
Answers to Physics 176 One-Minute Questionnaires
Lecture date: January 25, 2011

Will all quizzes and exams be as long as today’s relative to the
time allotted? This seems like it would penalize students who
write more slowly.

I try to design the quizzes so that 15-20 minutes should be enough time to
answer all the questions provided that you have been actively and critically
thinking about the course material and homework problems.

Designing a quiz or an exam is an imperfect process and I take that
into account by scaling the grades. But I also purposely want the quizzes to
challenge the class, at least a little bit, so as to encourage you to improve your
problem solving abilities and your understanding of the material through
frequent feedback.

If you find that you do write slowly, one way to help with that is to
practice solving more problems before a quiz or exam. Try skimming the
other thermal physics books on reserve or in the library and try to solve
representative problems that other authors have identified as important,
also try solving some extra problems in Schroeder.

What is the difference between the T/F question on relaxation
time on the quiz (one in vacuum, on in air)?

I will be posting detailed answers to all quizzes a few days after each quiz.
But briefly, the rod of length L and radius r ¿ L that is sitting in vacuum
has a relaxation time of L2/κ since information can only travel along the
length of the rod for equilibration to occur. For the rod sitting in air of
constant temperature T , it is the equilibration of the rod with the air, not
with itself, that now matters since the final equilibrium temperature will
be T . Since no part of the rod is further away from the air than a distance r,
the relaxation time is now r2/κ.

On the 2009 quiz 1, the solutions said that the mechanical relax-
ation time was τmech = d/vsound for the balloon problem. Why does
this not vary like L2?

I was not correct in explaining that solution. In 2009, I had explained to
the class that imbalances in mechanical forces typically propagate quickly
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through a system compared to diffusion of heat or concentration, typically
at the speed of sound in the material. Thus when you pop a balloon with a
pin, the time it takes the balloon to disintegrate is roughly the circumference
of the balloon divided by the speed of sound in the skin of the balloon. But
this is just the time for one part of a system to know about some other part
of the system having a pressure difference, it is not the time for equilibrium
which indeed occurs on a slower diffusive time scale as we discussed in class.

Are there other commonly used coordinate systems besides rect-
angular, cylindrical, and spherical?

The three you mention are the only ones most undergraduates in math,
physics, and engineering have to know. (Note: one usually says “Cartesian”
instead of “rectangular” for the usual xyz coordinate system.)

There are infinitely many so-called curvilinear coordinate systems that
people could consider for various problems in math, physics, or engineering
and there are certain fields like general relativity and optical cloaking for
which fully general coordinates are needed. More typically, people use so
called “orthogonal” curvilinear coordinates which means that surfaces de-
fined by constant values of a single coordinate (say the plane x=constant,
the plane y=constant) are mutually orthogonal at any point in space. These
orthogonal systems are often convenient for solving certain partial differ-
ential equations such as a Poisson equation or the Schrodinger equation.
For example, with a proper choice of a coordinate system, one can use the
method of “separation of variables” to reduce a partial differential equation
to an infinite set of ordinary differential equations that is often easier to
solve. You learn about these kinds of techniques in course like Math 108
and Physics 182.

Some names of other orthogonal coordinate systems that show up (usu-
ally at the graduate level in math and physics) are: confocal ellipsoidal,
confocal paraboloidal, cyclidic, oblate spheroidal, and toroidal coordinates.
The geometric symmetry of a given problem often suggests which coordi-
nate system is appropriate to use. In my career as a theoretical physicist, I
have only once used one of these less common orthogonal coordinates, the
toroidal one, so my own sense is that there is not a great need to know about
these other kinds.
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Why was the change in momentum of a particle not simply ∆p =
2mv? How come there were the extra factors of N/V and 1/6?

The change in momentum of a single particle (for the simple anisotropic
kinetic model) was indeed just 2mv. But our goal in class was to calculate
the total change in momentum of many particles striking the wall in some
arbitrary short time ∆t. (The change in momentum of the wall is just the
negative of the change in momentum by conservation of momentum.)

This is what led us to consider a small cylinder of volume (v∆t)A that
had [(v∆tA]×(N/V ) particles in it. But for the anisotropic model, only 1/6
of the particles in that cylinder are actually moving in a direction that will
strike the wall. So the total change in momentum in time ∆t was:

∆ptotal = (v∆t)A× N

V
× 1

6
× 2mv. (1)

How would you generalize the model (deriving pressure) to ac-
commodate different masses?

You would simply include new particles in the gas, that have different masses
and different speeds, and carry out the exact same analysis, and you would
find that the effects just add, i.e., you discover the concept of “partial pres-
sures” in which the molecules of one kind contribute to the pressure sepa-
rately, as if the other molecules weren’t present. (See your intro chemistry
text.)

For example, we could model air as a gas that has N1 nitrogen molecules
of mass m1 and N2 oxygen molecules with mass m2. For simplicity, we can
assume that all the nitrogen molecules have one speed v1 and all the oxygen
molecules have a second speed v2, and that all velocities are parallel to one
of the coordinate axes (i.e., an anisotropic model). Let’s choose a short
time ∆t and ask: what is the total momentum transferred to an area A
on the wall of the container in time ∆t? Since the molecules move with
different speeds, we have to use two separate cylinders, one of height v1∆t
for the nitrogen molecules and one of height v2∆t for the oxygen molecules.
The total momentum delivered to the area A within time ∆t is then

∆ptotal =
[
(v1∆t)A× N1

V
× 1

6
× 2m1v1

]

+
[
(v2∆t)A× N2

V
× 1

6
× 2m2v2

]
,
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so the pressure is

P =
(∆p/∆t)

A
=

∆p

A ∆t
=

1
3
m1v

2
1

(
N1

V

)
+

1
3
m2v

2
2

(
N2

V

)
. (2)

But the first expression is the pressure you would have if there were only
nitrogen molecules in the box, the second expression is the pressure you
would get if there were only oxygen molecules in the box. The pressures
then just add separately as claimed. This result is a consequence of the
assumption that molecules do not interact with one another in an ideal gas.

Can you please provide more insights in the development of the
solid angle calculation?

A related question was: “So is solid angle just basically a small area on the
sphere we are looking at?”

The first question is unfortunately vague, I am not sure what is not clear
for you. Perhaps we can meet and talk in person.

The solid angle Ω of some object is basically the area of some part of
a sphere’s surface compared to the square of the radius of the sphere. For
example, the United States is an irregular area that spans the surface of the
Earth and its solid angle Ω (with respect to the center of the Earth) would
be the surface area of the US ≈ 3.7× 106 miles2 ≈ 9.5× 106 km2 divided by
the square of the Earth’s radius:

ΩUnitedStates =
9.6× 106 km2

(6, 400 km)2
≈ 0.2, (3)

which you should compare with the maximum solid angle 4π ≈ 13, i.e., the
US occupies 0.2/(4π) ≈ 1.6% of the Earth’s surface area.

What do we have vrms and not vavg?

When the dust cleared from our kinetic theory calculation, we had the result

1
2
mv2 =

3
2
kT, (4)

where v is the constant speed of each molecule. From just this derivation,
there is no way to tell how to replace v with a statistical average of some
kind, for example should we use the mean, root-mean-square, or some other
average value.
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But it is not too hard to redo the kinetic theory we discussed in lecture
by allowing the molecules in the gas to have a range of speeds. We will
discuss how to do this later in the course (see Section 6.4 of Schroeder) and
the conclusion is that v2 in Eq. (4) needs to be replaced by 〈v2〉, the average
of the speed squared.

Where did that 0.9 come relating average speed to rms speed,
v ≈ 0.9× vrms?

This question is related to the previous one. When we discuss Section 6.4
of Schroeder, you will learn how to derive from first principles the speed
distribution D(v) of molecules in an equilibrium gas. This is the probability
of observing a particular molecule in the gas to have a speed that lies in the
small interval [v, v + dv]; alternatively, this is the fraction of molecules in
the entire gas with speeds in this small range. Once one knows the precise
speed distribution (this is Eq. (6.50) on page 244 of Schroeder), one can
calculate the average speed and rms speed for an equilibrium gas. One finds
that vavg/vrms =

√
8/(3π) = 0.921 ≈ 0.9 to one digit.

What is the conceptual difference between the average speed and
rms speed?

There is no deep conceptual difference, one is not necessarily more important
or more physical than the other although these are the two most common
ways to characterize various sets of numbers.

As an example, let’s say you have three positive numbers x1, x2, x3.
Then there is an infinite number of ways to characterize the statistical prop-
erties of these three numbers. For example, if p is a nonzero real number,
we could define a pth-average value by this procedure:

〈x〉p =

(
xp

1 + xp
2 + xp

3

3

)1/p

. (5)

This reduces to the mean of the numbers for p = 1, the rms of the numbers
for p = 2 but you can now see that there is a continuum of closely related
averages that we could also consider. The cases p = 1 and p = 2 are widely
used because they are the easiest to compute or work with mathematically.

If the numbers xi are all greater than 1, raising them to higher powers
will tend to emphasize the bigger numbers, so you might guess correctly
that 〈x〉p > 〈x〉q for p > q. This insight explains why, for molecules in an
equilibrium gas, one would expect generally vrms = 〈v〉2 > vavg = 〈v〉1.
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What is the reason that the ideal gas law must be corrected for
polyatomic gases?

I hope I didn’t say this during lecture, since this statement is not correct.
The ideal gas law PV = NkT does not include any information about

the molecules in the gas such as their mass or chemical properties, that is one
reason why the ideal gas law is so general and so remarkable. As long as a gas
has a sufficiently low density, so the average spacing (V/N)1/3 of particles
is large compared to the particle size, the properties of the molecules in
the gas don’t matter. The ideal gas law holds accurately for He atoms, for
polyatomic molecules like ethane (C2H6), and for mixtures of molecules like
air.

When the density becomes so high that the ideal gas law breaks down,
it breaks down for both atoms and polyatomic molecules, although the de-
viations do depend on molecular details.

What extremes that violate conditions for PV = NkT can be easily
accounted for?

Sorry, I am not sure what you are asking here. Do you mean physical
examples of cases where the ideal gas law fails?

For Schroeder 1.3, why does vibration have two degrees of free-
dom?

I will discuss this in class on Thursday. The answer is that a vibrational
mode contributes two quadratic terms to the total energy, a kinetic energy
term like (1/2)mv2 and a potential energy term like (1/2)k(x− x0)2. Each
quadratic term counts as a degree of freedom so each vibrational mode
contributes two degrees of freedom.

An atom in the middle of a three-dimensional crystal has three vi-
brational modes and so contributes six degrees of freedom (six separate
quadratic terms) to the energy.

Why bother with the coordinate constrained (anisotropic) cube
model relating energy and the ideal gas instead of just going
straight to the isotropic case that works for all directions?

The goal was to illustrate for the class the art of making scientific assump-
tions that help to solve a difficult problem. Calculating the pressure P for

6



a real gas in a real box in terms of momentum transfer of molecules is dif-
ficult: the velocities point in all different directions, the speeds are not the
same, the walls might not be smooth and elastic, and so on. It turns out
that a valuable and important skill in physics (also in engineering) is trying
to identify simple models that get at the heart of what is going on without
drowning in details.

The anisotropic model is perhaps the simplest way to set up a kinetics
calculation: just one speed, all velocities are parallel to coordinate axes,
walls are perfect reflectors. Our calculation then immediately gave an in-
teresting insight, that the average molecular kinetic energy was related to
temperature. A more detailed calculation might give a different numerical
coefficient, but the basic insight does not change, that the temperature is
proportional to average kinetic energy.

Is there any simple reason why the two kinetic approaches (anisotropic
and isotropic) calculations are the same? Is it just good luck or
coincidence?

For the case of calculating pressure, the two approaches give the same result
and it is pretty much a coincidence. For other cases, like the homework
problem of particles delivering energy by sticking to a cold plate or the
problem of effusion (particles leaving the gas through a small hole in the
wall), the two approaches give different answers. But it is surprising that,
in nearly all cases, the answers obtained in the two cases agree to 20% or
better. This says that being isotropic is not that important compared to
just allowing the velocities to point in different directions.

Was Bernoulli thinking in terms of molecules?

He was, for example here is a drawing from his paper,
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there is no mistaking his thinking about atom-like things here. But in his
paper, he was defensive about having to invoke particles that no one believed
to exist and over a century would pass until Maxwell was able to show
that the idea really worked. My understanding is that most of Bernoulli’s
contemporaries rejected his insight because no one could understood how
the molecules, even if they existed, would move perpetually without slowing
down. People thought molecules would slow down through some kind of
friction and eventually form some static lattice in space; pressure then arose
from some kind of repulsion of the particles rather than by collisions with
the wall.

As you perhaps know, it was the Greeks who, over 2000 years ago, first
took seriously the idea that everything in the world might be composed of
atoms. But it wasn’t until the late 1800s that people developed the ability
to actually measure the size of atoms or prove their existence, molecules
were just too tiny.

By the way, one of the earliest estimates of molecular size came from
a suggestion of Benjamin Franklin in the 1700s. He had observed that a
teaspoon of oil (say of volume V ) would spread out on a pond surface into
a large contiguous region (say with area A). He then guessed that if the
oil were made of identical molecules and each molecule had the same cubic
volume L3, then L would have to be the height of the oil stain and so V = AL
and L = V/A: the size of a molecule could be deduced from a teaspoon of oil
and by measuring an area on a pond. Although Franklin didn’t implement
his own suggestion, others soon did and discovered that molecules were of
order a nanometer or less, really tiny. I always that this was a neat elegant
insight.
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What would you have to do if you couldn’t assume that the speed
after hitting the wall was different from the speed before hitting
the wall?

I will discuss this possibility in the next lecture.

Are there limits to the validity of the equipartition theorem? Tak-
ing into account the constraints of the derivations, this seems
likely.

The equipartition is an exact result for terms in the energy of a molecule
that have a quadratic form. It fails for energies that do not have a quadratic
form, which occurs for liquids and solids, i.e., when atoms are close enough
to influence each other.

But more importantly, as I will explain in Thursday’s lecture, the equipar-
tition theorem only describes classical (non-quantum) systems and so should
not be taken too seriously. When one compares the predictions of equiparti-
tion with experiments (see the two figures on page 30 of Schroeder, which we
will discuss this Thursday), it is wildly wrong and only quantum mechanics
is able to explain the experiments.

When we talked about relaxation times a awhile ago, you wrote
an exponential T0E

−t/τ where τ was the time scale. Does the ex-
ponential come from Newton’s law of cooling?

No it does not. To give you an idea of where it comes from, I need to use
some math of the sort discussed in Math 108.

Consider a one-dimensional metal rod of length L that is not in thermal
equilibrium so that it’s temperature T (t, x) varies spatially and will vary
with time as the rod approaches equilibrium. One can show that the tem-
perature field T evolves in time according to a so-called diffusion equation:

∂T

∂t
= κ

∂2T

∂x2
, (6)

where κ is the same thermal diffusivity that shows up in the relaxation
time L2/κ. By using separation of variables and Fourier analysis, one can
show that the solution to Eq. (??) has this form:

T (t, x) =
∞∑

n=1

Tn sin
(

nπx

L

)
e−(nπ)2 t/(L2/κ), (7)
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where the coefficients Tn are determined from the temperature profile T (x, 0)
at time t = 0. Note how the solution is not a single exponential in time, it in-
volves an infinite sum of decaying exponentials that each multiply some spa-
tial mode. But all the exponentials in the solution involve the quantity L2/κ
which has units of time. So this example helps to illustrate why L2/κ is a
time scale associated with the approach to equilibrium of the rod, but the
mathematical behavior is not a simple exponential decay.

Now that you know something about relaxation times, you should be
able to understand why Newton’s law of cooling can’t be an accurate de-
scription in many cases. This law says that the time it takes for an object
of temperature T (t) to reach equilibrium with its constant-temperature sur-
roundings (say with temperature T0) is proportional to the temperature
difference T − T0:

dT

dt
= −T − T0

t0
, (8)

where t0 is some characteristic time of cooling. But under what conditions
can you treat an object (say a cup of coffee) as having a single tempera-
ture T (t)? Only if the relaxation time τ = L2/κ for the object is small
compared to t0. This will only be true for small objects (small L) or for
objects that conduct heat rapidly (large κ). If τ ≥ t0, the object will have
a non-uniform temperature and so can not be described by a single temper-
ature T (t). One then has to solve a separate harder mathematical problem
to figure out the spatial variation of temperature inside the object as it is
cooling down.
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