
Answers to Physics 176 One-Minute Questionnaires
Lecture date: February 3, 2011

What motivated entropy?

I don’t know the history well (few scientists take the time to learn historical
details, including myself) and my comments below should be taken with a
grain of salt. Take a look at the Wikipedia article “Entropy” and also look
through Chapter 4 of Schroeder, which summarizes the traditional thermo-
dynamics approach to entropy via heat engines and refrigerators. There are
also many books, popular and technical, that discuss the history, and some
of these are listed at the back of Schroeder (e.g., the book “The Second
Law” by P. Atkins).

My understanding is that much of the motivation for thinking about
entropy was driven by the practical needs of the industrial revolution, by
people who wanted to replace animals and people with machines such as
water wheels and steam engines. Builders of steam engines and scientists
(which were sometimes the same person) started trying to figure out em-
pirically and conceptually how well could one do in converting energy from
fuel, say burning wood, to getting useful work out of a machine. Over time,
scientists realized (and it is here that I don’t know the history) that an im-
portant quantity for understanding steam engines was the ratio Q/T , heat Q
exchanged between two systems divided by some temperature T , either the
temperature of the system receiving the heat or the system giving up the
heat, and this ratio was called “entropy”. It was discovered empirically that
entropy always increased, which prevented perfectly efficient machines from
existing, and also discovered theoretically that entropy set hard limits on the
efficiency of engines, as you saw a little bit in the recent homework problem
(Problem 4.1 in Schroeder).

Toward the end of the 19th century, several decades after the entropy was
identified as Q/T , scientists like Boltzmann developed a new understanding
of entropy by using kinetic theory to interpret heat in terms of microscopic
details. This led to Boltzmann’s great discovery (also one of the highlights of
this course), that the thermodynamic entropy could be understood as count-
ing possible microstates of specified macrostates, S = k ln(Ω). (Boltzmann
was so proud of this insight that he asked that this formula be engraved on
his tomb in Vienna after his death.) But Boltzmann’s insight was limited
by the inability of classical mechanics to identify correctly what was a mi-
crostate as shown by the wrong predictions of the equipartition theorem. It
was not until the invention of quantum mechanics in the 1920s that a defini-
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tive understanding of “microstate” was achieved and then entropy became a
clear valuable concept that could be used quantitatively and unambiguously
in all areas of science.

In the 1950s and later, entropy became widely appreciated and important
in a new context after Claude Shannon at Bell Labs showed in 1948 that
understanding how much information can be transmitted from one device to
another could be analyzed in terms of entropy. Shannon’s theory had a huge
role in electrical engineering, computer design, Internet design, experimental
science, and currently in neurobiology, and in turn has motivated many
physicists to reinterpret physical phenomena as manipulating information
rather than just changing one physical state to another state.

How can something allow atoms to pass through but not heat?

Actually, I am not sure that this can done physically, at least for an isolated
system. It could be accomplished if one were allowed to maintain a temper-
ature difference across the partition, for example arrange for the partition
to be thick and have a temperature T1 on one side and temperature T2 on
the other side, and then molecules could diffuse through without exchang-
ing heat between two subsystems with temperatures T1 and T2. But this
scenario is not allowed for a closed system.

The relaxation time for thermal equilibrium is usually not the same for
diffusive equilibrium and the times can differ by an order of magnitude or
more (and the ratio of relaxation times can also be easily varied by choosing
the material properties of the partition). So two subsystems separated by a
partition might reach thermal equilibrium before reaching diffusive equilib-
rium in which case no heat is being transported.

Why does the max value of S ⇒ dS/dU1 = 0? Why with respect
to U1?

In an isolated macroscopic system with a fixed amount of energy U and with
two macroscopic subsystems with energies U1 and U2 with U1+U2 = U , the
entropy S of the entire system will depend on the value of U1. (We will soon
study this quantitatively for some simple models which should help make
this point clear.) For the entropy S of the system to reach a maximum
value, it must also be a maximum with respect to changes in any internal
variables such as U1, N1, and V1. So the derivative dS/dx must be zero for x
representing some quantity that can be exchanged between subsystems.
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For the example U = (1/2)m1v
2
1 + (1/2)m2v

2
2, would the number of

microstates be infinite based on the number of possible velocities?
(Unless we consider the energy to be quantized?)

According to classical mechanics, the state of a point particle is given by
two numbers, the position x of the particle (say moving in one dimension
for simplicity) and its momentum px (or speed vx). For two point particles
with states (x1, p1,x) and (x2, p2,x), with a fixed total energy specified by U =
p21,x/(2m) + p22,x/(2m), there is indeed an infinite number of microstates for
a specified volume V and energy U and so the multiplicity seems to be a
useless concept since one can’t compute with infinities.

But quantum mechanics changes this situation fundamentally and leads
to a finite although large set of microstates for specified macrovariables V
and U . The flavor of the argument is based on the position-momentum
uncertainty principle in the form ∆x × ∆px ≥ h̄. As we will discuss soon
when we get to Section 2.5 in Schroeder, the uncertainty principle breaks
up the phase space (or state space) of the two particles into finite volumes
of size ∆x∆px ≈ h̄ which leads to a finite number of microstates for given V
and U .

Why are all of the derivatives of entropy like ∂S/∂U , ∂S/∂V , and
∂S/∂N parametrized in terms of T? I thought only ∂S/∂U had this
definition. Is temperature a sort of proxy for entropy?

For the expression T (∂S/∂V )U,N which turns out to be the pressure P , one
has to introduce the factor of T to make the definition reduce correctly to
familiar cases like the ideal gas law PV = NkT . We will see this soon when
we discuss Section 2.5 in Schroeder.

For the chemical potential µ = −T (∂S/∂N)U,V , I don’t know the histor-
ical reason why the temperature factor was added to the entropy derivative
but am guessing that there also had to be some case for which µ had to
reduce to something already familiar and this wouldn’t happen unless there
was a factor of T included.

Note that from a formal point of view, the factors T do not matter
whether they are there or not since, for a system in thermodynamic equilib-
rium, T1 = T2 for two subsystems and in the condition µ1 = µ2 or P1 = P2,
the common temperatures would divide out from both sides, leaving the
entropy derivatives equal as needed.
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I’m not sure what the motivation for some of the initial definitions
(like 1/T = dS/dU) came from, they just seemed to work.

It is tricky to track down how and why various definitions were introduced
and I don’t know the history. People in the 19th century already appreci-
ated that, whatever temperature was, equality of temperature between two
systems implied that the systems were equilibrated with each other. We
showed in lecture that dS/dU had this same property of being the same for
two subsystems in equilibrium . So it would be natural to guess that dS/dU
must be related to a temperature. As I mentioned briefly in lecture, the
straightforward definition T = dS/dU would predict incorrectly that energy
flows from low temperature to high temperature systems, contrary to how
we interpret temperatures via thermometers. One easy way to fix this is to
define T via 1/T = dS/dU and that turns out to work in all cases.

Can you explain the significance of dS1/dU1 = dS2/dU2 again?

Not sure what to say beyond what I said in lecture and in my lecture notes.
If that was not clear, I would be glad to meet with you in person and try to
help you through the parts of the argument that were not clear.

Can you more fully explain the probability/counting methods dis-
cussed in class that led to the equation for Ω(NH , N)?

This is discussed on pages 50-51 of Schroeder. If this or my discussion was
not clear, I would suggest we meet and try to work out a few simple examples
to convince you how this works.

The argument is independent of Schroeder and is a classical result of ele-
mentary combinatorics, often taught in high school Algebra II. One problem
in combinatorics is to determine how many ways you can arrange N distinct
symbols, say the letters a, b, and c. The answer turns out to be N ! since
there are N ways to choose the first symbol, times N − 1 independent ways
to choose one of the remaining symbols, and so on. For three symbols,
3! = 3× 2× 1 = 6 and the corresponding arrangement of symbols would be
abc, acb, bac, bca, cab, and cba.

A second classic problem in combinatorics is to count how many ways
you can place K identical objects in N slots, where 0 ≤ K ≤ N . For
example, if I have two identical coins labeled by the letter C and I have
three slots SSS labeled by S, then there are three ways to place the two
coins in two of the slot: CCS, CSC, and SCC. The argument on page 51 of
Schroeder shows that the number of ways to place K objects in N slots is
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given by the binomial coefficient B(N,K) given by

B(N,K) =

(
N

K

)
=

N !

K!(N −K)!
. (1)

Fortunately, this is about all you have to know about combinatorics for the
entire semester.

It is useful to observe that binomial coefficients arise naturally when
raising expressions to integer powers:

(a+ b)n =

(
n

0

)
an +

(
n

1

)
an−1b+ . . .+

(
n

n− 1

)
abn−1 +

(
n

n

)
bn. (2)

(You should try to see if you can understand directly why the binomial
coefficients show up in this way: when you multiply (a+ b) by itself n times
and expand everything out to get a sum of 2n terms, how many ways will
you obtain k factors of a and n−k factors of b?) This connection allows one
to use calculus and algebra to solve many difficult combinatoric problems,
although we won’t take advantage of this during the semester.

I know that it does, but how does the binomial distribution relate
to gases and deriving the Boltzmann distribution?

The binomial distribution is not useful for gases or for deriving the Boltz-
mann distribution. It is useful only for counting the number of microstates
for a system that consists of microscopic objects that each have only two
possible states. A familiar example would be a set of coins each of which can
be heads or tails, a quantum example would be a set of spin-1/2 particles
in a magnetic field (a paramagnet). For reasons I will discuss in Tuesday’s
lecture, spin-1/2 particles can only be parallel or antiparallel to the external
magnetic field and so act like pennies where “heads” means parallel, “tails”
means antiparallel.

So the binomial distribution will let us count the number of microstates
of a spin-1/2 paramagnet whose total magnetization (total number of up
spins or total number of heads) is specified at a macroscopic level.

One of the conditions of thermodynamic equilibrium is chemical
potential µ is constant but not necessarily the number of parti-
cles N . How does the entropy derivation account for variable N
but is still in equilibrium?

Let me postpone explaining this until we get to Chapter 3, where we will
calculate µ explicitly for several physical systems and then we can see how
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the condition µ1 = µ2 for two subsystems in diffusive equilibrium allows
particle numbers to change.

Can a system come to equilibrium at a negative T?

The answer is yes, and in Chapter 3 we will discuss a physical example, which
is a paramagnet consisting of many non-interacting atomic magnetic mo-
ments. Negative temperatures are not a common situation (and do not occur
spontaneously in nature), it is interesting mainly for being logically possible
and demonstrating that temperature can be defined in contexts that make
no sense classically, e.g., the equipartition result (1/2)m〈v2〉 = (3/2)kT sug-
gests incorrectly that only non-negative temperatures are possible.

Why does mass contribute to entropy in an ideal gas?

We will discuss the specific reason soon when we come to Section 2.5 of
Schroeder. Briefly, for an ideal gas consisting of N free non-interacting
identical particles, the total energy U of the gas is related to the kinetic
energy of the particles by this equation:

U =
P2

1

2m
+

P2
2

2m
+ . . .+

P2
N

2m
, (3)

where Pi = (px,i, py,i, pz,i) is the three-dimensional momentum vector of the
ith particle. This can be rewritten in the form(√

2mU
)2

= P2
1 + . . .P2

N , (4)

which defines mathematically the set of points that lie on the surface of a
3N -dimensional hypersphere of radius

√
2mU . Thus increasing or decreas-

ing mass m changes the surface area which in turn changes the number of
possible momentum states (bigger surface area means more states are al-
lowed). This in turn determines how many microstates are defined by the
momentum vectors of the particles and this then affects the multiplicity Ω
and so the entropy S = k lnΩ. It is rather neat that we will need to use
the surface area of a 3N -dimensional hypersphere to derive an expression
for the entropy of an ideal gas consisting of N identical atoms.

I’m a little confused about the connection between the whole en-
tropy topic and the probability/microstates/macrostates topic.

You are right to be confused because I have not yet explained the connection,
this is the purpose of most of Chapter 2.
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In the last lecture, I showed that if there was a quantity S(U, V,N)
that was additive over subsystems and that reached a maximum when an
isolated system was in thermodynamic equilibrium, then we could start to
understand why energy spontaneously flows from hot to cold regions, and
that there was a quantity dS/dU that had to have the same value for all
subsystems when equilibrium was attained, and this quantity was related to
temperature.

And then I started saying something that won’t be clear for several more
lectures, that the way to discover the hypothetical S that makes all these
ideas work was to consider a new concept called the multiplicity Ω(U, V,N)
of an isolated macroscopic system, which counts the number of microstates
consistent with specified global values of U , V , and N . It will then turn
out that the quantity k lnΩ behaves exactly like the entropy we postulated,
e.g., it is additive over subsystems and increases monotonically with time
until it reaches a maximum corresponding to equilibrium, and we will end
up defining S = k lnΩ.

I remember from general chemistry that the entropy of the Earth
is constantly increasing and from your lecture today, I am assum-
ing it is because the Earth is a non-equilibrium system. What
would be an example of something on Earth that is not in equi-
librium and has an entropy of 0 or constant?

It is impossible for an isolated macroscopic nonequilibrium system to have a
constant entropy, for reasons we will soon discuss in detail. However, if you
consider a finite region of a nonequilibrium system, it is possible to force its
entropy to be constant, but only by increasing the entropy of other systems
so that the net entropy of the universe increases.

Thus there are refrigerators that can bring a substance down to ex-
tremely low temperatures (the world record is less than a nanokelvin (10−9K)
and maintain that low temperature so the entropy of that frozen substance
is effectively zero and constant. But if you enlarge your point of view to the
laboratory containing the refrigerator and cold substance, the entropy of the
lab is steadily increasing over time as the refrigerator consumes energy and
generates entropy.

It remains a difficult frontier scientific question why the universe is not
already in a maximumm entropy state. The universe is clearly nonequilib-
rium and there are various processes heading toward equilibrium such as
the nuclear reactions in the cores of stars, the equilibration of energy within
galaxies, and so on. Since entropy is increasing now, it meant that entropy
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had to be much less in the past, but no one understands how to deduce the
entropy of the universe at the time of the Big Bang nor understand why it
was so small.

What is the connection between quantum mechanics and entropy?

It is given by Boltzmann’s relation S = k lnΩ, where the multiplicity Ω
counts the number of quantum microstates compatible with a specified
macrostate labeled by values of U , V , and N . We will see numerous ex-
amples of this during the next few weeks so I don’t give further details here,
but the key point is that quantum mechanics provides a precise way to define
the concept of a microstate and so count microstates.

What’s up with the hovering frog?

I will show next lecture two short videos to illustrate the difference between
paramagnetic materials and diamagnetic materials. The frog is diamagnetic
and so can be suspended in space (without harm) by a sufficiently strong
magnetic field gradient.

How does sepia coloring work?

I don’t know how to answer this question, do you mean how does a software
program like Photoshop apply sepia coloring to an image or historically
where did sepia coloring arise? (And what is the connection of this question
to the course?)
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