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Physics 176 Final Exam

Professor Greenside
Thursday, May 6, 2010

Please read the following carefully before starting the test:

1. This exam is closed book and will last the entire exam period.

2. No calculators or other electronic devices are allowed.

3. Please hand in your two pages of notes with your exam (and put your name on the two pages).

4. Look over the entire exam and get a sense of its length, what kinds of questions are being asked, and
which questions are worth the most points.

5. Answer the true-false and multiple choice questions on the exam itself. Answer all other questions on
the extra blank pages. If you need extra pages during the exam, let me know.

6. Please write your name and the problem number at the top of each extra page.

7. Please write clearly. If I can not easily understand your answer, you will lose credit.

8. Unless otherwise stated, you must justify any written answer with enough details for me to understand
what you are doing.

9. If you are not sure about the wording of a problem, please ask me during the exam.
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Problems That Require Writing

Please write your answers to the following problems on extra blank sheets of paper. Also make sure to write
your name and the problem number at the top of each sheet. Unless otherwise stated, you need to justify
your answers to get full credit.

1. (10 points) Sketch qualitatively correct graphs of the Gibbs free energy G = U − TS + PV versus
temperature T for the three phases of water (ice, water, and steam) at atmospheric pressure. You
should draw your three graphs on the same set of axes so that you can see how they imply which phase
is stable at a given temperature. Also make sure to indicate where on your temperature axis T = 0◦ C
and T = 100◦ C.

2. (20 points) Consider the following 3-step cyclic process A → B → C → A in the pressure-
volume plane that characterizes an ideal monoatomic gas: the gas starts at point A = (V0, P0) with
initial temperature T0, initial pressure P0 and initial volume V0. The gas then expands isobarically
to point B = (2V0, P0), is then compressed by following a straight line segment from point B to the
point C = (V0, 2P0), and finally the gas is brought back to the the point A by an isochoric process.
After this cycle is carried out once, determine

(a) the total change in energy ∆U of the gas;
(b) the total heat Q added to the gas;
(c) the total work W done on the gas;
(d) the total change in temperature ∆T of the gas;
(e) the total change in entropy ∆S of the gas.

Assume that each step is carried out quasistatically (the gas and environment are always in thermo-
dynamic equilibrium).

3. (10 points) Estimate to the nearest power of ten how many candy bars you would have to eat during
a 24-hour period to supply the energy that you lose to the surrounding environment via blackbody
radiation from your skin. To simplify this problem, assume that during this 24-hour period you are
floating in outer space without clothes so that no heat is returned to your body by clothes, reflection,
or by surrounding air, and assume that your skin is a perfect blackbody emitter (emissivity e = 1).

Note: a typical candy bar provides about 250 Calories, one Calorie is about 4,200 J, and the Stefan-
Boltzmann constant has the value σ ≈ 6× 10−8 W/(m2 K4).

4. (15 points) In one of the other universes of the multiverse, there is a particle (let’s call it a mirron)
that obeys the laws of quantum mechanics but unlike a boson or fermion, a mirron has the property
that, for any single-state quantum energy level ε, there can be 0, 1, or 2 mirrons in that energy level.
Mirrons have the further properties that their total number is not conserved and that each mirron
can exist in three distinct polarization states. If a finite volume V of mirrons is in thermodynamic
equilibrium with temperature T and if mirrons interact weakly so that they form an ideal gas, determine
the energy distribution function D(ε) for mirrons (i.e., the amount of energy contributed by mirrons
whose energies lie in the range [ε, ε + dε]). Determine also how the pressure P and heat capacity CV

of a mirron gas vary with the temperature T (your answers here will be simple powers of T ).

Note: In a cubic box of volume V = L3, the quantum states of this particle are labeled by positive
integers nx, ny, and nz, and the energy of a given mirron state is given by ε(nx, ny, nz) = ε(n) = αn2/L2

where α > 0 is a constant, L is the size of the cubic box, and n =
√

n2
x + n2

y + n2
z.
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5. (10 points total) Consider a magnetic substance of volume V that responds to the presence of a
magnetic field B of strength B inside the substance by becoming magnetized along the direction of B
with a magnetization of magnitude M . In studying the thermodynamics of magnets, it turns out that
a key variable is an auxiliary magnetic field H defined by

H =
1
µ0

B − M

V
, (1)

where µ0 is the vacuum permeability. It then turns out that the thermodynamic potential Gm that is
minimized when the magnetic system is in thermodynamic equilibrium for constant temperature T and
constant fieldH is a magnetic analog of the Gibbs free energy that satisfies the following thermodynamic
identity:

dGm = −S dT − µ0M dH. (2)

(a) (5 points) Derive an analogue of the Clausius-Clapeyron relation for the slope of a phase
boundary in the H−T plane of this magnetic substance. You should write your equation in terms
of the difference in entropy of the two phases.

(b) (5 points) When certain metals are cooled to a sufficiently low temperature in the presence of
an external magnetic field, the metal can become a so-called type-I superconductor in which the
resistance decreases enormously. (Superconducting wires are used in the magnets at the Large
Hadron Collider and have been proposed for use in national power grids, to transport electricity
over long distances without loss.) A representative phase diagram for a type-I superconductor is
given by the following figure

In such a superconductor, surface currents flow in such a way so as to completely cancel the
magnetic field inside (that is B = 0 but H is not zero in Eq. (1)). Given that the magnetization M
of the metal is essentially zero in its normal state (“normal” means “non-superconducting”):

i. Use your magnetic version of the Clausius-Clapeyron equation to determine which phase has
the greater entropy, superconducting or normal.

ii. Determine what are the differences in entropy of the two phases at the two end points of the
superconducting-normal phase line.

6. (15 points) During the semester, we discussed how to calculate the fractional coverage θ of a surface
that was in equilibrium with a surrounding ideal gas of identical atoms of mass m that had a fixed
temperature T and fixed chemical potential µ. We first assumed that the surface resembled an egg
carton with specific fixed locations where an atom could adsorb with binding energy εs < 0. (The
subscript s means “surface”.) We then calculated the grand partition function Z for the surface, from
which we were able to calculate the average number of occupied sites, which then gave the coverage.
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Solve this problem again—calculate the surface particle density ns = Ns/A as a function of the external
gas pressure P where Ns is the number of adatoms and A is the surface area—but now make a different
assumption about the surface: instead of having specific binding sites like an egg carton, assume that
the surface is perfectly smooth so that, once an atom adsorbs (again with a binding energy εs < 0),
the adatom can glide around as a free particle and all the adatoms together form a two-dimensional
ideal gas in a finite surface area A.

Is your answer again a Langmuir isotherm, with ns ∝ P/(P0 +P ) where P0 is some constant? That is,
does the behavior of surface coverage with pressure depend on whether adatoms bind in fixed locations
or are free to move about?

Two hints: thermodynamic equilibrium between the two-dimensional surface gas and surrounding gas
requires that their chemical potentials be equal, and the energy of an adatom can be written in the
form E = ε+(p2

x +p2
y)/(2m) (if we assume that the surface is the xy plane of some coordinate system).

7. (35 points total) As a simple model of a so-called antiferromagnet, consider three identical spin-1/2
magnetic dipoles that are placed at the coordinates (x, y) = (−1, 0), (0, 0), and (1, 0) of an xy Cartesian
coordinate system. The entire system is immersed in a uniform magnetic field B = Bŷ of strength B
that points in the positive y direction of the coordinate system. Unlike the dipoles of a paramagnet,
these magnetic dipoles are so close to one other that adjacent dipoles interact (but not dipoles that
are not nearest neighbors). If we describe the state of each dipole by a spin variable si = ±1/2 that
has the value +1/2 if the spin is up (points in the ŷ direction) and has the value −1/2 if the spin is
down, the energy of a particular state of this system can be written in the form:

E(s1, s2, s3) = J (s1s2 + s2s3)− 2µB (s1 + s2 + s3) . (3)

The constant J > 0 is called a “coupling constant” that measures how strongly one spin couples to its
neighbor, and a positive J favors antiparallel nearest neighbors. The term −2µB(s1 + s2 + s3) is the
one you have seen before in our discussion of a paramagnet.

(a) (10 points) Summarize in a table with several columns all the microstates of this system. For
each microstate, give its energy for general values of J and B. Then list the degeneracy of the
states for the two cases of zero external magnetic field B = 0, and for a small external magnetic
field such that 0 < B ¿ J/µ (nearest neighbor interactions are much stronger than the interaction
of each spin with the external magnetic field).

(b) (10 points) Assume now that this spin system is allowed to reach thermodynamic equilibrium
by placing it contact with a thermal reservoir with constant temperature T . For each of the
following three conditions, deduce and give the values of the energy U , the entropy S, and the
magnetization M(T, B) = 2µ(s1 + s2 + s3) (so nine numbers in all).

i. T = 0 and B = 0.

ii. T = 0 and 0 < B ¿ J/µ.

iii. B = 0 and kT À J .

(c) (15 points) For the case of zero external magnetic field (B = 0), deduce and sketch how the heat
capacity C(T ) of this system varies with temperature for T ≥ 0. Also calculate the approximate
functional behavior of C(T ) for low temperatures (kT/J ¿ 1) and for high temperatures (kT/J À
1).

Note: “approximate functional behavior” in some limit means carrying out some kind of Taylor
series approximation to the lowest-order nontrivial term. You can also be efficient by avoiding an
explicit calculation of C(T ) (which is a bit unwieldy). Instead, figure out qualitatively how the
energy E(T ) varies with temperature and also deduce the functional forms of E(T ) for small and
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large T . You can then differentiate those limiting expressions of E to get the limiting behaviors
of C(T ).

True or False Questions (2 points each)

For each of the following statements, please circle T or F to indicate whether a given statement is true or
false respectively.

1. T / F It is possible for the phase line separating a crystalline solid phase from a liquid phase in
a temperature-pressure phase diagram to end abruptly in a critical point.

2. T / F A system can be in thermodynamic equilibrium in the presence of a time-independent but
spatially varying electric field.

3. T / F A gas of N identical particles is ideal if and only if the single particle partition function Z1

satisfies Z1 À N .

4. T / F At a low temperature of 10−3 K, metals have a higher heat capacity than insulators.

5. T / F The root-mean-square variation ∆n(f) of the number of photons in an equilibrium photon
gas that have frequency f (i.e., are in the energy level ε = hf) is smaller than the average number n(f)
of photons that have frequency f .

6. T / F In a temperature-pressure phase diagram, the solid-gas phase transition line always passes
through the origin P = T = 0.

7. T / F If three tiny holes are punched in the sides of a tall vertical enclosed cylinder near
the cylinder’s bottom, middle, and top, and if the cylinder contains an ideal gas in thermodynamic
equilibrium, then the loss of gas by effusion will occur at the same rate for all three holes.

8. T / F If two identical blocks of metal are welded to form a single larger metal block, the Fermi
energy EF will now be larger.

9. T / F The chemical potential µ of an ideal gas is zero if and only if the particles that make up
the gas have zero mass.

10. T / F When a star supernovas and most of its mass collapses into a black hole (which is then
characterized by just its mass M , charge Q, and angular momentum Ω), the entropy of the hole is
much less than the entropy of the original star.

11. T / F For N of order Avogadro’s number, ln[(N !)!] ≈ N ! ln(N).

12. T / F For an equilibrium low-density ideal gas that consists of N identical molecules, the
single-particle partition function Z1 is an extensive variable.

13. T / F In a universe with ten spatial dimensions (a possibility suggested by string theory), the
heat capacity CV of an equilibrium ideal gas consisting of N identical atoms with temperature T has
the same value (3/2)Nk that the same gas would have in our three dimensional universe.
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14. T / F The temperature dependence of the pressure of a photon gas does not depend on whether
the gas is three-dimensional or two-dimensional.

15. T / F There are 130 distinct ways to place three identical bosons in ten degenerate energy levels.

16. T / F The equilibrium temperature of the Earth due to absorption of sunlight and blackbody
emission depends on the radius of the Earth.
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