
Answers to Physics 176 One-Minute Questionnaires
March 29, 2011

Can you have a probability density that is a function of vectors
instead of the components of a vector?

The answer is yes because there is no practical difference between defining a
probability density (or any function) in terms of the components of a vector
versus the vector itself. For example, a molecule can be described by two
3-vectors x = (x1, x2, x3) and v = (v1, v2, v3) or, completely equivalently,
by the six vector components (x1, x2, x3, v1, v2, v3), so we could write the
probability density as a function of vectors like this, D(x,v), or write it
equivalently as D(x1, x2, x3, v1, v2, v3).

A way to see that these are equivalent is that vector components like xi
and vi can be obtained by operations carried out on the vectors x and v
themselves, for example

x1 = x · x̂, v2 = v · ŷ, (1)

where x̂ is a unit vector along the positive x-axis and ŷ is a unit vector
along the positive y-axis. So any expression involving the components of
the vectors can be alternatively interpreted as some operation involving the
vectors themselves and vice versa.

Are continuous energies (like (1/2)PV 2, mgh), actually continuous
or are they discretized in units of Planck’s constant?

That’s a tricky question. If the universe is finite in size (it is not known
one way or the other but most scientists believe it is), then all energy levels
must be quantized because of the properties of the Schrodinger equation in
a finite region of space. But if you calculate the order of magnitude of the
energy difference ∆E between two energy levels of an electron (the lightest
mass stable particle produces the largest energy difference) in a box of size L
(see Eq. (A.14) on page 369 of Schroeder) where L is of order 10 billion light
years, one gets

∆E ≈ h2

8mL2
(2)

≈
(
7× 10−34 J · s

)2
8× (9× 10−31 kg)× ((10× 109 ly)× 1016m/ly)2

(3)

≈ 10−71 eV, (4)
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which is far far tinier than any experimental device can detect. Even for a
one centimeter cube of some metal like copper, the energy spacings between
the electron energy levels are too small to be measureable.

So the answer to your question is that, for a finite universe, the energy
spacings are in principle always discrete but in practice the energy levels of
free particles are spaced so closely that no experiment can prove they do not
vary continuously. So it is fine to assume that classical energies are perfectly
continuous.

Can you explain why the proof of the equipartition theorem does
not carry over to quantum systems?

One reason is that energy levels of a bound quantum system like a hydrogen
atom are discrete (not continuous) and so there is no chance of describing
the energy of the system as a quadratic expression cq2 of some continuously
varying variable q.

Why energy levels of bound states are discrete is in turn explained in
many introductory books on quantum physics as a basic consequence of
having a wave function Ψ(t,x) that decays to infinity sufficiently rapidly (so
that the integral of |Ψ|2 over all of space is finite, a necessary requirement
for the quantity |Ψ|2 to have the meaning of a probability density) while
simultaneously satisfying the Schrodinger equation. A clear discussion of
how discrete states arise is given in the book “An Introduction to Quantum
Mechanics” by Taylor and French, which is roughly at the Physics 143 level.

In your example of a dielectric material, what is the physical mean-
ing of 〈pz〉 and where does dΩ = sin(θ) dθ dφ in Z come from?

The physical meaning of 〈pz〉 is the extent to which a small vector electric
dipole p = pn̂ = (Qd)n̂ is able to align along some fixed external electric
field, say E = E ẑ, when the dipole is being shaken about by molecular
collisions with a surrounding reservoir. The maximum alignment occurs
when p is parallel to E in which case 〈pz〉 = p and this is what would occur
at absolute zero. For sufficiently high temperatures, 〈pz〉 = 0, the dipole is
fluctuating so much that it has no net alignment with the electric field on
average so its component along the electric field has an average of zero.

The reason why 〈pz〉 is an important quantity scientifically or for en-
gineers is that it can be related to the dielectric constant ε of a dielectric
medium that consists of polar molecules (like a water molecule) whose elec-
tric dipole strength is approximately independent of the strength of the
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external electric field E.
Dielectrics can also consist of non-polar molecules that do not have an

electric dipole in the absence of an electric field, but instead develop a small
dipole (whose strength is now proportional to, rather than independent, E)
because an external electric field polarizes the electron cloud surrounding
the nuclei of the molecule. This is a more complicated case than the case of
fixed dipoles but is discussed in many undergraduate textbooks on electro-
dynamics, e.g., the excellent book “Electricity and Magnetism” by Edward
Purcell.

The solid angle dΩ = sin(θ) dθ dφ arises in the partition function:

Z =

∫ 2π

0

∫ π

0
eβpE cos(θ) sin(θ) dθ dφ = 4π

sinh(βpE)
βpE

, (5)

because, if the angles θ and φ are allowed to vary over an infinitesimal range

0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π, (6)

then all vectors (θ, φ) that lie within the infinitesimal solid angle dΩ =
sin(θ) dθ dφ are basically pointing in the same direction and so should be
treated as equivalent. The quantity dΩ is thus the effective degeneracy of
electric dipoles p

p = p (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)), (7)

that point along the direction (θ, φ).
Perhaps another way to see this, is that the state of an electric dipole of

fixed magnitude p is given by the values of the two angles θ and φ. Thus
the partition function looks like this:

Z =
∑
s

e−βEs (8)

=
∑
n

dne
−βEn (9)

=
∑
θ

∑
φ

d(θ, φ)e−βE(φ,θ) (10)

=

∫ π

0

∫ 2π

0
dΩ eβpE cos(θ). (11)

More generally, if one has some object whose state is defined by some con-
tinuous variables such as (q1, q2, q3) and each variable is allowed to vary
over some infinitesimal range qi, qi + dqi positioned at qi, then the degen-
eracy d(q1, q2, q3) of that state is the Jacobian or phase space volume. In
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Cartesian coordinates, d(x, y, z) = 1, in spherical coordinates, d(r, θ, φ) =
r2dΩ = r2 sin(θ) dθ dφ, in cylindrical coordinates d(r, θ, z) = r dθ dz, and so
on. These are the only cases encountered in practice.

Why do we use momentum rather than velocity in quantum physics?

One reason is that quantum theory (as confirmed by experiments) says that
the fundamental quantity that characterizes a quantum system, the wave
function Ψ(t,x) (here written for a single particle), is a spatially extended
object and so it is not meaningful to assign a velocity vector v = dx/dt to
such an object. For example, the wave function Ψ(t, x) of a free “particle”
moving along the real line is given by

Ψ(t, x) = ekx−ωt. (12)

This wave has a well-defined momentum k but not a well defined velocity
since this function has a finite value throughout all of space.

The second reason is that the velocity of a quantum mechanical object is
not well defined scientifically because the position x is a discontinous func-
tion of time. By definition, v is the change in position x2 − x1 of some
object over a brief time interval ∆t, from an initial starting point x1 to a
final point x2, in the limit that ∆t becomes small. But locating a quantum
object at the initial position x1 requires carrying out some measurement
on the object, and the uncertainty principle ∆x∆p ≥ h̄ implies that the
measurement, while localizing the object to a small region of space, simul-
taneously will induce a large change in the momentum of the particle in
which case it is not possible to talk about the velocity of the particle a short
time ∆t later.

I have heard the word “countably infinite”. Does this word refer
to the first infinity you mentioned, the set of integers?

Yes. A set is called “countably infinite” if there is a bijective mapping (one-
to-one and onto) of the set with the integers, i.e., you can pair each member
of one set with a unique member of the other set. Thus all the integers, the
positive integers, the even integers, the infinitely many prime numbers, and
the rational numbers are all countably infinite. The mathematical symbol
for this infinity is ℵ0 where ℵ is the first letter of the Hebrew alphabet.

The next infinity, denoted by ℵ1, is the infinity of real numbers, which is
also the infinity of irrational numbers, of the complex numbers, and of the
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transcendental numbers (numbers that are not the root of any polynomial
with integer coefficients).

Check out the Wikipedia article “Continuum hypothesis” where you can
learn a bit more about cardinality of infinite sets and some of the profound
mathematical questions raised by trying to understand the different kinds
of infinities.

5


