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Are Einstein solids related to Bose-Einstein condensates?

No, they are not. Einstein’s model of a solid addresses the vibrational prop-
erties of a crystal, for example how vibrations of atoms in crystals contribute
to the heat capacity. A Bose-Einstein condensate is a quantum state of mat-
ter that occurs only at extremely low temperatures. The condensate arises
when a collection of identical massive bosons (a certain class of fundamental
particles that have integer spin, such as a gas of rubidium atoms) can be
described by a single “coherent” macroscopic wave function. We will discuss
briefly the properties of Bose-Einstein condensates and why they occur later
this semester.

What is the purpose and motivation behind calculating Ωtotal?

The goal of Section 2.3 of Schroeder and of the related discussion in class was
to explain why the multiplicity of some macroscopic object spontaneously
increases toward a maximum value, and why the transfer of energy (heat)
between subsystems is an irreversible probabilistic phenomenon.

The first step in the discussion was to calculate the multiplicity Ωtotal of a
thermally isolated Einstein solid that consists of two interacting macroscopic
subsystems A and B. Our discussion led to several insights. One was to label
a macrostate of the total solid by the amount of energy qA in subsystem A,
which then determines the amount of energy qB = q − qA in subsystem B
since energy is conserved in the isolated total system.

A second important insight was that, generally, two subsystems interact
weakly with one another (they affect each other only for atoms near the
surface where they contact one another). This implies that the behavior of
subsystem A is statistically uncorrelated with the behavior of subsystem B
(at least on times short compared to a relaxation time) which in turn implies
that the total multiplicity is approximately equal to the product of the
multiplicities of the subsystems:

Ωtotal ≈ ΩA × ΩB. (1)

This insight allows us to calculate Ωtotal for any specified amount of
energy qA in subsystem A which led to a third insight as discussed in Sec-
tion 2.3 of Schroeder: the total multiplicity Ωtotal(qA) generally has a large
narrow peak as a function of qA (especially if number of oscillators in each
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subsystem is large). This means that some macrostates have many more
accessible microstates than other macrostates and so, if all accessible mi-
crostates are equally likely, certain macrostates are much more likely to be
observed than others. This explains why the multiplicity of a closed system
will “spontaneously” increase toward a maximum value, corresponding to
the macrostate with the most accessible microstates.

In this Tuesday’s lecture, when I discuss pages 64-66 and 72-74, we will
refine this insight by showing mathematically that the peak of Ωtotal(qA)
becomes fantastically narrow (of order 1/

√
N ≈ 10−10 for N ≈ NA) for

macroscopic objects with of order Avogadro’s number of molecules. This
narrow peak implies that only one value of qA will ever be observed experi-
mentally when dealing with an isolated equilibrium system.

What if the area/volume ratio is bigger, for example one pancake
lying on top of another? Of is the higher dimension of the volume
what matters?

Two thin pancakes lying adjacent along their areas would be an example
for which the interaction energy could be comparable to the bulk thermal
energies. In this case, the total multiplicity would not be the product of
the multiplicities of each pancake, Ωtotal 6= ΩA × ΩB, and we would not be
able to define an entropy via S = k lnΩtotal since this quantity would not
be additive over subsystems. The relaxation time for heat transfer between
pancakes of different temperatures could also be so short that it might not be
meaningful to label a macrostate of the two-pancake system by the energy qA
in one pancake.

What drives the assumption that all microstates are equally likely?

It is the simplest hypothesis to make in the absence of any knowledge that
would explain why one microstate might be favored over another microstate.

Most gases, liquids, and solids are statistically homogeneous, the physical
properties of one macroscopic region (say a cubic millimeter) are the same
for all other regions except extremely close to the surface of a substance.
So one would expect each macroscopic region to have similar microstates.
Further, each macroscopic subsystem varies in a complex way in time (nu-
clei vibrating, electrons moving through the crystal and scattering off other
electrons and nuclei) and so you can think of a given subsystem of atoms as
being kicked by all the surrounding regions, which you might guess would
force the subsystem to switch to different microstates over time.
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In the end, it is a simple and reasonable hypothesis that leads to excellent
agreement with experiment. It is just bad luck for theoretical physicists
that it is a particularly difficult assumption to derive for some model of a
macroscopic system.

What is the relationship between the highly probable macrostate
and some kind of macroscopic equilibrium? Will an equilibrium
system always be in the most probable macrostate?

The most probable macrostate of an isolated system is the equilibrium state
with one qualification: the system has to have enough components N that
the width of the peak in the multiplicity curve Ω(N1, U1, V1), as a function
of quantities that can vary between subsystems, is extremely narrow (see
Figures 2.6 and 2.7 in Schroeder). Otherwise, you could have situations like
Fig. 2.4 and 2.5 in Schroeder’s book in which there is a range of macrostates
that could be observed.

Your question is not just academic: an important frontier of science and
technology is nanoscience, the properties of natural and artificial systems
that are 10-10,000 atoms in diameter. These systems can still be studied
and understood in terms of thermal physics but now N is rather small and
there is not a unique equilibrium state that will be observed. We won’t
study such small systems in this course.

You should also be aware that most equilibrium systems of interest are
not isolated ones but are in contact with other equilibrium systems such that
it is the pressure P and temperature T , not the volume and total energy, that
are kept fixed during some experiment. In this case, it is not the entropy of
the system that reaches a maximum for equilibrium to occur but some other
quantity like −G, the negative of the so-called free energy G = U−TS+PV .
(We will discuss this later this semester.) For these cases of a system that
is not isolated, the equilibrium state no longer corresponds to a maximum
in the multiplicity.

The conclusion is that for isolated systems, the state with the maxi-
mum multiplicity will correspond to equilibrium but there are non-isolated
equilibrium systems, ones with constant temparture, pressure, or chemical
potential, for which this is not true.
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For liquids and gases that do not behave like Einstein solids, how
do we get to the same probabilistic result that it is highly probable
to be in the macrostate where the energy is split proportionally
between the subsystems?

We will answer your question this Tuesday and Thursday, when we discuss
pages 64-66 and 72-73 of Schroeder, how the multiplicity Ω(UA) is a very
sharply peaked function for macroscopic Einstein solids and for gases. The
argument for liquids turns out to be the same for gases since the key differ-
ence between a solid is that the molecules in liquids and gases have kinetic
energy and can move about.

Is there some very tiny probability of entropy decreasing in the
universe over the next millisecond?

We don’t know enough about the entire universe to answer this question,
e.g., we don’t know if the universe forms an isolated system and we don’t
know the properties of the “dark energy” that is causing the universe to
expand at an accelerating rate.

But if you focus your attention on any particular region in the universe,
there is a nonzero tiny chance for the entropy to spontaneously decrease.
The smaller the system, the more likely this possibility, dS/dt > 0 only
holds accurately for macroscopic systems.

Kind of a metaphysical question—does math come from nature or
from our heads?

This is a difficult, fascinating, and unsettled question that has been dis-
cussed by philosophers and scientists over many centuries, and increasingly
by psychologists and neurobiologists in the 21st century.

Experiments by the psychologist Elizabeth Spielke and others (including
Elizabeth Brannon at Duke) have shown the unexpected result that human
babies and animals of many species have an innate ability to count. For
example, researchers have invented ingenious experiments in which they
were able to show that many animals can distinguish numbers up to about
five in an abstract way (abstract in that animals can tell that four is different
than five in a way that doesn’t depend on the choice of objects). So there
is strong evidence that evolution has led an innate ability to count (at least
up to small integers), which is a kind of mathematics that you could argue
comes from nature.
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You are really asking two questions. One is how is it that humans are able
to do abstract mathematics of any kind, say use variables like x, discover
geometric theorems, manipulate algebraic expressions, deal with concepts
like infinity and topology? Some scientists have guessed that this is a side
effect of what all brains have been found to do to help an animal survive in
the world, which is to construct internal models of how an animal’s body
moves in response to the world. Thus experiments show that animals are
skilled at estimating the path of a thrown object and calculating an escape
plan, all without knowing math or physics. It is not to hard to guess that this
capability could be taken off line, e.g. an animal could spend time thinking
or dreaming about possibly dangerous situations and trying to figure out
how to escape them, and then at some point this becomes some kind of
abstract capability that could lead to mathematical ability.

A second question, the one more relevant for scientists and engineers,
is: why is it that the mathematics that humans have learned to do turns
out to be so incredibly useful for understanding the world and the universe?
For example, why is it that, except in the limits of very high energies (the
Big Bang and particle physics) and large masses (black holes), all of na-
ture can be quantitatively and accurately described and predicted by about
three pages of known equations? (These would be equations like Einstein’s
theory of general relativity, the Schrodinger equation of quantum mechan-
ics, the Maxwell equations of electrodynamics, the Navier-Stokes equations,
the relativistic extension of Newton’s equations for motion in the presence
of electrical and gravitational fields, and perhaps quantum chromodynam-
ics.) Why are the laws of nature so simple and concise when expressed in
mathematical form?

The answer is not known and the question remains intriguing. You might
enjoy reading a classic essay by the Physics Nobel prize winner Eugene
Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural
Sciences”, which you can find on the Internet, for example here:

http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html

How are very large numbers conceptualized?

This is a tricky question: what do you mean by “conceptualize”?
Many scientists and mathematicians are able to gain intuition about

abstract entities like large numbers, four or more spatial dimensions, the
hierarchy of infinities (ℵ0, ℵ1, etc), the quantum mechanical wave function Ψ
of a physical system, and so on by solving various problems and manipulating
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these objects in various contexts. Such symbolic manipulations and problem
solving make one at least familiar with such concepts and, in some cases,
one is able to conceptualize what is going on by manipulating the related
mathematics. For example, some mathematicians are able to manipulate
mathematics so quickly and adeptly that they can effectively think about
geometric shapes in four or higher spatial dimensions. (A problem from the
2008 Putnam exam: what is the largest radius of a circle contained in a
4-dimensional hypercube of side length 1?)

I am not sure that anyone really is able to appreciate numbers like a
googol or googolplex or especially Graham’s number, they are immense in a
real physical sense, e.g., a googol already exceeds the number of subatomic
particles in the entire known universe. One can carry out various symbolic
manipulations, one can order by size various large numbers and so one can
become familiar with many large numbers and their properties (like multi-
plying a very large number by a large number doesn’t change the very large
number). But I am not sure we can grasp such immense numbers in any
tangible way.

What was the practical use of Graham’s number?

The Wikipedia article “Graham’s number” gives a good summary of how the
number arose, which was to determine that a certain very difficult problem
in combinatorics had a solution, even if the solution could not be explicitly
found and understood. I know of no practical use of this immense number
except to remind people that the set of integers is truly infinite and that the
numbers people and scientists use on a daily basis are an incredibly small
and perhaps unrepresentative subset of all the possible integers.
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