
Answers to Physics 176 One-Minute Questionnaires
April 4 through April 21, 2011

How is that we can begin looking for energy spectra inside a black
box (quite literally) and then apply that to energy emissions of
objects like stars, plants, etc which aren’t enclosed in a box? Or,
put another way, why is the Planck spectrum applicable to many
examples of radiation not inside the conditions by which it was
derived?

The answer is given briefly (and somewhat incompletely) on pages 302-303
of Schroeder, which I did not have time to mention in the last lecture. It
was Kirchhoff (the same Kirchhoff of the Kirchhoff laws you learned about in
your intro physics course regarding laws for electrical circuits) in 1859 who
argued that a black (i.e., perfectly absorbing) surface in equilibrium with
a photon gas (say the wall lining a box containing the gas) must radiate
away exactly as much radiation per second and per unit area, with the same
Planck spectrum, as the wall receives in order for the wall and gas to be in
equilibrium. But the radiation of light from the wall does not depend on
the presence of the photon gas itself and so one concludes that the surface
of an opaque object that is in equilibrium with temperature T must itself
produce (radiate away) light that is consistent with being in equilibrium,
i.e. light that satisfies the Planck spectrum and Stefan’s law of radiation,
Eq. (7.98) on page 303 of Schroeder. The argument depends on the existence
of solid filters of different kinds that can pass light only over a small range
of frequencies or that only let linearly or circularly polarized light through.
Such filters are readily constructed for light in the visual range, but only
exist in principle for all bands of wavelengths.

Refinements of Kirchhoff’s argument also leads to the conclusion that
an equilibrium photon gas must be homogeneous (have the same energy
density U/V everywhere in space), isotropic (photons move in all possible
directions with equal likelihood) and unpolarized. For example, if the light in
an equilibrium photon gas were partially polarized, you could place a linear
polarizing filter in the gas, which would not affect thermal equilibrium (if the
filter has the same temperature as the gas) but would cause a temperature
difference to arise by letting some light through and blocking other light,
contrary to the assumption that the gas is in equilibrium and so that the
temperature is everywhere the same.

The Wikipedia article “Kirchhoff’s law of thermal radiation” gives more
information, and the book by F. Reif on the 176 reserve in the library has
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a particularly clear (although detailed) discussion of the Kirchhoff radiation
law.

I’m still confused about how the background radiation relates to
the diagram you displayed at the end of lecture. The units were
in degrees (I think). Can you elaborate on the meaning of this
diagram and how it was put together with the help of the Planck
spectrum?

I did go through that slide rather quickly, sorry.
The details are somewhat complicated to explain at the level of 176, and

my intent in lecture was just to give you a brief sense that the extremely
small spatial variations in temperature beyond the Planck spectrum provide
rather extraordinary cosmological information about the geometry of the
entire universe (is it curved or flat), the fraction of matter that is baryonic
(neutrons and protons) and other, the fraction of matter that is dark matter,
and so on.

The Wikipedia article “Wilkinson Microwave Anisotropy Probe” (abbre-
viated as WMAP) provides more details than what I mentioned, and also
includes a version of the figure

http://en.wikipedia.org/wiki/File:WMAP_2008_TT_and_TE_spectra.png

that I showed in lecture.
The outline of the logic goes roughly like this. Consider a spherical coor-

dinate system centered on Earth with the z-axis pointing from the Earth’s
center through the north pole, which then allows us to label any point in
Earth’s sky with two angles θ and φ. By flying a sophisticated calorimeter
above the Earth’s atmosphere (the atmosphere blocks many frequencies of
light, especially infrared), one can measure the light intensity I(ω, θ, φ) as
a function of frequency ω that arrives in the device from direction (θ, φ) in
the sky. (In practice, data is collected just for a few frequencies ω, not a full
spectrum.) For each one of these directions, it turns out that the light spec-
trum can be accurately fitted to a Planck spectrum Eq. (7.84) on page 292
of Schroeder. By subtracting this fitted curve from each spectrum recorded
from a given angle, one obtains a small correction ∆I(ω, θ, φ) at each point
in the sky.

These are then further analyzed to extract information. For example, for
a fixed frequency ω, one can fit the angular variation of the data to spherical
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harmonics Y l
m(θ, φ)

f(θ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(θ, φ), (1)

which generalizes the Fourier analysis of a function f(x) =
∑

m fmeimkx of a
single periodic function to a function f(θ, φ) on the surface of a sphere. (See
the Wikipedia article “Spherical harmonics”; this topic often first appears
at the undergraduate level in an upper-level course on electrodynamcis like
Physics 182, when solving a Poisson equation on the surface of a sphere.)

The above plot (the one I showed in class) then shows the magnitude
square of the spherical harmonic coefficients |flm|2 of the light intensity,
averaged over the index m. The index l can be roughly interpreted as an
angle since larger l corresponds to a finer angular structure; note the angular
scale at the top of the figure which starts at 90◦ on the left and decreases
to 0.2◦ on the right. But the precise meaning of the curve requires an
understanding of the index l for a spherical harmonic.

Can you post a link discussing the finite/infinite N particles for a
boson argument?

Sections 9.3 and 9.6 of Reif’s book on reserve give a detailed discussion on
how to derive the Bose-Einstein distribution for a system with finitely many
particles.

The argument I gave in class, and the argument given in Schroeder, is
rigorous for a bosonic system in equilibrium with a reservoir whose chemical
potential µ is constant. The number of particles that the system can ex-
change with the reservoir is then variable and in principle can vary from 0 to
infinity. For a reservoir with a large but finite number of particles, the geo-
metric series would be chopped off at some large number of order Avogadro’s
number, which is effectively infinity.

Reif’s argument starts with the assumption that one has an isolated box
of identical weakly interacting particles. The energy of the system is then
given by

E = n1E1 + n2E2 + . . . , (2)

where ni is the number of particles with energy Ei. The partition function Z
(not the grand partition function Z, Reif does not consider a constant chem-
ical potential reservoir) is then given by a sum over all possible quantum
states

Z =
∑

n1,n2,...

e−β(n1E1+n2E2+...), (3)
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where the total number of particles is finite:

N = n1 + n2 + . . . =
∑
s

ns. (4)

Equations (3) and (4) are harder to analyze than what I discussed in class
which is why I (and Schroeder) chose to avoid going down this path. For
example, the occupation number for the sth state can now be calculated as

ns =

∑
n1,n2,... nse

−β(n1E1+n2E2+...)∑
n1,n2,... e

−β(n1E1+n2E2+...)
. (5)

With some thinking, this can be written in terms of a modified partition
function Zs(N) for N particles that excludes the specific state s:

Zs(N) =

(s)∑
n1,n2,...

e−β(n1E1+n2E2+...+ns−1Es−1+ns+1Es+1+...). (6)

One can show that Eq. (5) then be written as

ns =
0 + e−βEsZs(N − 1) + e−2βEsZs(N − 2) + . . .

Zs(N) + e−βEsZs(N − 1) + e−2βEsZs(N − 2) + . . .
. (7)

One finishes the argument by observing that, for large enough N , Zs(N −
∆N) ≈ Zs(N)e−µ∆N .

What physically occurs that causes He3 to be a boson and He4 to
be a fermion?

The physical occurrence is that one consists of an odd number of fermions,
the other an even number of fermions.

The He3 nucleus (or atom) consists of an odd number of fermions, e.g.,
the nucleus contains two protons and one neutron. There is no way to add
up the spin angular momentum of three spin-1/2 particles to get an even
multiple of h/2 so the spin-statistics theorem then tells us that He3 must be
a fermion. He4 consists of an even number (four) of spin-1/2 particles and
it is then impossible to combine the spins of the protons and neutrons to
get an odd multiple of h/2, implying that He4 must be a boson.

Why is Ag used so frequently in effusion-based experiments?

I don’t know. One wants a substance that can be easily vaporized to form
a gas (low boiling point), a substance that has a single valence electron (the
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physics is simpler to understand than atoms like transition metals that have
several valence electrons, which then form complicated superpositions), and
one wants a substance that is easy to work with experimentally, say not
too corrosive or explosive. Metals like sodium and potassium would be
good choices for the first two criteria (much lower boiling point than silver,
single valence electron) but fail the third criterion since the alkali metals are
corrosive elements. But the answer could also be historical: someone had
some silver sitting around and tried it, it worked, and this motivated other
experimentalists to use silver in later experiments.

What is a phonon? Is it proved to exist?

A phonon is a particle associated with a quantized sound wave. It is anal-
ogous to a photon in that it is a particle that has zero mass and a finite
momentum but differs from a photon by having three possible polarizations
(two transverse, one longitudinal) and a more complicated dependence of the
energy E(px, py, pz) on its momentum p arising from details of the electrical
potentials that nuclei move in. (Photons have the simple energy relation
E = pc.) Phonons also differ from photons in that they can not travel in a
vacuum, they are confined to the interior of a solid medium like a crystal.

Quantum mechanics predicts that any classical continuous field such as
a pressure field (which is what sound is classically), electric or magnetic
field, or gravity must in fact consist of discrete quantized particles. Ap-
plying quantum mechanics to the displacement of nuclei in a solid leads to
the prediction of zero-mass phonon particles with the properties mentioned
above. Gravity must also consist of quantized particles called gravitons but
because gravity is so weak, experiments have yet to confirm the existence
and properties of gravitons.

Many experiments have confirmed in substantial detail the existence
and properties of phonons, they are as real as electrons and photons in that
they lead to experimental consequences whose properties are understood in
quantitative detail. Besides contributing to the heat capacity of a solid,
phonons play an important role in determining the resistivity of a substance
(electrons and phonons scatter off one another, which reduces the flow of
electrons), in the thermal expansion, and in more exotic phenomena like
superconductivity. (Somewhat paradoxically, scattering of phonons off of
electrons can lead to a small attractive interaction between two electrons,
causing them to form a bound state that then acts like a boson called a
Cooper pair such that many Cooper pairs can condense into a ground state.)
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How accurate is the hemoglobin model we derived? It would seem
as if oxygen binding is strongly affected by temperature and other
system variables.

The simple model that I described in lecture, in which two oxygen molecules
bind with greater energy than each molecule by itself, led to a pressure de-
pendence of the oxygen occupation number nO2 that was fairly close to
actual experiment. (But note that Schroeder chose the values of the two
binding energies ε1 and ε2 to give the best possible agreement with experi-
ment.)

The important cooperative behavior of the hemoglobin, in which the
binding of one oxygen molecule makes it more energetically favorable to
bind a second O2 molecule, is not explained by this model, since this was
put in by hand rather crudely. Understanding this cooperative behavior
is a challenging problem in the biochemistry of proteins, one has to look
at the three-dimensional geometry of the folded hemoglobin protein and
understand how oxygen modifies that geometry to facilitate the bonding
of the next O2 molecule. That level of detail lies beyond what can be
reasonably discussed in 176.

It is the case that the ability of hemoglobin to bind and transport oxygen
depends sensitively on temperature and on other details like the concentra-
tion of various ions in water. I am not knowledgeable enough to give a brief
summary of these dependencies, especially on the interesting question of
what evolutionary pressures led to the formation of such a complicated and
capable molecule.

Could you explain this graph again (binding of O2 to hemoglobin
as a function of partial pressure PO2 of oxygen) and its significance?

Not sure what to explain beyond what I mentioned in lecture and in my
lecture notes. Briefly, without cooperative binding so that each O2 molecule
binds independently of the other O2 molecules, hemoglobin holds onto its
oxygen molecules too strongly (the occupation number is roughly constant
with value 1 until the partial pressure of O2 has decreased greatly) which
leads to poor transport properties: the hemoglobin does not give up its
oxygen readily. But with cooperative binding, the occupation number for
oxygen decreases more rapidly with decreasing partial pressure of oxygen
and so is able to release oxygen more readily to various parts of the body.

As usual, Wikipedia provides more information, although not always
easy to understand, look up the article “Hemoglobin”.
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How can we think of the chemical potential? Should it be just
with the µ = −kT ln(P0/P ) formula?

The chemical potential is must easily understood for a system in equilibrium
with a reservoir with constant temperature T and constant pressure P . The
system is then described by a Gibbs free energy G(T, P,N) and, as explained
on pages 164-165 of Schroeder, G = Nµ where N is the number of particles.
Thus the chemical potential µ = G/N is simply the Gibbs free energy per
particle: when a particle is added to the system, its free energy changes
by µ.

This may not be helpful since the free energy G is itself a rather ab-
stract object and can have a complicated dependence on parameters, e.g.,
see Eq. (5.56) on page 182 of Schroeder where he writes down G for a van
der Waals gas. But for an ideal gas, I think of the chemical potential as
being related to the log of the pressure, as given by the equation you wrote
down.

Could you review all CV graphs that we should know, and how
each part of the graph connects to different parts of the course?

By the end of the course, you should have memorized and understand well
the heat capacity for three systems: ideal gas of diatomic molecules, an
Einstein solid, and a paramagnet. You should know that the heat capacity
of an electron gas increases linearly with temperature T and that the heat
capacity of a photon gas is proportional to T 3 (and know how to derive that
result).

Why is a correction to Sackur-Tetrode obtained when using Boltz-
mann? Isn’t the technique still based on multiplicity counting?

In Chapter 6, when we started considering a small system in equilibrium
with a reservoir, we could no longer use the argument of “all accessible
microstates of an isolated system are equally likely” since the system was
no longer isolated, it could exchange energy with the reservoir. So the
technique of computing the entropy in terms of a multiplicity is not valid
and, in particular, the entropy of an ideal gas of molecules no longer is
consistent with the Sackur-Tetrode equation for an ideal gas of atoms.
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Did the free energy F ’s relation to work or Z motivate its creation?

I unfortunately don’t know the history of when and why the Helmholtz free
energy was introduced, nor do I know of a book that discusses this history.
I would be interested to know myself, it is unfortunate that most physics
books leave out historical facts.

Is F merely a convenient definition for a decreasing thermody-
namic quantity, or does it have a physical meaning?

As I discussed in lecture, F is not just a convenient definition but has to
important applications: it helps to determine whether some process that
changes a physical system will occur spontaneously or not (it will if the free
energy decreases). And the change in F determines the maximum amount
of work that can be done by the system.

Are F and G state variables? Are they more/less/equally funda-
mental as S?

They are indeed state variables. One way to see this is from their definitions
such as F = U − TS and G = F + PV . Since U and S are state variables,
so is temperature (as the derivative of S w.r.t. U) and so F = U − TS is a
state variable since U , T , and S are. Similarly, P is a state variable as the
derivative of F or U with respect to volume, and V is automatically a state
variable (V doesn’t depend on the history of how you created the volume).

The potentials F and G are nearly as fundamental as S in that they
decrease monotonically over time until they reach a minimum, corresponding
to thermodynamic equilibrium of the system in contact with a reservoir.
But they are not as fundamental as S since only for an isolated system, can
one invoke the strong assumption that all accessible microstates are equally
probable, which can be used to derive the thermodynamic properties of F
and of G.

Why can we write an integral as
∫
e−mv2/2? What does this mean

without the dvx or something small to integrate over?

If I wrote that during lecture, then I made a mistake. If one has an classi-
cal system whose energy E(q) varies continuously with some parameter q,
then the Boltzmann factor over the partition function, e−βE(q)/Z has to be
interpreted as a probability density, for the system to have a value q that
lies in the small range [q, q + dq].
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Could you direct us to some introductory chaos math with some
applications or examples?

I would first encourage you to find and then read the excellent non-technical
book “Chaos” by James Gleick. It was deservedly a best seller on the NY
Times list of top books for many months and gives a nice overview, through
the eyes and achievements of key researchers who have contributed to chaos
theory and nonlinear dynamics.

A next step would be to read Robert May’s nicely written Nature paper
about the nonlinear behavior of the so-called logistic map xn+1 = rxn(1 −
xn), one of the simplest models that gives insight about nonlinear population
growth. (The variable xn is the population at integer year n normalized by
the maximum possible population so is a variable between 0 and 1, the
parameter r determines the growth rate of the animals like paramecia that
are reproducing.) Here is a link to that paper:

http://www.math.miami.edu/~hk/csc210/week3/May_Nature_76.pdf

Complementary to this article, find and read the article “Chaos” in Scientific
American, December 1986, pages 38-40, first author James Crutchfield.

A next step would be to sign out or purchase Stephen Strogatz’s book
“Nonlinear Dynamics and Chaos” which is nicely written book that is the
most widely used undergraduate textbook about nonlinear dynamics. This
is the book that is also used in Physics 213 at Duke (the intro nonlinear
dynamics course).

What physics courses are most applicable (if I had to pick 2-3) for
ECE?

This would best be discussed in person, my recommendations would change
depending on your interests or goals. Please send me an email to set up a
meeting.
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