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What is the flavor of Feynman’s particle theory? As in, how did
he go about showing it?

After talking with some colleagues and finding some information on the
Internet, I found that what I knew about Feynman’s ideas was not quite
correct. First, it was evidently not Feynman but his PhD advisor, Professor
John Wheeler, who suggested to Feynman that one reason why all particles
could be exactly identical is that they are all the same particle, but traveling
back and forth in time. Second, the formalism of quantum electrodynamics
(the quantum theory of photons and electrons) formally allows particles to
go back in time in just the same way that Newton’s equations of motion
allow particles to go backwards in time, simply by reversing the sign of the
time variable t everywhere in the dynamical equations.

But in QED, an electron going back in time appears as a positron (posi-
tive antimatter particle) and vice versa (positrons going back in time behave
like electrons). So one reason why the theory can’t be correct is that it pre-
dicts that there should be equal numbers of positrons and electrons, while
only electrons are observed except in rare collisions with enough energy to
produce positrons.

Could you briefly explain why identical particles have to be exactly
identical?

I don’t know of an elementary argument that would be insightful for you.
Quantum field theory, which is the foundation of quantum electrodynamics
(the theory of electrons and photons), quantum chromodynamics (the theory
of the strong interaction, in which quarks interact to form protons, neutrons,
mesons, and other baryonic matter), and the Standard Model (unified the-
ory of electromagnetic, weak, and strong interactions) shows that massive
particles like an electron or proton arise from the empty vacuum by a par-
ticular mathematical mechanism that requires that all particles of a certain
kind be exactly alike.

If you have taken Physics 143 or 211, you have learned that excitations
of the quantum harmonic oscillator, say creating an oscillator in the nth
energy state |n〉 above the ground state |0〉 can be written as multiplying
the ground state by a so-called “creation operator” a†:

|n〉 = (a†)n|0〉. (1)

1



Quantum field theory has analogous statements in which particles like elec-
trons, quarks, neutrinos etc appear as excitations of a ground state, “cre-
ated” by applying certain operators to the ground state. Because there is
a unique way to create one or more particles in this formalism, one gets
the prediction that all particles of the same type must be exactly identical.
Experiments confirm this result.

Why does the h/2 → h in this equation for Ω, ∆x∆px ≥ h/2, right?

Not sure what question you are asking. Several different forms of the un-
certainty principle appear, depending on how precisely one defines the “un-
certainty” of an observable like position or momentum, and one sees an h
or ~/2 = h/(4π) appearing on the right side. (The precise definition is
the root-mean-square of a quantum mechanical operator, which is not how
Heisenberg originally wrote his uncertainty principle.)

It really doesn’t matter since Schroeder is giving a heuristic explanation
of a more complicated “semi-classical” limit of quantum mechanics. If you
start heuristically with the uncertainty principle (which the semi-classical
limit does not), you have to use an h on the right side of the uncertainty
principle to match the answer you get from the semi-classical limit.

A good but advanced discussion of the semi-classical limit, and how it
yields the conclusion that the classical phase space of position and momen-
tum coordinates can be considered as small regions of size ∆x∆px/h, can
be found in Section 48 of Landau and Lifshitz’s famous book “Quantum
Mechanics, Third Edition”.

Could you explain the concept of a multi-dimensional sphere. I
have not dealt with the concept before.

The definition of a sphere is “the set of all points that are a given distance r
from a given point C”, where r is called the radius and C the center of the
sphere. This definition works for any set of objects for which one can define
a distance between objects. For N -dimensional vectors of the form

x = (x1, x2, . . . , xN ) , (2)

one can define a distance d(x,y) between two vectors to be the Euclidean
length of their difference:

d(x,y) =
[
(x1 − y1)

2 + . . . (xN − yN )2
]1/2

=

(
N∑
i=1

(xi − yi)
2

)1/2

, (3)
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and one can show that this has the usual properties of a distance such as
d(0) = 0 (the distance is zero for the zero vector), d ≥ 0 (distances are
non-negative numbers), and the triangle inequality: d(x)+d(y) ≥ d(x+y).

The N-dimensional hyperspheres we talked about in class had centers
that were located at the origin, which is the N -dimensional zero vector 0 =
(0, . . . , 0). Setting y = 0 in Eq. (3), the N -dimensional hypersphere centered
on the origin with radius r is defined by all vectors Eq. (2) that satisfy:

d(x) = r, (4)

or squaring both sides,

x21 + x22 + . . .+ x2N = r2, (5)

which is the form we used in class and that Schroeder uses in this text.
It is possible to define a distance for other mathematical objects like ma-

trices, functions (which you can think of as an infinite vector whose compo-
nents are labeled by a continuously varying index), and matrices of functions
and so it is possible to talk about “N -dimensional hyperspheres of M ×M
matrices” if you want to meditate on that.

It is obviously difficult to think in terms of four or more spatial dimen-
sions although some mathematicians and scientists are able to use mathe-
matics so adeptly that they can do a pretty good job. The Wikipedia article
“Fourth dimension” may be helpful, and if you hunt around the Internet
(e.g., Google “visualizing four dimensions”) , you can find numerous videos
showing projections of four-dimensional objects into three space dimensions
as the objects are rotated along various axes in 4-space, these might help
you get some intuition.

You may also enjoy reading the classic book “Flatland” by Edwin Abbott
that describes how two-dimensional creatures living on a plane would have
a hard time understanding three-dimensional creatures like us. This would
help you understand how a four-dimensional person could take you out of a
room that is completely sealed off since a three-dimensional room is “open”
in the fourth dimension, just as an object lying inside a square lying in a
plane could easily be picked up by you and then placed outside the square
on the same plane.

Is the idea of negative temperatures purely theoretical, or are
there realistic experimental examples?

Paramagnets, especially based on nuclear magnetic dipoles, are a common
physical example of a system that can have negative temperature state.
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Section 3.3 of Schroeder has a good discussion of paramagnets and negative
temperatures, and we will be discussing this in lecture this coming week.

For hypercubes, what if the length was slightly larger than the
unit cube? Wouldn’t the volume be infinite?

Yes, the volume V = Ld would be a number greater than one raised to a
large spatial dimensionality so would be a huge number. This means that
the concept of volume is not so useful as a way to quantify “amount of
space” in high dimensions.

However, my comment in class still holds, that high-dimensional volumes
are mainly surfaces. You just have to consider the ratio of the volume of a
cube of length L(1−2ε) to the volume of a cube of length L, the ratio (1−2ε)d

still becomes arbitrarily small for a large enough spatial dimensionality d.

4


