
Answers to Physics 176 One-Minute Questionnaires
Lecture date: March 21 and March 17, 2011

Where does Earth’s magnetic field come from?

It is known to arise from something called the “dynamo theory”, you can
read about it in the Wikipedia article with that title. The physics involves
a combination of fluid dynamics, the Maxwell equations, and nonlinear dy-
namics and the technical details lie beyond what most undergraduate physics
majors are prepared to understand.

Briefly: the magnetic field is formed and sustained by a combination
of convection of an electrically conducting fluid (for the Earth, liquid iron)
and of rotation arising from the Earth spinning on its axis once every 24
hours. But the exact mechanism of how the field arises remains only roughly
understood. For example, it is difficult to construct experiments involving
rotating convecting liquid metal that operate in the same regime as the
Earth’s iron core, and the mathematics is nonlinear and difficult so that
supercomputer simulations are needed, and it turns out that the parameters
corresponding to the Earth’s core lie barely within reach of the most powerful
computers available. It also turns out that one needs some small initial field
magnetic field to get things going, and the origin of the initial field is poorly
understood.

It is a very good thing the Earth has such a strong magnetic field since it
deflects the solar wind (consisting mainly of energetic protons, which follow
the Earth’s magnetic field lines to the North and South poles) from striking
the Earth’s surface, where it would harm life and scour the atmosphere away.
Mars is believed to have had a liquid convecting iron core at some point,
just like the Earth, but when this core solidified a billion years or so ago
(Mars is one half the diameter of Earth so has a relaxation time that is 1/4
Earth’s relaxation time), Mars lost its magnetic field and the solar wind
caused Mars to lose most of its atmosphere to space.

How good are our weather models at predicting atmospheric con-
ditions on other planets, e.g., Saturn?

This goes beyond my knowledge. I do know that some details of planetary
atmospheres, such as the formation of stripes in the gas giants (Jupiter, Sat-
urn, Uranus, and Neptune) are well understood as a consequence of convec-
tion and rotation, and why large spots like Jupiter’s Red Spot (and similar
spots on Saturn) form and are stable for hundreds of years is understood in
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principle. I also know that all planetary atmospheres (except Mars which
has nearly no atmosphere and Venus, which has no interesting weather be-
cause the planet rotates so slowly) involve turbulence—a temporally and
spatially disordered state of a fluid—which remains difficult to understand
scientifically and computationally, and many details related to heat trans-
port through a turbulent atmosphere or the formation and properties of
clouds remain poorly understood.

You should appreciate that Earth’s atmosphere, and presumably that
of the gas giants, has the technical property of being chaotic, which is a
technical phrase for bounded non-periodic dynamics. Chaos implies that
it is impossible to predict with any future computer and with any future
mathematical algorithm precise details of Earth’s atmosphere on a time scale
better than about 10 days, and presumably this holds for other atmospheres.
This means that mainly certain statistical features can be predicted well
using weather models, such as the average number of hurricanes per year
or the presence of stripes (Hadley cells) in Earth’s atmosphere. But chaos
theory implies that it will not ever be possible to use a computer code to
predict an important practical detail such as whether a hurricane will pass
over Duke University at some time in the future.

Can you give a more detailed explanation of the quantum mechan-
ics relevant to the current topic?

First, take a look at Appendix A, especially Section A.4, in Schroeder where
a casual summary of some key quantum mechanical results is given. This is
likely too brief and qualitative to be satisfying.

Instead of guessing how much detail you are interested in, or if you have
the background (Physics 211 and 212) to understand the details, let me sug-
gest that you take a look at the graduate-level book “Quantum Mechanics:
Non-Relativistic Theory, Volume 3” by Landau and Lifshitz. (I don’t know
of any undergraduate books that discuss the details with any rigor.) An en-
tire chapter, Chapter XI, is devoted to the quantum mechanics of a diatomic
molecule including a discussion of the rotational and vibrational levels, while
Chapter XIII discusses the vibrational levels of polyatomic molecules.

These are not topics discussed in most undergraduate physics courses,
but are discussed in upper level undergraduate physical chemistry courses,
although usually with just the final results given without derivation and
then applied. A good book that discusses rotational motion is “Physical
Chemistry” by McQuarrie and Duke’s John Simon.
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Can you explain why σE = kT
√

C/k approaches a constant for
large T?

The key insight is one that I made on page 5 of my March 22 lectures notes:
that in the limit of high temperature, the thermal average of some quantity
approaches the usual arithmetic average:

lim
T→∞

〈X〉 = lim
T→∞

∑
s

psXs (1)

=
∑
s

(
lim
T→∞

e−βEs

Z

)
×Xs (2)

=
∑
s

1

N
×Xs (3)

=
1

N
(X1 +X2 + . . . XN ) , (4)

assuming there are N distinct states. In general, the thermal average 〈X〉
of some quantity X varies with temperature because of the temperature
variation of the Boltzmann factor and of the temperature variation of the
partition function. But this temperature variation becomes negligible at
high temperatures since each Boltzmann factor becomes approximately 1
and the partition function becomes N , the number of states.

We can apply this insight to the relation you derived in Problem 6.18 on
page 231 of Schroeder, written in this way:

C =
σ2
E

k

1

T 2
, (5)

where
σ2
E = 〈E2〉 − (〈E〉)2 . (6)

If there are a finite number of energy levels, the two thermal averages in
Eq. (6) both approach constants (although different constants) for large
temperatures and so Eq. (5) then indeed implies that C ∝ T−2 for suffi-
ciently large temperatures.

We can go a little further and work out the lowest-order correction to
the infinite temperature limit using Taylor series and so you can see more
clearly how the temperature dependence of C approaches the 1/T 2 behavior.
For large but finite T , β = 1/(kT ) is small and βEs is also small so for each
Boltzmann factor, we have

e−βEs ≈ 1− βEs, (7)
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and the partition function becomes

Z =
∑
s

e−βEs (8)

≈
∑
s

(1− βEs) (9)

≈ N − β
∑
s

Es (10)

≈ N

(
1− β

1

N

∑
s

Es

)
(11)

≈ N(1− βE), (12)

where E = (1/N)
∑

sEs denotes the arithmetic average of the energy lev-
els Es. Note that if T is sufficiently large, βE is also a tiny quantity since
E is a finite sum of energies and so has a fixed finite magnitude.

Next, observe that the thermal average 〈X〉 for large temperatures de-
viates from its infinite temperature limit X (the arithmetic average) by a
small quantity proportional to 1/T :

〈X〉 =
∑
s

(
e−βEs∑
s e

−βEs

)
Xs (13)

≈
∑
s

(
1− βEs

N(1− βE)

)
Xs (14)

≈ 1

N

∑
s

(
1− βEs

1− βE

)
Xs (15)

≈ 1

N

∑
s

(1− βEs)
(
1 + βE

)
Xs (16)

≈ 1

N

∑
s

[
1 + β

(
E − Es

)]
Xs (17)

≈ X +
1

kT
(E −E)X, (18)

where I have dropped second or higher powers of β as being small.
Combining Eq. (5), Eq. (6), and Eq. (18), you should be able to see

without further calculation that, for large but finite T , Eq. (5) picks up a
1/T correction:

C ≈ c1
T 2

+
c2
T 3

. (19)
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So the more precise statement is that, for large temperatures, the heat
capacity can be written as a sum of powers of the small quantity 1/T ,
with the first non-zero term being 1/T 2. For large enough T , we can ignore
higher powers of 1/T than the second.
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