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Thermodynamic Concepts and Facts

1. Practical criteria for identifying when a macroscopic system is in thermodynamic equilibrium: all
macroscopic features are time independence, temperature same everywhere, pressure same everywhere
unless there is an external spatially varying field, chemical potential same everywhere, properties
independent of history, and no relative macroscopic motion (only rigid rotation and translation of the
macroscopic system allowed).

2. Concept of a relaxation time τ , especially thermal, diffusive, and mechanical relaxation times. Know
the fact that τ ∝ L2 where L is some characteristic size of the system, and understand how the L2

scaling is connected to a random walk arising from collisions.

3. The concepts of thermal energy U , heat Q and work W for some macroscopic equilibrium system, and
that they are related by the first law of thermodynamics, ∆U = Q +W . Make sure you understand
how the signs of Q and W are chosen.

4. The concept of a state variable such as energy, volume, entropy, temperature, and chemical potential.
However, heat and work are not state variables.

5. The concept of an equation of state that relates various state variables (PV = NkT is an example).

While most equations of state are discovered experimentally and known empirically, they can sometimes
be discovered by calculating the pressure P in terms of some thermodynamic potential, e.g., P =
−(∂F/∂V )T,N , which in turn lets one compute P in terms of a partition function.

6. The concepts of intensive and extensive thermodynamic variables.

7. The definition and applications of heat capacity and specific heats, especially that CV = (∂U/∂T )V
and CP = (∂H/∂TP where H = U + PV is the enthalpy. One therefore has CP = CV + P (∂V/∂T )P .

8. Detailed quantitative knowledge of the experimental heat capacities C(T ) of a solid, of a gas of identical
diatomic molecules, and of a paramagnet as a function of temperature.

9. The concepts of quasistatic, reversible, and irreversible thermodynamic processes.

10. The concept of a quasistatic adiabatic process, which is also a constant-entropy process.

11. How to calculate changes in entropy: via ∆S = Q/T for a constant temperature process (phase
transition or reservoir) and via integrals

∫
C(T )/T dT over temperature ranges involving a known heat

capacity C(T ).

12. The thermodynamic definition of temperature 1/T = (∂S/∂U)N,V in terms of the entropy. From a
given equation of state S = S(U, V,N), how to derive the temperature T of the system, the energy
dependence U(T ) and so the heat capacity C = C(T ).

13. How to calculate the changes in energy, heat, work, temperature, and entropy for an arbitrary process of
an ideal gas (or of some other substance with a known equation of state) as parameters like temperature,
pressure, and volume are changed in various ways. Familiarity with isothermal, adiabatic, isobaric,
and isochoric processes.

14. The concept of the efficiency of a heat engine, and that a Carnot cycle is capable of achieving the
maximum possible efficiency, although a Carnot cycle itself is impractical for engineering applications
since it involves two isothermal processes.
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15. How to show that the criterion of an isolated equilibrium system being in a state of maximum entropy
implies that the temperature and chemical potentials must be the same for all macroscopic subsystems,
and further be able to show that energy necessarily flows from high-temperature to low-temperature
subsystems in order for the entropy to approach a maximum.

16. The third law of thermodynamics: that the entropy and heat capacity of a system go to zero as T → 0.

17. The thermodynamic identity dU = TdS − PdV +
∑

i µidNi and how to use such an identity to derive
relations such as P/T = (∂S/∂V )V,Ni .

18. How to derive thermodynamic identities for other thermodynamic potentials such as the Helmholtz
free energy F = U − TS or Gibbs free energy G = U − TS + PV , and how to derive thermodynamic
potentials that are functions of particular variables such as T , V , and µ.

19. The equipartition theorem as applied to gases and solids, and the range of validity of the equipartition
theorem. The concept of “a degree of freedom” and the idea that degrees of freedom can freeze out
with decreasing temperature. N. The degree of freedom can be determined experimentally through
the adiabatic exponent γ = (f + 2)/f via the relation PV γ = constant. How to use the equipartition
theorem to estimate the order of magnitude of the heat capacity of a solid or gas.

Note: A degree of freedom starts to freeze out when the thermal energy kT becomes comparable to or
smaller than the spacings ∆E between adjacent low-level energy levels.

20. Elementary knowledge of phase transitions:

(a) The qualitative features of a pressure-temperature phase diagram, say of water or of carbon
dioxide: the qualitative locations of phases, phase lines, critical points, and triple points, and
knowledge of the actual numerical values of these details for water or CO2.

(b) How the stability of a phase for given T and P is determined by the lowest value of the Gibbs
free energy G and how G varies qualitatively with temperature and pressure (via the relations
∂G/∂P = V and ∂G/∂T = −S).

(c) What is the Clausius-Clapeyron equation, how to derive it, and how to use it.

(d) The van der Waals model as an empirical insightful way to understand how a gas undergoes a
phase transition to the liquid state. You should understand the physical meaning of the two
terms a(N/V )2 and −Nb that are used to modify the ideal gas law to obtain the van der Waals
equation. You should also understand the meaning of Figures 5.21 and 5.23, and how the Maxwell
construction allows one to predict the change in volume of the gas to liquid at a given pressure.
You should understand how to determine the location of the critical point of an equation of state
like the van der Waals model, by the condition that dP/dV = 0 and that d2P/dV 2 = 0.

Statistical Physics Concepts and Facts

1. Elementary kinetic theory of a gas, for the cases of anisotropic velocities (all velocities parallel or
antiparallel to Cartesian axes) and of isotropic velocities, and for the cases of a constant speed and for
a known speed distribution D(v). How to use the ideal gas law PV = NkT and a kinetic argument to
relate the temperature T in gas law to the average kinetic energy of molecules in the gas. Also how to
use a simple kinetic theory to calculate the flux of particles through a tiny hole (effusion) or the rate
at which energy or charge is delivered by molecular collisions to a small area of a wall per unit time.
The concepts of a mean free path and mean collision time.

2. The concepts of microstates and macrostates, and the ability to identify and count microstates for
representative systems.

3. The concept of multiplicity Ω of microstates and how to calculate the multiplicity of simple systems
like a paramagnet or Einstein solid as a function of energy U , number of particles N , and volume V .
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4. The definition of entropy via S = k lnΩ and an understanding of why entropy is additive for weakly
interacting subsystems.

5. How to deduce a specific heat C from a known multiplicity Ω(U): Ω → S → T → U(T ) → C(T ).
How to deduce the qualitative graphical forms of T (U) and C(T ) from a qualitative graph of the
entropy S(U) as a function of energy U .

6. How to derive and apply the Sackur-Tetrode equation for the entropy of an ideal equilibrium gas of
atoms, and how to compute the entropy of mixing of two atomic gases.

7. How to derive the equipartition theorem for an energy with a quadratic degree of freedom.

8. The concept of a Boltzmann factor e−βEs and partition function Z for a small system in equilibrium
with a constant-temperature reservoir, and the concept of a Gibbs factor e−β(Es−µNs) and grand
partition function Z for a small system in equilibrium with a constant-temperature, constant-chemical-
potential reservoir.

9. How to use partition functions to calculate the statistical properties (average, variance) of some macro-
scopic variable X, and how to show that relative fluctuations ∆X/X (standard deviation of a thermo-
dynamic variable over its average) scale as 1/

√
N where N is the number of components.

10. How to calculate thermodynamic properties (U , S, P , µ, C, etc) of some equilibrium system in terms
of its partition function Z via the relations F = −kT ln(Z), or in terms of the grand partition function
Z via the relation Ω = −kT ln(Z).

11. How to use partition functions to calculate the properties of three key systems:

(a) a paramagnet of identical but distinguishable spins (not necessarily spin-1/2).

(b) an ideal gas of identical molecules that can rotate and vibrate and that have internal electronic
structure. This includes the Maxwell speed distribution.

(c) and an Einstein solid consisting of N identical quantum harmonic oscillators.

and how to apply this knowledge to other systems whose energy states are known.

12. Statistical mechanics of ideal quantum gases:

(a) The criterion Z1 = (V/VQ)Zint > N that determines when a non-quantum approach is acceptable

(so ZN ≈ ZN
1 /N ! for an ideal gas of identical particles). Here VQ = (h/

√
2πmkT )3 is the

thermal “quantum volume”, Zint is the partition function of internal molecular degrees of freedom
(rotation, vibration, electronic).

(b) The concepts of a fermion and boson in terms of how many particles can be in a given energy
state, and how to determine conceptually and experimentally whether a particle is a boson or
fermion.

(c) How to derive and apply the Fermi-Dirac, Bose-Einstein, and Boltzmann distributions for the
average occupancy n(ε) of a given energy level ε.

(d) How to use an expression of the form

U = α
∑
nx

∑
ny

∑
nz

ε(nx, ny, nz)n[ε(nx, ny, nz)], (1)

to analyze properties such as the pressure, entropy, and heat capacity of a quantum ideal gas.
Here the sums go over quantum states (nx, ny, nz) of free particles in a cubic box of side L.
The constant α is the number of particles that can be in the same state or that have independent
polarizations. One key trick is approximating the sums by integrals and then switching to spherical
coordinates (n, θ, φ).
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(e) How to use Eq. (1) to calculate properties of a zero-temperature ideal gas of electrons (fermions),
and the concepts of a Fermi energy EF and Fermi temperature TF . An understanding of why the
heat capacity of an electron gas is proportional to T for temperatures T � TF .

(f) How to calculate properties of an equilibrium photon gas, in particular the Planck energy distri-
bution, the pressure and entropy of a photon gas, and the Stefan-Boltzmann radiation law. Why
the chemical potential µ = 0 for a photon gas.

Mathematical Skills

The following are key mathematical skills related to thermal physics that you should be familiar with:

1. How to evaluate simple multivariate integrals.

2. How to evaluate definite integrals by differentiation with respect to a parameter, especially the definite
integration of a Gaussian and moments of a Gaussian.

3. The definition of the Gamma function and how to evaluate the Gamma function for arguments in
terms of a recursion relation.

4. How to change from Cartesian to spherical or cylindrical (polar) coordinates and evaluate integrals in
the latter coordinate systems.

5. Elementary combinatorics related to the binomical coefficient, for example that allow one to calculate
the number of microstates in a two-state paramagnet or in an Einstein solid.

6. Stirling’s approximation n! ≈
√
2πn(n/e)n, especially in the context of approximating binomial coeffi-

cients
(
n
k

)
for integers n, k � 1.

7. How to approximate various expressions by the first few terms in a Taylor series without having to
compute explicit derivatives for the coefficients of the Taylor series. An important example would
be the ability to calculate the leading order behavior for the heat capacity C(T ) of some systems for
regimes of small temperature and of large temperature.

8. How to show that any smooth function f(x) with a single global maximum raised to a large power N
can be accurately approximated by a Gaussian centered on that maximum whose width scales asN−1/2.

9. The idea of approximating discrete sums with sufficiently many slowly varying terms by an integral:

N∑
i=1

f(i) ≈
∫ N

1

f(x) dx. (2)

This trick is used to approximate the high temperate partition function for the rotational states of a
non-symmetric diatomic molecule AB.

10. How to calculate the probability density D(y) for a continuous variable y = y(x) that is a known
function of x, from a known probability density D(x). An example would be how to calculate the
probability density of kinetic energies in an equilibrium gas from the Maxwell speed density. Also
how to deduce a probability densitys f(x) or f(x, y) that depends on fewer variables than a given
density f(x, y, z).
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Key Equations (Not a Complete List)

PV = NkT, ∆U = Q+W, U = Nf (kT/2), vrms =
√
3kT/m, (3)

PV γ = const, V T f/2 = const, γ =
f + 2

f
. (4)

(
P + a

N2

V 2

)
(V −Nb) = NkT or p =

8t

3v − 1
− 3

v2
, (5)

where

Vc = 3NB, Pc =
1

27

a

b2
, kTc =

8

27

a

b
, T = tTc, P = pPc, V = vVc. (6)

C =
Q

∆T
, L =

Q

m
, CV =

(
∂U

∂T

)
V

, CP =

(
∂U

∂T

)
P

+ P

(
∂V

∂T

)
P

. (7)

S = k lnΩ, S =
Q

T
, ∆S =

∫ T2

T1

C(T )

T
dT, S = Nk

(
5

2
+ ln

[
V

N

(
4πm

3h2

U

N

)3/2
])

. (8)

E = −∂ln(Z)

∂β
. CV =

1

kT 2

(
E2 −

(
E
)2)

, N = −∂ln(Z)

∂x
, x = β(ε− µ). (9)

D(v) = 4π
( m

2πkT

)3/2
v2 e−mv2/(2kT ), v =

√
8kT

πm
, v2 =

3kT

m
. (10)

F = U − TS, dF = −S dT − P dV + µdN, Z =
∑
s

e−βU(s), F = −kT ln(Z). (11)

G = U − TS + PV, dG = −S dT + V dP + µdN, G = Nµ. (12)

(
∂G

∂P

)
T,N

= V,

(
∂G

∂T

)
T,N

= −S,

(
dP

dT

)
12

=
S1 − S2

V1 − V2
=

L12

T (V1 − V2)
. (13)

Φ = U − T S − µN, dΦ = −S dT − P dV −N dµ, Z =
∑
s

e−β[U(s)−µN(s)], Φ = −kT ln(Z). (14)

Ztotal ≈
1

N !
ZN
1 , Z1 = ZtransZint =

V

VQ
Zint, VQ =

(
h√

2πmkT

)3

, µgas = −k T ln

(
V Zint

NVQ

)
.

(15)

pn =
h

λn
=

hn

2L
, εelectron =

p2

2m
=

h2

8mL2

(
n2
x + n2

y + n2
z

)
, εphoton = pc =

hcn

2L
. (16)

εF =
h2

8m

(
3N

πV

)2/3

, U =
3

5
NεF , P =

2

3

U

V
. (17)
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Uphoton = 2
∞∑

nx=1

∞∑
ny=1

∞∑
nz=1

ε(n)nPlanck(ε) = 2
∑

nx,ny,nz

hcn

2L

1

eβhcn/(2L) − 1
(18)

power

area
= σT 4, I =

L
4πd2

, L =
(
4πR2

)
× σ T 4. (19)

(
n

m

)
=

n!

m!(n−m)!
, n! ≈

√
2πn

(n
e

)n
, ln(1 + x) ≈ x. (20)

∫ ∞

0

e−αx2

dx =

√
π

2
α−1/2,

∫ ∞

0

x e−αx2

dx =
1

2
α−1, (21)

cosh(x) =
ex + e−x

2
, sinh(x) =

ex − e−x

2
, tanh(x) =

sinh(x)

cosh(x)
. (22)

ex = 1 +
1

1!
x+

1

2!
x2 + . . . , 1 + x+ . . .+ xN−1 =

1− xN

1− x
, (1 + x)α ≈ 1 +

α

1!
x+

α

1

α− 1

2
x2 + . . . . (23)
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