
Answers to Physics 176 One-Minute Questionnaires
Lecture date: February 8, 2011

Is the experiment with the non-equilibrium system in the room
dependent on anything except temperature difference (e.g., room
size, room shape)?

The answer is yes, the details of the nonequilibrium states do depend on
the shape and size of the room and on some properties of the walls such as
whether they conduct heat well (like metal) or do not (like wood or glass).

That the patterns do depend on the room’s geometry was a surprise
when first discovered experimentally (in the late 1970s and early 1980s) and
some details remain poorly understood. Before the experiments were done,
the belief of many scientists was that, if you could make the convection
cell (room with copper floor and copper ceiling held at fixed temperatures)
sufficiently wide, so that the width was much greater than the depth of the
air, then the patterns in the fluid would not depend on the shape or size of
the room, just as the periodic array of atoms in a crystal do not depend on
the shape or size of the crystal once the crystal is sufficiently big compared
to the spacings of the atoms. (Near the surfaces of crystals, say about 5-50
atoms in depth, there are deviations from perfect periodic structure but the
influence of the surface dies out.)

An even bigger experimental surprise was that the air could become
turbulent (evolving nonperiodically in time and space) for a constant tem-
perature difference between the floor and ceiling that theory indicated only
time-independent convection rolls (stripes) could occur. Professor Robert
Behringer at Duke was a coauthor of this unexpected and big discovery (he
was a postdoc at Bell Labs at the time), and when I heard about this work as
a graduate student at Princeton, I became fascinated with where did these
patterns come from and dropped the research I was doing at the time (in
condensed matter physics) to study these questions full time. Many details
of the stripe, hexagon, and spiral patterns are now well understood theo-
retically but the question of when and how chaotic patterns (ones irregular
in time and space) arise is still about as mysterious now as when they were
discovered about 20 years ago.

You might think that understanding this pattern formation is an aca-
demic question—who worries about patterns in some highly artificial con-
vection cell?—but there are many practical questions related to engineering,
medicine, chemistry, biology, meteorology, and geology for which progress
is slow or limited because we don’t have a good understanding of nonequi-
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librium pattern formation. Two medical examples would be heart attacks
(physicists would describe ventricular fibrillation as a transition of an or-
dered periodic pattern to a disordered chaotic pattern), and epilepsy (which
represents a transition from a chaotic brain state to one that more periodic
in time).

With your sustained nonequilibrium example, what properties (of
the gas, room, temperature) causes the different formations? I.e.,
what makes the distinction between the hexagons and lines?

A related question was: “What was the different initial conditions between
the two air current simulations that caused two patterns that were so differ-
ent? What’s special about a hexagon, in that they both shared some sort
of hexagonal pattern?”

Let me answer the second question first: the formation of stripes or of
hexagons is an intrinsic property of the convecting fluid and does not depend
on how you started the experiment (the initial conditions of the fluid) nor
on the size and shape of the room provided that the width of the room is
sufficiently big compared to the depth of the air. But unlike atoms in a
crystal, subtle details of the final pattern such as the final precise spacing of
the stripes or hexagons do depend on the initial conditions (but, again, not
whether you get stripes or hexagons). That there is not a unique choice of
spacing was a strong experimental clue that an entropy-like quantity could
not exist for nonequilibrium systems since such a quantity would force a
unique spacing to be selected, as is the case for atoms in a crystal.

Whether a fluid forms stripe patterns or hexagons at the onset of con-
vection depends on whether the kinematic viscosity ν (the dissipation coef-
ficient that appears in the relaxation time expression L2/ν that determines
how long it takes relative motion in the fluid to damp out) is weakly de-
pendent on temperature (giving stripes) or has a substantial dependence on
temperature (giving hexagons). I don’t know of any way to predict when ν
is strongly dependent on temperature, this usually has to be discovered by
experiments.

Why is it that nonequilibrium systems arrange themselves in pre-
dictable patterns? What is the physical basis for this?

It is not known and remains a central question of nonequilibrium science.
In certain experimental regimes, such as a really wide room (compared

to the depth of the air) and a temperature difference ∆T just big enough
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to initiate convection, there is much theoretical understanding and theory
is capable of correctly predicting many details about which patterns form
(stripes versus hexagons versus quasicrystals versus mixtures of patterns),
how localized disruptions of periodicity called defects move about, how the
size and shapes of the walls affect the patterns, and when patterns become
unstable to some new pattern. But once the temperature difference between
the ceiling and floor becomes substantially larger than the minimum temper-
ature difference needed to initiate convection, almost no feature of pattern
formation is understood, especially the time-dependent chaotic patterns.

You mention that at a high enough magnetic field, humans would
be levitating or pulled around like the frog. I am confused on
how this correlates with MRI because we were told that at a high
enough magnetic field, humans would feel pain inside the bone.
Are the arrangements of these magnets different

The frog and other objects can only be suspended near the opening of the
solenoid, where the magnetic field is not uniform and changes rapidly in
strength and direction; it is the so-called gradient (spatial variation) of the
magnetic field that causes a diamagnetic repulsion that pushes the frog (or
any other material substance) away from the opening of the solenoid. The
reason for this can be understood in terms of freshman physics (Physics 42,
52, or 62 at Duke) but for lack of time I don’t give the details here.

MRI machines work by placing someone inside a solenoid so that a strong
approximately uniform magnetic field passes through the part of the body
that one is trying to image. Uniform magnetic fields do not cause a dia-
magnetic repulsion (there is no change in flux through small loops of a fixed
orientation with respect to the magnetic field), but they can cause large
forces to appear if there are any magnetic materials in the body.

I didn’t know that a strong uniform magnetic field could cause pain
inside bones and would be quite interested to learn more. I would not have
guessed that since I thought that bones do not have magnetic atoms (like
Fe, Ni) inside them, this would not happen.

Ed Purcell in his classic undergraduate book “Electricity and Mag-
netism” mentions briefly that, if you put your head in a strong magnetic
field (say a few tesla in strength) and shake your head around, there are no
ill effects but you do get a sour taste in your mouth because the shaking
generates eddy currents in your tongue that activate the neurons in your
taste buds. I have never tried that would be interested in doing so.
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Would it be possible to levitate a human? Would it just take a
very strong magnet?

I have never done the calculation and so don’t know what it would take to
levitate a human, which would be a lot of fun to actually do. Would some
member of the class want to work out the details with me?

The hard part might be to construct a big enough superconducting
solenoid that a person could fit comfortably into the opening. You would
also have to be careful not to have any metal on you like fillings in your
teeth, eddy currents would cause sparks and make the metal get hot.

Would levitation be a practical means of travel in the future as as
in the sci-fi world?

Diamagnetic repulsion, like that of the frog, is such a weak effect that I
don’t think that kind of levitation will ever be practical, the magnets and
technology are too expensive.

Magnetic levitation of a different kind has already been studied world-
wide as a way to improve the economics of trains: instead of having trains
roll on wheels, you would use superconducting magnets to levitate them a
small distance above other magnets and the train could move at high speed
on a cushion of air. Japan and Germany built such levitating trains a decade
ago to try out the technology, I assume it is still not economic to use.

In the discussion of entropy, why is it fair to assert that the entropy
is monotonically increasing with thermodynamic equilibrium and
that the entropy has a maximum at thermodynamic equilibrium?

At this point in the course, all I have done is show that if an entropy like
quantity S existed and had certain properties like additivity over subsys-
tems, then we could start to explain various properties of equilibrium sys-
tems. This Thursday, we will discuss Sections 2.3 and 2.4 of Schroeder (see
especially page 59) where you will hopefully understand why isolated sys-
tems spontaneously change their internal properties over time (such as en-
ergy moving about between subsystems) so as to have this property, with S
defined in terms of the multiplicity as k ln(Ω).

The insight basically boils down to the insight that, if you have a huge
number of pennies (say 1023 pennies), and you flip all the pennies randomly,
at the same time, over and over again, it is extremely unlikely at any given
time to observe anything but almost exactly 50% heads and 50% tails. (You
will soon learn how to calculate this situation in full detail, so hang on.)
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So if you start off with nearly all the pennies being tails and start flipping
coins at random, with overwhelming probability you will soon end up with
just 50% heads; even a tiny deviation like 50.00001% heads (for 1023 coins)
will never be seen. There is no law of nature that requires this 50% heads
and tails, it is a consequence of elementary laws of probability applied to
a regime that people lack intuition about (except for 176 students), when
there is Avogadro’s number of objects that are varying randomly.

What is the relationship between the most probable macrostate
and the equilibrium temperature of a system?

The relation is that the state of a macroscopic system will be the most
likely macrostate only if the temperature (as defined by 1/T = ∂S/∂U) is
the same for all macroscopic subsystems. (The uniformity of temperature
is a necessary but not sufficient condition since an isolated system can be
in thermal equilibrium but not yet in mechanical or diffusive equilibrium.)
Note however that the actual value of the temperature T tells you nothing
about the properties of the most probable macrostate since it is the unifor-
mity of T , not its value, that determines when the most likely macrostate
occurs.

Why is the harmonic oscillator so significant in physics/nature?

The importance of the harmonic oscillator is actually an artifact of how
introductory physics courses are taught, not because such oscillators are so
important in nature.

Newton’s second law of motion, ma = f , is actually quite difficult to
solve mathematically for many cases of interest because the equations are
generally nonlinear (the force varies nonlinearly with the coordinates or ve-
locities of the particles) and nonlinear mathematics is too hard to teach at
the freshman level. (At Duke, you don’t learn about nonlinear mathematics
unless you take a course like Physics 213 or Math 132S.) The few cases that
can be solved completely such as the two-body gravitational problem (lead-
ing to elliptical orbits and Kepler’s laws) and the harmonic oscillator in var-
ious forms (damped or undamped) therefore play prominent and somewhat
misleading roles in intro physics courses. If students knew more computer
programming when they were freshmen, say they all knew Mathematica or
Matlab, it would be possible to solve Newton’s second law numerically for
more realistic forces, in which case they would discover that simple harmonic
behavior is actually rare.
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As I mentioned briefly in lecture, most forces F = −∇V (where V (x, y, z)
is the potential energy of a particle) act harmonically (linear in the coor-
dinates) only for tiny displacements about some time-independent equilib-
rium state. For small displacements about equilibrium, you can ignore as
sufficiently small all higher-order terms (after the quadratic terms) in some
Taylor series expansion of the potential energy about the equilibrium state.
Small-amplitude dynamics turns out to be an accurate assumption for sound
waves, for the lowest energy vibrational states of a diatomic molecule, for
atoms vibrating in solids whose temperatures are well below the melting
point (the case for our Einstein solid), and is an essentially exact assumption
for light waves since light evolves according to the Maxwell equations which
are linear. But for many other phenomena in nature and for engineered sys-
tems, motion is anharmonic and nonlinear and the evolution equations can
not be solved mathematically (although are often easy to study numerically
and experimentally). Thus the beating of your heart is a highly nonlinear
oscillation that can not even be closely described by a harmonic oscillator,
and the same holds for many dynamical states of fluids and of mechanical
systems.

Can you explain again where N and q come from?

The integer N is the number of identical non-interacting quantum harmonic
oscillators that was suggested by Einstein as a way to model and so under-
stand the vibrations of atoms in a crystal. It takes N/3 atoms in a crystal to
correspond to N oscillators since each atom can vibrate in three independent
directions.

Vibrations in real crystals can be accurately described by harmonic oscil-
lators but the oscillators have to be coupled (so the motion of one oscillator
affects the motion of another oscillator) and the frequencies of the oscillators
vary over a range. We will discuss later this semester the so-called Debye
theory that includes these more realistic details.

Once you assume that you have N identical non-interacting quantum
harmonic oscillators, you can characterize a macrostate of this system by
the total energy Etotal of the N oscillators. Since the energy of the ith
harmonic oscillator has the form

h̄ω

2
+ h̄ωqi, (1)

where qi is a non-negative integer and 1 ≤ i ≤ N , the sum of the energies

6



of all the oscillators has the form

Etotal =

[
h̄ω

2
+ h̄ωq1

]
+

[
h̄ω

2
+ h̄ωq2

]
+ . . .+

[
h̄ω

2
+ h̄ωqN

]
(2)

= N
h̄ω

2
+ h̄ω (q1 + . . .+ qn) (3)

= N
h̄ω

2
+ h̄ωq, (4)

where we define
q = q1 + . . .+ qN , (5)

to be the sum of the quantum states of all the harmonic oscillators.
So a macrostate of N identical noninteracting quantum harmonic os-

cillators can be characterized by its total energy, which in turn involves
specifying a non-negative integer q via Eq. (5). A microstate of this system
would be a vector of N non-negative integers (q1, . . . , qN ), which describes
the state of each oscillator.

Schroeder (and myself) then simplifies the discussion by dropping the
zero-point energy term N(h̄ω/2) that is always constant and so does not
show up in the thermal energy U , and by identifying q with the total energy,
i.e., when he or I says “q”, you should think U = h̄ωq.

Is Ω(N, q) related to the degeneracy of the quantum system for the
Einstein solid?

For a quantum system whose macrostate is defined by the total energy of
the system, Ω is indeed the degeneracy of the total energy, i.e., the number
of linearly independent physical states with the same given energy. Your
insight here will be an important one when we get to Chapter 6 and discuss
quantum gases of electrons and photons. But since some students in 176
have not taken Physics 143 or 211 yet, I have avoided that technical term.

But one could characterize a macrostate in ways that don’t involve en-
ergy, say by the magnetization of a magnet or pressure of a gas, or the
system could be classical in which cases Ω means something other than the
degeneracy of the total energy.

How accurate is the Einstein model of solids? It seems pretty ide-
alized as many solids have imperfections and places for electrons
to jump around.

It is accurate and useful, see Fig. 7.29 on page 312 of Schroeder, where
Einstein’s theory and the more accurate (but still not perfect) Debye theory
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are compared, while Fig. 1.14 on page 30 shows how Debye’s theory compares
with experimental data. By fitting data with just one parameter, Einstein’s
model gives better than 5% accuracy over the entire range of temperature.
(One small detail it gets wrong is the mathematical way that CV (T ) goes to
zero as T → 0.) The key achievement of Einstein’s theory was that it showed
how quantum mechanics could explain in principle the vanishing of the heat
capacity of solids at low temperatures: the equipartition theorem failed
specifically because the energy levels of vibrating systems were quantized
rather than varying continuously like a classical harmonic oscillator.
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