solid will melt is something
called the “Lindemann criterion”, which simply states that when the root-mean-square displace-
ment of an atom from its equilibrium position due to vibrations exceeds some fixed fraction of
the interatomic distances (not that much, about 0.1), the solid will melt. This large amplitude
motion of atoms away from their equilibrium positions causes strong deviations from a simple
harmonic potential and so is difficult to calculate analytically, although not too bad to calculate
using modern computer codes that can solve the Schrodinger equation for a three-dimensional
solid.

We discussed the ideal gases in several different ways, using different tools such as kinetic theory
(Chapter 1) and partition functions (end of Chapter 6). Kinetic theory was a classical theory
(little balls moving around and colliding with walls) and so gives a wrong prediction that the
specific heat CV /(Nk) should be independent of temperature with an equipartition value of fk/2
where f is the number of quadratic degrees of freedom (f = 3 for a monoatomic gas like He or
f = 7 for a gas of diatomic molecules).
We later discussed ideal gases in terms of quantum energy levels of the molecules and of partition
functions. This discussion eventually explained all experimental details of Figure 1.13 on page 30
of Schroeder, in which CV increases with increasing temperature and has several plateaus corre-
sponding to rotational and then vibrational degrees of freedom become “active” (or, as we know
now, the ratio E(s)/kT in the Boltzmann factor was becoming large).
But the idea gas completely gets wrong the existence of liquid and solid phases as the tempera-
ture is decreased. This is because such phase transitions fundamentally involve particle-particle
interactions, which is precisely the detail that is ignored in an ideal gas.

4. (6 points) Estimate to one significant digit the height h in meters from which a penny at room
temperature would have to fall so that the potential energy released, if delivered entirely to the penny,
would raise the penny’s temperature by one degree Kelvin.

Note: A penny has a mass of 2.5 × 10−3 kg and can be assumed to be pure zinc (it is actually 97.6%
zinc coated with 2.4% copper). One mole of zinc has a mass of 6.5× 10−2 kg.

Answer: Based on what you have learned in this course, a reasonable guess for the heat capacity C
of zinc at room temperature would be the equipartition result C = Nf(k/2) = 3Nk since many
metals come close to the equipartition value at room temperature (look at Figure 1.14 of Schroeder,
it is diamond that is anomalous with an unusually high Debye temperature). Alternatively, it is so
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difficult to calculate the specific heat from Debye’s formula (a numerical approximation to an integral
is necessary, see Eq. (7.117) of Schroeder on page 312), that you have to make some simplifying
assumption and equipartition is the only one that is reasonable since you weren’t given the Debye
temperature for zinc.

Note: I used f = 6 for the number of degrees of freedom since atoms in a three-dimensional crystal
can vibrate in three independent directions and each vibrational mode has two degrees of freedom
corresponding to the kinetic energy and potential energy of an oscillator.

So this problem reduces to finding a height h such that CV = Q/∆T = mgh/∆T or

h =
CV ∆T

mg
=

(3Nk)∆T

mg
=

3k∆T

mg
N. (1)

We can estimate the number N of Zn atoms in a penny from the given data as the number of moles of
zinc times the number of atoms per mole (Avogadro’s number NA):

N =
mass m of penny

molar mass Mzinc of zinc
×NA

atoms
mole

(2)

Combining Eqs. (1) and (2) yields a single expression containing all the data:

h =
3k∆T

mg
×

(
mNA

Mzinc

)
=

3k ∆T NA

g Mzinc
, (3)

in which the mass m of the penny has divided out. (The above illustrates yet again why it is often
better to simplify mathematically as much as possible before plugging in various numbers since you
might find cancellations that reduce the amount of calculation, and make the calculation more accurate
since there are fewer numbers to round). We can now substitute various numerical values and start to
simplify:

h =
3k∆TNA

g Mzinc
(4)

≈ 3× (
1.4× 10−23

)× 1K× (
6.0× 1023

)

10× (6.5× 10−2)
(5)

=
3× 1.4× 6.0

6.5
× 10−23+23−1+2 (6)

≈ 3× 1.5× 6.0
5× 1.5

× 101 (7)

≈ 18
5
× 10 = 36 ≈ 40m, (8)

to one significant digit. (I accepted 30 m and 50 m also for this problem, which is reasonable for some
other choices of rounding; the answer to two digits turns out to be 39 m.) Others ways to approximate
the combination of numbers in line (6) would be: round 1.4 down to 1 and round 6.5 down to 6 to
get 3 (you want to round the 6.5 down to 6 in the denominator to increase the expression a little bit,
which compensates for the decrease due to rounding 1.4 down to 1 in the numerator); replace 1.4× 6
with 2.8 × 3 so the numerator 3 · 1.4 · 6.0 ≈ 9 × 2.8 ≈ 27. If we round 27 up to 30 we want to round
6.5 up to 7 (again so rounding errors compensate one another) and so 30/7 ≈ 4.

So the penny has to fall about 40 m, a rather large height, before it has released enough potential
energy to raise its temperature by one degree. This answer is independent of the mass of the penny
since the heat capacity is an extensive quantity proportional to m and the energy released by gravity is
also proportional to m. If you tried to calculate intermediate numbers like N , you would have missed
the fact that the penny’s mass is irrelevant.

Note: experimental data for zinc’s heat capacity CV (T ) as a function of temperature (which I found
on the Internet) show that CV has not quite reached the equipartition plateau at room temperature,
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but the error is of order ten percent which is fine for an estimate with one significant digit. The Debye
temperature for zinc turns out to be 327 K (see the table in the Wiki article on the “Debye Model”), just
above room temperature. Figure 7.29 on page 312 of Schroeder (which of course everyone in the class
memorized in preparation for the exam) shows that the specific heat has essentially saturated to its
equipartition value of 3Nk for T ≈ TD. Problem 7.52, which you did in the last homework assignment,
also informed you that the specific heat has reached 95% of its equipartition value when T = TD.

5. (6 points) A planet is orbiting a binary star system (two stars that are orbiting each other). The
planet is a distance d1 from star 1 and a distance d2 from star 2. The surface temperatures of the two
stars are T1 and T2 and their radii are r1 and r2, while the radius of the planet is R. Derive and write
down an expression for the steady-state temperature T of the planet in terms of the data d1, d2, r1,
r2, T1, T2, and R.

Note: For this problem, assume that the planet is a perfect blackbody emitter of uniform surface
temperature, that the distances di change so slowly over time that they can be assumed to be constant,
and that one star does not block any light from the other star.

Answer: If the two stars and planet are perfect blackbody emitters, we can describe their emission
of thermal light by Stefan’s law. If neither star blocks light from the other, the total power that the
planet receives from the stars is simply the sum of the power contributed from each star separately.
In equilibrium, the total power emitted by the planet has to equal this total power received (else the
planet’s temperature would increase or decrease over time). Equating the total power received by the
planet to the total power radiated by the planet we find

(
πR2

4πd2
1

)
× (

4πr2
1

) · σ T 4
1 +

(
πR2

4πd2
2

)
× (

4πr2
2

) · σ T 4
2 =

(
4πR2

)
σ T 4. (9)

The ratios in parentheses are the fraction of the total power emitted by each star that is received by
the planet, that is the cross-sectional area of the planet πR2 compared to the surface area of a sphere
of radius di. Simplifying the algebra gives the desired result, that the steady state temperature of the
planet is

T =
1√
2

[(
r1

d1

)2

T 4
1 +

(
r2

d2

)2

T 4
2

]1/4

. (10)

An interesting feature of this expression is that it does not depend on the radius of the planet, so little
rocks, asteroids, moons, and planets will all reach the same steady state temperature if they are the
same distance from the two stars.

While it is an excellent approximation to assume that stars act as constant temperature blackbody
emitters, this might not be a reasonable assumption for a planet. For example, a planet without an
atmosphere (which helps to transport heat from the bright to dark side by convection) might not be
rotating quickly, in which case different parts of the planet might have different temperatures. The
planet might have an atmosphere which can reflect incoming light (decreasing the final temperature T ,
Venus has a particularly reflective atmosphere), it might have a shiny icy surface which also reflects
light (say Pluto, which is essentially a big ball of ice), or the atmosphere might contain gases like water
vapor and carbon dioxide that can absorb and then re-emit infrared light from the planet’s surface
(the greenhouse effect, which Venus shows can be a much bigger effect than reflection of light by the
atmosphere).

Note: in answering this question, some students drew a picture of the planet between the two stars.
This was fine for getting an answer, but represents a highly unlikely situation, that a planet would
form near the center of mass of a binary star system.
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6. Consider a system that is in thermodynamic equilibrium and that can exchange energy and particles
with a reservoir whose constant temperature is T and whose constant chemical potential is µ.

(a) (6 points) Derive and write down a formula for the heat capacity C of this system in terms of
the grand partition function Z.
Note: Only T , µ, the Boltzmann constant k, Z, and some derivatives of Z should appear in your
answer.

Answer: There were two rather different ways to solve this problem, one is to ignore the
internal structure of the grand partition function and just work with thermodynamic identities,
the other is to ignore the thermodynamic identities and just work with the partition function. I
show you both ways.
First approach: The specific heat C = dU/dT can be determined if the energy U of a system
is known as a function of temperature. Given the information for this problem, we know that
we are dealing with a system that is described by the grand free energy Φ(T, V, µ) (also called
the grand potential) since this is the potential that is related to the grand partition function Z
via Φ = −kT ln(Z). From the information given on the first page of the exam, we also know
that Φ = U − T S − µN which means that

U = Φ + T S + µ N. (11)

Since Φ is already known in terms of Z, we can answer this problem if we can figure out how to
express the entropy S and number of particles N in terms of Z. (We can leave T and µ alone since
these are parameters that characterize the properties of the reservoir.) But the thermodynamic
identity also given on the first page of the exam

dΦ = −S dT − P dV −N dµ, (12)

implies that

S = −
(

∂Φ
∂T

)

V,µ

and N = −
(

∂Φ
∂µ

)

T,V

, (13)

which tells us how to express S and N in terms of Z. We therefore have

C =
dU

dT
(14)

=
d

dT
(Φ + T S + µ N) (15)

=
d

dT

(
−kT ln(Z)− T

∂Φ
∂T

− µ
∂Φ
∂µ

)
(16)

=
d

dT

(
−kT ln(Z) + kT

∂[T ln(Z)]
∂T

+ kTµ
∂ln(Z)

∂µ

)
. (17)

=
d

dT

(
kT 2 ∂ln(Z)

∂T
+ kTµ

∂ln(Z)
∂µ

)
. (18)

Eq. (17) is already enough to answer the question to my satisfaction, it is straightforward but not
necessary to differentiate everything insides the big parentheses with respect to temperature since
it is clear that the resulting expression will just involve T , µ, and various derivatives of ln(Z),
confirming that the specific heat can be expressed purely in terms of the grand partition func-
tion Z and of the thermodynamic variables T and µ. With a program like Mathematica that
can symbolically differentiate expressions, it would likely be quicker and more accurate just to
let Mathematica work out the derivative. But if the tension of not carrying out the temperature
derivative is too much for you, you can differentiate to find

C/k = 2T
∂ln(Z)

∂T
+ µ

∂ln(Z)
∂µ

+ T 2 ∂2ln(Z)
∂T 2

+ Tµ
∂2ln(Z)
∂µ ∂T

. (19)
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We see that two first-order partial derivatives and two second-order partial derivatives (one mixed)
of ln(Z) are needed to calculate the specific heat C.

Second approach: Alternatively, we can solve the problem by just working with the grand
partition function

Z =
∑

s

e−β[E(s)−µN(s)]. (20)

Again the specific heat C = dU/dT can be deduced if we have an expression for the average
energy U , which we get from Z via

E =
∑

s

E(s) p(s) =
∑

s

E(s)
e−β[E(s)−µN(s)]

Z =
1
Z

∑
s

E(s) e−β[E(s)−µN(s)]. (21)

There is nothing we can differentiate Z with respect to that will produce just a coefficient of E(S)
in the sum as desired but we can notice that

− ∂Z
∂β

=
∑

s

(E(s)− µN(s)) e−β[E(s)−µN(s)]. (22)

and that
1
β

∂Z
∂µ

=
∑

s

N(s) e−β[E(s)−µN(s)], (23)

which therefore implies

E =
µ

β

∂ ln(Z)
∂µ

− ∂ ln(Z)
∂β

= kT 2 ∂ ln(Z)
∂T

+ kTµ
∂ ln(Z)

∂µ
. (24)

This last equation, which is exactly the quantity being differentiated in Eq. (18) above, solves the
problem since we again have E in terms of T , µ, and derivatives of Z, and differentiating both
sides with respect to T gives C in the requested form.
One student started from S = −(∂Φ/∂T )V,µ and observed that since dS = dQ/T = (CdT )/T ,
C = T (dS/dT ) and used this to deduce C in terms of ln(Z). Does this lead to a correct answer?

(b) (4 points) Describe briefly how to construct an experimentally feasible reservoir, and explain
how (at least in principle) the values of µ and T can be varied independently for your reservoir.
Such a reservoir would then allow you to study the properties of some system as a function of µ
and T .

Answer: This is a question of the sort that I (and Schroeder) should have discussed more
often over the semester: how does one actually make contact experimentally with various abstract
concepts like entropy, temperature, chemical potential, and reservoirs? You have seen how the
heat capacity plays a central role in the subject of thermal physics, it is easily measured and can
be compared straightforwardly with theoretical predictions.
This problem was open ended and I was looking for just a few ideas for you to get full credit. One
idea was that the reservoir had to be “big” compared to the system of interest and almost no one
in the class addressed this point. This requires estimating the number of molecules in the system
(easily done if you know the chemical constitution and mass of the system) and the magnitude of
its energy U (again easily done if one is close to room temperature and one can use equipartition).
Then any reservoir you plan to build should be ten or one hundred times greater in the number of
molecules and in the amount of energy available. This way, small amounts of energy or particles
that transfer between the reservoir and system will not alter the properties of the reservoir
A second idea I looked for was some way to stabilize the temperature of the reservoir. This could
be done in many ways but they all end up involving a thermometer of some kind to monitor
the temperature of the reservoir (a second thermometer for the system would be a good idea
also) and one or more sources of heat, say resistive wires glued to the outside of the system,
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or water carrying pipes that are thermally attached to the reservoir. One can then maintain
the temperature of the reservoir with some feedback circuit that adds or extracts heat from the
reservoir if the temperature on the thermometer drifts from the desired temperature. This is
simple in concept but complicated in practice. For example, adding heat to a reservoir will cause
the temperature to increase locally near the heat source, and then one has to wait many relaxation
times for the temperature to become spatially uniform and time independent at its new value.
For this reason, an experimentalists might want to add fans or some other mechanism to the
reservoir, to spread the heat rapidly throughout the reservoir. Otherwise, the temperature could
slowly drift from one value to another during an experiment.
A third idea, perhaps the most important that I looked for, was any understanding of how to vary
the chemical potential µ of a system and to explain why it is possible to vary µ independently of T .
There is only one system that we have discussed this semester for which the chemical potential
was easily calculated, namely the chemical potential of an ideal gas, as written on page 2 of the
exam:

µgas = −kT ln
(

V Zint

NVQ

)
(25)

= −kT ln
(

1
P

[
kTZint

VQ

])
, (26)

where I used the ideal gas law PV = NkT to express V/N in terms of kT/P . This last expression
shows that the chemical potential of an ideal gas depends in a specific quantitative way on the
pressure P of the gas and on the temperature T , via the potentially complicated expression
TZint/VQ. Eq. (25) shows that, for fixed temperature T , we can vary µ independently of T by
varying the pressure P of an ideal gas.
So one quick answer to this problem is to build a reservoir out of an ideal gas which has many
more moles of molecules than the system of interest. The reservoir is attached to some mechanical
mechanism, say a release valve and high pressure tank of gas, that allows the pressure P to be
varied over some range. (This requires in turn some device for measuring pressure, a pressure gauge
or manometer.) For any change in pressure P , the temperature T could be varied independently
by adding or removing heat from the reservoir.

7. (6 points) A long vertical cylindrical tube contains a pure substance at temperature T in a
gravitational field with constant gravitational acceleration g. Below a certain height z0 in the column
(as measured from the bottom of the column), the substance is found to be in a solid phase, while
above that height, the substance is in a liquid phase. When the temperature of the entire column is
decreased a little bit to a new value T − ∆T , the solid-liquid interface is observed to move upwards
a small amount to a new value z0 + ∆z. Neglecting the thermal expansion of the solid and liquid,
derive and write down an expression for the mass density ρl of the liquid phase in terms of: the mass
density ρs of the solid phase, the latent heat L per mass of melting, the gravitational acceleration g,
the absolute temperature T , the temperature change ∆T , and the change in height ∆z.

Answer:

ρl ≈ ρs

(
1− L∆T

gT∆z

)
. (27)

That this problem involves coexisting liquid and solid phases and the fact that a latent heat L is given
should have suggested to you to use the Clausius-Clapeyron equation in the form

dP

dT
=

L

T∆V
. (28)

We are told that when the temperature of the entire tube is decreased by a small amount to the new
value T −∆T0 (which immediately implies that ∆T0 > 0 must be a positive quantity), the interface
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between the solid and liquid rises a small amount to the level z0 + ∆z0 (which tells us that ∆z0 is
also a positive quantity). I have added a subscript zero here to distinguish these specific changes in
quantities from generic symbolic changes ∆T and ∆z.

Now if the solid-liquid interface rises, the pressure at the location of the interface must decrease since
there is now a reduced amount of fluid sitting above the interface; this was perhaps the hardest scientific
insight to determine for this problem. (In the extreme case that the interface rises to the very top of
the tube, the pressure on the interface will simply be atmospheric pressure.) The decrease in pressure
is given by subtracting out the pressure due to a cylinder of liquid of height ∆z0 and of density ρl that
no longer occurs above the interface:

∆P0 = −ρl g ∆z0, (29)

and this is a negative number since ∆z0 > 0. Note how only the mass density ρl of the fluid enters
since it is the amount of fluid lying above the interface that determines the pressure at the interface;
the amount of solid phase below the interface has no effect on the pressure at the interface.

We can now invoke the Clausius-Clapeyron equation, to express the fact that the two phases coexist
at a new location (T −∆T0, P + ∆P0) on the solid-liquid phase line. For the left side of the equation,
we have

dP

dT
≈ ∆P

∆T
≈ −ρl g ∆z0

−∆T0
=

ρl g∆z0

∆T0
, (30)

which is a positive slope. That the slope is positive is consistent with the fact that the liquid is floating
above the solid in the column, which is equivalent to saying that the change in volume per mass across
the liquid-solid phase line ∆V = Vl − Vs > 0. (So this problem does not apply to water and ice near
water’s triple point, for which the solid is less dense than the liquid and dP/dT < 0.)

The right side of the Clausius-Clapeyron equation can be written in terms of the densities of the solid
and liquid phases like this:

L

(T −∆T0)∆V
=

L

(T −∆T0) (Vl − Vs)
=

L

T −∆T0

1
ρ−1

l − ρ−1
s

. (31)

The volume difference ∆V has to be ρ−1
l − ρ−1

s and not ρ−1
s − ρ−1

l to obtain a positive right side, to
match the positive left side.

Equating the right-most term of Eq. (30) to the right-most term of Eq. (31), and carrying out some
simple algebra leads to the intended answer:

ρl ≈ ρs

(
1− L∆T

g(T −∆T )∆z

)
. (32)

If ∆T is sufficiently small compared to the temperature T , we can simplify this further to get

ρl ≈ ρs

(
1− L∆T

gT∆z

)
. (33)

The minus sign on the right side makes physical sense: the fluid floats on top of the solid so ρl < ρs

which requires the sign in front of the positive quantity L∆T/gT∆z be a minus sign. We also see that
L∆T/gT∆z can not be too big in magnitude, otherwise ρl will be a non-physical negative number.

8. (6 points) Long after studying thermal physics, a student has forgotten a crucial detail of the Debye
theory of a solid, and has replaced the Bose-Einstein distribution with a Fermi-Dirac distribution like
this:

U =
3π

2

∫ nmax

0

hcs

2L

n3

ehcsn/(2LkT ) + 1
dn, nmax =

(
6N

π

)1/3

, (34)

where the only error is a “+1” instead of a “-1” in the denominator of the integrand. By investigating
the low- and high-temperature regimes of this fermion version of Debye’s theory, explain how this error
leads to a prediction that is inconsistent with experiment.
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Answer: The high-temperature regime is in error, predicting a zero heat capacity, in-
stead of the equipartition result C/(Nk) = 3.

As you learned in class and from reading Section 7.5 on the Debye theory of solids, a first step in
studying how the energy U of a system depends on temperature is to change variables in Eq. (34) by
setting

x =
hcs

2LkT
n ⇒ dn =

2LkT

hcs
dx and nmax → TD/T. (35)

You could then show that the integral in Eq. (34) becomes

U =
9NkT 4

T 3
D

∫ TD/T

0

x3

ex + 1
dx. (36)

This is exactly like the integral we discussed for the Debye theory (see Eq. (7.112) on page 310 of
Schroeder) except the that -1 in the denominator for bosons has become a +1 for fermions.

Low-temperature regime T ¿ TD: We can now use Eq. (36) to study the low-temperature
and high-temperature regimes the fermion version of the Debye theory. The low-temperature regime
involves looking at the behavior as T becomes small, in which case the upper bound TD/T of the
integral in Eq. (36) approaches infinity and the value of the integral approaches some fixed number. In
this case, U ∝ T 4 and the heat capacity C = dU/dT ∝ T 3. So the functional form of the specific heat
for low temperatures, T 3, remains the same as for the correct Debye theory. One minor difference is
that the numerical coefficient will be different by the ratio of the integrals

∫ ∞

0

x3

ex + 1
dx

/ ∫ ∞

0

x3

ex − 1
≈ 0.87, (37)

(which you could not deduce during the exam, I used Mathematica’s function NIntegrate to estimate
numerically both integrals), which is a small quantitative change. So the low-temperature regime seems
to be experimentally reasonable.

High-temperature regime T À TD: In this regime, the integral’s upper bound in Eq. (36) becomes
small, TD/T ¿ 1. All values of x that appear in the Eq. (36) are then small, in which case, to
lowest-order, we can approximate the denominator as follows

ex + 1 ≈ (1 + x) + 1 ≈ 2. (38)

We thus have: ∫ TD/T

0

x3

ex + 1
dx ≈

∫ TD/T

0

x3

2
dx ≈ 1

8

(
TD

T

)4

. (39)

Substituting this expression into Eq. (36), we see that the T 4 term cancels out and so the energy U is
now independent of T . (In the Debye theory, the denominator instead becomes ex−1 ≈ (1+x)−1 = x,
which causes U ∝ T .) If U ≈ constant, then C = dU/dT ≈ 0 at high temperatures, and this
seriously disagrees with experiments since the experimental heat capacity approaches the equipartition
result C = 3Nk for sufficiently large temperatures. (You could also easily refine this calculation by
using the approximation x3/(ex +1) ≈ x3/(2+x) ≈ (1/2)x3(1− (1/2)x), which would give the leading
two terms in approximating C at high temperatures, you reach the same conclusion that C now longer
has the equipartition value 3Nk.)

So using a fermion distribution in the Debye theory leads to an easily tested wrong prediction: the heat
capacity decreases to zero for sufficiently large temperatures, instead of approaching the equipartition
value 3Nk.
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9. A simple statistical physics model of the formation or unraveling of a long biomolecule like DNA as a
function of temperature is a zipper

that has N links such that each link is closed with energy 0 or open with energy ε > 0. The zipper
can unzip only from one side (say from the left as shown above) and the nth link from the left can
open only if all the links to the left of it (1, 2, . . . , n− 1) are already open. The Nth link on the right
is always closed.

(a) (6 points) By writing down an appropriate partition function for this zipper model, find an
expression for the average number of open links n.

Answer: When using a partition function to study some system, the first steps to take are
to identify what are the distinct states of the system, what are the energies E(s) of those states,
and what are the degeneracies of the distinct states. For a zipper (biomolecule) with N links for
which the Nth link is always closed, there are N distinct states: the state with N − 1 links open
and one link closed with energy (N − 1)ε, the state with N − 2 links open and 2 links closed with
energy (N − 2)ε, and so until you get to the fully closed state which has energy zero.
Because of the assumption that the nth link can open only if all the links to its left are already
open, there is only way for N − k links to be open and k links to be closed so the degeneracy of
each energy state is 1. For many biomolecules like DNA, this assumption that the zipper can only
open from the left is not accurate, for example DNA can open in multiple places simultaneously
along its length, which is actually important for parallel processing of transcription sites (copying
DNA regions into messenger RNA in preparation for creating a protein from a gene).
The partition function Z for the zipper is then

Z =
∑

s

e−βE(s) = 1 + e−βε + e−β[2ε] + . . . + e−β[(N−1)ε] =
1− e−βNε

1− e−βε
, (40)

where I used the identity Eq. (12) given on page two of the exam, that sums the first N −1 terms
of a geometric series. Since the energy of the zipper with n links open is simply nε, we can deduce
the average number of links n from the average energy E as:

n =
E

ε
= −1

ε

∂ln(Z)
∂β

. (41)

Carrying out the derivative and simplifying gives the answer to part (a):

n =
1

eβε − 1
− N

eNβε − 1
. (42)

Note: some students incorrectly assumed that this problem was somehow related to occupation
of single-particle energy states, like that for Fermi-Dirac particles, since the links could be either
open or closed. They then wrote ZN = ZN

1 and calculated Z1 for a single particle occupying a link
with energy 0 or ε. This approach does not work here since the links can only open in succession
from the left. However, if each link could open or close independently of the other links, this
problem would indeed reduce to a Fermi-Dirac problem of independent particles.
You can learn more about this zipper problem from the brief but readable paper “Phase Transition
of a Molecular Zipper” by Charles Kittel, American Journal of Physics Volume 37, Number 9,
pages 917-920. Experiments on synthetic double-stranded DNA segments show a surprising result:
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the average number of open links n rises from 0 to N/2 over a very narrow range of temperature,
i.e., the unfolding of a real molecular zipper acts like a phase transition where an abrupt change
in the structure of the molecule occurs as T is varied. Making only a small change to this exam
problem, namely let the degeneracy g of an open link be much greater than 1 (there is a lot more
space for the atoms of an open link to move around in) and independent of the neighboring links.
Eq. (42) becomes instead

n =
1

(1/g)eβε − 1
− N

(1/g)NeNβε − 1
. (43)

A numerical study of Eq. (43) shows that n does indeed undergo a transition over a narrow range
of T from 1 to N/2 as T is varied. The asymmetric zipper problem turns out to be unexpectedly
interesting since it is a one-dimensional problem that undergoes a phase transition for g sufficiently
large.

(b) (4 points) Show that n becomes independent of N in the low-temperature limit and discuss
the scientific meaning of this result.

Answer: In the limit of low temperature T → 0, the parameter β → ∞ becomes large and
eβε becomes very large. In the denominators of Eq. (42), we can then neglect the 1 compared to
the exponentials and find

n =
1

eβε − 1
− N

eNβε − 1
(44)

≈ e−βε −Ne−Nβε (45)
≈ e−βε. (46)

This last line follows for two reasons. First, in the term Ne−Nβε, the N coefficient is a large factor
multiplying the reciprocal of a very large factor and so can be ignored, i.e.,

N e−βNε ≈ e−βNε for N À 1. (47)

Second, given that β À 1/ε implies that e−βε ¿ 1 is a very tiny number, then e−Nβε =
(
e−βε

)N ¿
e−βε. So the second term in line (45) is negligible compared to the first and we have

n ≈ e−βε when kT ¿ ε, (48)

so the average number of open links is indeed independent of N , the total number of links.
This result is reasonable: at sufficiently low temperatures, the lowest energy state of the zipper
will be favored and this is the state with all links closed, for which the energy does not depend
on the length of the zipper. But the analytical result Eq. (44) is not obvious in that it tells us
that the average number of links decays as e−c/T with decreasing temperature. This is the same
non-analytic function that shows up many times in thermal physics: this is neither exponential
decay nor polynomial decay, but rapid decay according to a function that does not have a Taylor
series about its limit T = 0. (If you know some complex analysis, this function has an essential
singularity at T = 0.)
What is the high-temperature limit for n? From a question on the second midterm, we know that
if a system has a finite number of energy states, then, for sufficiently high temperatures all states
become equally likely and so we expect n → N/2 as T →∞. This is correct but I’ll let you figure
out how to deduce this directly from Eq. (42) when βε ¿ 1. A hint is to use the approximation
ex ≈ 1 + x + 1

2x2 to second-order accuracy.

10. (8 points) Experimentalists are able to create and study the properties of two-dimensional electron
gases that float in a horizontal layer just above a liquid He surface. Consider such a gas of N electrons
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at absolute zero that occupies a square planar region of area A = L2. What is the quantum degeneracy
pressure P (force per unit length) in terms of the gas’s energy density U/A?

Note: You can start with the following expression for the total energy U of the electrons

U = 2
∫ ∫

ε(nx, ny) dnx dny, (49)

and change to polar coordinates for which n =
√

n2
x + n2

y and dnx dny = ndn dθ. Also observe that

εF = h2n2
max/(8mL2) and N = 2× (area of 1/4 circle of radius nmax in n space).

Answer: P = U/A

For a two-dimensional system in which areas rather than volumes vary, the thermodynamic identity
dF = −S dT − P dV + µdN becomes

dF = −S dT − P dA + µ dN, (50)

so that

P = −
(

∂F

∂A

)

T,N

, (51)

where now the pressure P has units of force per length rather than force per area. (Think of a two-
dimensional piston on a surface so that compressing a 2D gas involves sliding a linear boundary inwards,
rather than the 2D area of a cylindrical piston.) At absolute zero T = 0, the free energy F = U−TS =
U is the same as the energy of the system so it suffices to calculate the total energy then differentiate
with respect to area A. Following the suggestions given in the problem, we have

U = 2
∫ ∫

ε(nx, ny) dnx dny (52)

= 2
∫ π/2

0

∫ nmax

0

h2n2

8mL2
× ndn dθ (53)

=
πh2

32mL2
n4

max. (54)

The maximum radius nmax in number space (nx, ny) is determined by requiring that the total number
of energy states filled with electrons (two electrons per state, with up and down spins) is the number
of particles N so

2×
(

1
4
× πn2

max

)
= N ⇒ nmax =

(
2N

π

)1/2

. (55)

Combining Eq. (55) with Eq. (54) gives the energy in terms of N and A:

U =
πh2

32mL2
n4

max =
πh2

32mL2
×

(
2N

π

)2

=
h2N2

8πm

1
A

, (56)

where I used the fact that L2 = A since we are considering a square domain. The answer P = U/A
then follows directly from Eq. (51), by differentiating Eq. (56) with respect to A with N fixed.

One lesson of this problem and of Chapter 7 in Schroeder is that the pressure for non-interacting
particles is usually some constant of order one times the energy density of the system, e.g., this holds
also for a gas of photons and of diatomic molecules.

Multiple Choice Questions (3 points each)

Circle the letter that best answers each of the following questions.
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1. A system in thermodynamic equilibrium is quasistatically and adiabatically changed to some new
equilibrium state. The thermodynamic quantity associated with this system that remains constant
during this change is

(a) energy U .

(b) pressure P .

(c) volume V .

(d) entropy S.

(e) chemical potential µ.

Answer: (d) An adiabatic process is one in which heat does not flow into or out of the system.
This implies that the entropy S = Q/T of the system can not change, but all the other properties
listed can change. For example, the chemical potential of an ideal depends on the pressure or density
of the gas and so can in fact change during some process, even if the number of particles is conserved.

2. An object with constant heat capacity CP and temperature T1 is brought in contact with a thermal
reservoir with constant temperature T2 6= T1 until the object reaches equilibrium. The total change in
entropy (of the object and reservoir) is then

(a) CP
T2 − T1

T2
.

(b) CP

[
T2 − T1

T1
− T2 − T1

T2

]
.

(c) CP ln
(

T2

T1

)
.

(d) CP

[
ln

(
T2

T1

)
+ 1− T1

T2

]
.

(e) CP

[
ln

(
T2

T1

)
− 1 +

T1

T2

]
.

Answer: (e) Since entropy is an additive quantity for weakly interacting systems, the total entropy
change is the sum of the change in entropy of the object and the change in entropy of the reservoir.
The change in entropy of the object is given by:

∆Sobject =
∫ T2

T1

CP

T
dT = CP ln

(
T2

T1

)
. (57)

The entropy change in the reservoir is given by Q/T2 where Q is the amount of heat transferred to the
reservoir. Since an amount of heat

∫ T2

T1

CP (T ) dT = CP (T2 − T1) , (58)

is needed to change the temperature of the object from T1 to T2, the negative of this amount is the
heat that flows into the reservoir. We thus have

∆Stotal = CP ln
(

T2

T1

)
+
−CP (T2 − T1)

T2
, (59)

which is answer (e).
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3. If x is a small quantity so that |x| ¿ 1, then the expression

1
1 + ax + bx2

(60)

can be approximated to second-order accuracy by the expression 1 + cx + dx2 provided that the
coefficient d is

(a) b.

(b) −b.

(c) −b− a2.

(d) −b + a2.

(e) −b + a2 + 2ab.

Answer: (d) If we let ε = ax+bx2 denote the small quantity being added to one in the denominator,
we can use the first two terms of a geometric series in ε to find

1
1 + ax + bx2

=
1

1 + ε
(61)

≈ 1− ε + ε2 + . . . (62)

= 1− (
ax + bx2

)
+

(
ax + bx2

)2
(63)

≈ 1− ax− bx2 + a2x2 + 2abx3 + . . . (64)
= 1− ax + (a2 − b)x2 + O(x3). (65)

4. The multiplicity Ω of a one-dimensional ideal gas of N identical adsorbed particles of mass m moving
freely about on a long carbon nanotube of length L is given by which of the following expressions:

(a)
L

N !
A1(

√
2mU)
h

.

(b)
LN

N !

(
A1(

√
2mU)

)N

hN
.

(c)
LN

N !
A2N (

√
2mU)

h2N
.

(d)
LN

N !
AN (

√
2mU)

hN

Note: The notation Ad(r) denotes the surface area of a d-dimensional sphere of radius r.

Answer: (d) In Chapter 2, we saw that the multiplicity Ω for an ideal gas consisting of N non-
interacting molecules in a volume V was proportional to the number of different ways that the location x
of each molecule’s center of mass could be varied, times the number of ways that the momentum p of
each molecule’s center of mass could be varied.

For a one-dimensional “volume” of length L, a particular molecule’s location (given say by the values
of a coordinate x along the length of the nanotube) can be anywhere inside that volume and so is
proportional to L. For a gas of N independent molecules, each molecule’s position can vary indepen-
dently of the positions of the other molecules so Ω ∝ LN which rules out answer (a). The number of
ways that the N momenta pi = pix̂ of all the molecules can be varied involves the number of ways
that that the pi can be varied independently when they are constrained by the conservation of total
energy

∑
i p2

i /(2m) = U = constant or

p2
1 + p2

2 + . . . + p2
N = 2mU. (66)
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The set of N points (p1, . . . , pN ) that satisfy this equation is the set of points on the surface of a N -
dimensional sphere of radius

√
2mU and so the number of ways that the momenta coordinates can vary

is proportional to AN (
√

2mU). Thus Ω ∝ LNAN (
√

2mU) and the answer is (d). (The answer (b) is not
correct since the momenta do not vary independently of one other, they are linked together by energy
conservation.) Since the molecules are assumed to be identical, a 1/N ! factor needs to be included in Ω
since interchanging any two particles (which means exchanging their position and momentum vectors)
yields the same state. The 1/hN factor is needed to eliminate the proportionality and count the actual
number of available states; the uncertainty principle ∆x∆p ≥ h implies that, for each molecule, the
two-dimensional space of positions x and momenta p is divided into cells of size ∆x ∆p ≈ h.

Two related questions that I thought of asking on this exam:

(a) What is the partition function ZN for N identical non-interacting monoatomic atoms that move
freely along a one-dimensional nanotube?
This problem is actually easier than Multiple Choice 4 because energy is not conserved (the
system is in contact with a heat reservoir with which it can exchange energy). For identical
non-interacting particles, ZN = ZN

1 /N ! where

Z1 =
∫ ∞

−∞

∫ L

0

e−p2/(2mkT ) dx dp

h
=

L
√

2πmkT

h
=

L

λQ
. (67)

(b) What is the multiplicity Ω of N identical non-interacting atoms that move about on the surface
of a sphere of radius R? Answer: Ω ∝ A2(R)NA2N (

√
2mU). Such particles are described by two-

dimensional momentum vectors, and so 2N is the dimensionality of the momentum hypersphere.

5. A ferromagnet at absolute zero has all of its N À 1 spin-1/2 magnetic moments aligned in parallel (even
in the absence of an external magnetic field). The ferromagnet is then heated until its temperature
exceeds its Curie temperature, at which point the magnetization is zero. The change in entropy ∆S
of the ferromagnet is then approximately given by

(a) 0

(b) 2Nk

(c) 2Nk

(d) k ln(2)

(e) Nk ln(2)

Answer: (e) The entropy of the ferromagnet at absolute zero when all of its spins are aligned
is S = k lnΩ = k ln(2). The multiplicity Ω = 2 since, in the absence of an external magnetic field, the
spins in a ferromagnet can all be parallel in two ways, all pointing along some given direction or all
pointing in the opposite of some given direction.

The problem states that the magnetization of the magnet vanishes above the Curie temperature which
means that there are equal numbers of up and down spins. (More accurately, on average there are
equal numbers of up and down spins since, at high temperature, each spin will be switching from up
to down randomly, independently of what the other spins are doing.) The multiplicity of this state is
something you learned to calculate in the first third of the course (Chapter 2), namely the number of
different ways one can choose Nup = N/2 up spins out of a total of N spins. The high-temperature
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zero-magnetization multiplicity can then be approximated as

Ω =
(

N

Nup

)
(68)

=
(

N

N/2

)
(69)

=
N !

(N/2)! (N/2)!
(70)

≈
√

2πN (N/e)N

(√
2π(N/2) [(N/2)/e]N/2

)2 (71)

≈
(√

2πN

πN

)
NN

(N/2)N
(72)

≈ 2N . (73)

Here I first used Stirling’s approximation for N ! and for (N/2)!, and then I dropped the factor in
parentheses in Eq. (72) since it is “only” a big number that multiplies a very big number 2N (if we
assume that N is of order Avogadro’s number). The corresponding entropy S = k lnΩ = k ln(2N ) =
Nk ln(2) so we finally find:

∆S ≈ Nk ln(2)− k ln(2) ≈ Nk ln(2), (74)

Note that this result is not exact, we did drop a multiplicative factor that was not important (line
Eq. (72)), and we approximated N − 1 as N . Eq. (74) based on the change in multiplicity could
be tested experimentally via calorimetry, by estimating the entropy change ∆S =

∫ TC

0
CP (T )/T dT

associated with heat capacity CP (T ) of the ferromagnet.

6. The physicist Freeman Dyson has speculated about advanced civilizations that would harness the
entire power of a star by surrounding it with an immense opaque shell that would trap all of the star’s
energy. Assume in the future that the human race disassembles the planet Venus (for which no one ever
did find a good use) and uses its material to create a thin shell of thickness 100 meters that entirely
surrounds the Sun, with a radius that is 1.1 times the radius of the Sun. After the Sun with its shell has
reached a steady state, the difference ∆TS between the the Sun’s new surface temperature and previous
surface temperature, and the difference ∆TE between the Earth’s new steady-state temperature and
its previous temperature will satisfy

(a) ∆TS = 0 and ∆TE = 0.
(b) ∆TS = 0 and ∆TE > 0.
(c) ∆TS = 0 and ∆TE < 0.
(d) ∆TS > 0 and ∆TE = 0.
(e) ∆TS > 0 and ∆TE > 0.
(f) ∆TS > 0 and ∆TE < 0.

Note: For the purpose of the problem, assume that difference in radius of the shell and Sun can
be ignored, and that the Sun and shell are perfect blackbody thermal emitters. Through its fusion
reactions, the Sun emits the same constant total power, whether or not it is covered with a shell.

Answer: (d) This problem was a variation of the homework problem you solved recently, in which
you calculated how an infrared opaque atmosphere caused the Earth’s surface to increase in temperature
beyond what an energy balance argument (power received from Sun versus power radiated into space)
predicts.

Here the insight is that the Sun, through its nuclear reactions, radiates a constant amount of power
out into space. So if we surround the Sun with a shell and assume everything is in equilibrium so the
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temperature of the shell and the Sun’s temperature have stopped changing, the shell has to transmit
out into space the same amount of power as the Sun without the shell (otherwise the shell’s temperature
would continue to change as it absorbed more power from the Sun than it radiated out into space).

This observation implies two things: that the shell has to have the same temperature as the original
surface temperature T = 5, 800 K of the Sun (so that the total power emitted 4πR2 σT 4 out into
space is unchanged) and that the temperature of the Earth will not change, ∆TE = 0, since it will be
receiving the same amount of power from the shell as from the Sun. In fact, someone on Earth will
not be able to tell that the Sun has been covered by a shell since the shell will be emitting exactly the
same blackbody spectrum and power as the Sun itself. (However, a spectroscope would reveal that the
Sun is covered by a shell since all kinds of spectral lines coming from partially excited atoms in the
Sun’s corona will not longer be present.)

Since the inner and outer surfaces of the shell are both blackbody emitters at the same temperature,
the shell not only emits power out into space but also emits an equal amount of power back towards
the Sun’s surface. This implies that the Sun’s surface will increase in temperature so ∆TS > 0 (so (d)
is indeed the answer to this problem). In fact, the Sun’s surface temperature has to increase just
enough to provide the power transmitted out into space by the shell and the power transmitted by
the shell back toward the Sun, which is twice the original power radiated by the Sun. Since the power
radiated goes as T 4, to double the power radiated, the Sun’s surface temperature would have to increase
to 21/4 × 5, 800 ≈ 1.19× 5, 800 = 6, 900 K.

A few more comments:

(a) As stated, this problem makes no sense. All known materials vaporize at temperatures of 6,000 K,
so an advanced civilization would not want to let a shell so close to the Sun reach thermodynamic
equilibrium or, more obviously, would want to build the shell further from the Sun.

(b) It was important for this problem to assume that the shell had about the same radius as the Sun.
If the shell were considerably bigger than the Sun, the fixed power emitted 4πR2

shell σT 4
shell would

now correspond to a lower shell temperature (bigger R means smaller T for a fixed luminosity)
and then the temperature of the Earth would decrease. I’ll let you play with the numbers, to
see how big the shell would have to be for its surface temperature to be a comfortable 300 K,
at which point humans could live comfortably on the enormous interior surface (and one could
rotate the entire shell so that people would feel an effective gravity toward the inside of the shell).
I’ll also let you play with the numbers to see if there is enough matter in our solar system to build
such a large shell. (Venus in facts contains just enough matter to build a 100 m thick shell of
radius 1.2RSun.)

(c) You can learn more about Dyson spheres from the Wikipedia article “Dyson sphere”. If you like
science fiction, you might enjoy reading a 1970 novel by Larry Niven called “Ringworld” which
concerns the discovery and exploration of a huge ring encircling a remote star, whose purpose is
to trap some (but not all) of the energy of the star and to provide a huge amount of living space.
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