Two comments here, one an illustration of how to use the general binomial theorem:

\[
(1 + x)^r = 1 + \frac{r}{1!}x + \frac{r(r-1)}{2!}x^2 + \frac{r(r-1)(r-2)}{3!}x^3 + \cdots \quad |x| < 1
\]

and how to compute and use unit vectors related to Coulomb's law.

Assume you have a quadrupole of charges, which is a neutral arrangement of 4 charges that also has no net electric dipole:

There are point charges \(q, q, -q, -q \) at coordinates \((0, d), (d, 0), (-d, 0), (0, -d) \) respectively and a positive charge \(Q \) at coordinate \((L, 0) \) with \(L \gg d \)

What is the net force of the quadrupole on \(Q \)?
You should verify that, according to Coulomb's law, the exact total force \vec{F}_{tot} acting on Q is

$$\vec{F}_{\text{tot}} = \vec{F}_{\text{A on Q}} + \vec{F}_{\text{B on Q}} + \vec{F}_{\text{C on Q}} + \vec{F}_{\text{D on Q}}$$

$$= (\vec{F}_{\text{A on Q}} + \vec{F}_{\text{B on Q}}) + \left(\frac{K_8 Q}{(1-d)^2} + \frac{K_8 Q}{(2+d)^2}\right)$$

$$= \left[2 \cdot \frac{K_8 Q}{d^2 + L^2} \cos \gamma - \frac{K_8 Q}{(2-d)^2} - \frac{K_8 Q}{(2+d)^2}\right] \hat{y}$$

Since $\vec{F}_{\text{A on Q}}$ is a vector like this and $\vec{F}_{\text{B on Q}}$ has same horizontal component but opposite vertical component,

so $\vec{F}_{\text{A on Q}} + \vec{F}_{\text{B on Q}} = c \hat{x}$ for some positive constant c.

From the geometry,

we see that

$$\cos \gamma = \frac{1}{\sqrt{p^2 + L^2}}$$
So total force of quadrupole on \(Q \) (which is negative)

\[
\vec{F}_{\text{tot}} = \hat{x} \left[\frac{2K_2 Q \cdot L}{(d^2+L^2)^{3/2}} - \frac{K_8 Q}{(L-d)^2} - \frac{K_8 Q}{(L+d)^2} \right]
\]

(4)

Let's apply binomial approximation to term in brackets.

Observe \(L \gg d \) so also \(L^2 \gg d^2 \), we first write each power to \((1+\varepsilon)^x \) with \(\varepsilon \) small compared to \(1 \) and all power appearing in numerators. So

\[
\frac{1}{(d^2+L^2)^{3/2}} = \frac{1}{L^3 \left(1 + \frac{d^2}{L^2} \right)^{3/2}} = \frac{1}{L^3} \left(1 + \frac{d^2}{L^2} \right)^{-3/2}
\]

\[
\frac{1}{(L-d)^2} = \frac{1}{L^2 \left(1 - \frac{d}{L} \right)^2} = \frac{1}{L^2} \left(1 - \frac{d}{L} \right)^{-2}
\]

\[
\frac{1}{(L+d)^2} = \frac{1}{L^2 \left(1 + \frac{d}{L} \right)^2} = \frac{1}{L^2} \left(1 + \frac{d}{L} \right)^{-2}
\]

Substituting into (4) above, factoring out some common coefficients we get

\[
\vec{F}_{\text{tot}} = \hat{x} \cdot \frac{K_8 Q}{L^2} \cdot \left[2 \left(1 + \frac{d^2}{L^2} \right)^{-3/2} - (1-\frac{d}{L})^{-2} - (1+\frac{d}{L})^{-2} \right]
\]

(3)
Let's apply the binomial theorem to (1), (2), and (3) in turn. We have to retain powers of $\frac{d}{L}$ up to 2nd order, $(\frac{d}{L})^2$, to get the first non-zero power, which then give us the leading approximation. We have:

1. \[2(1 + \frac{d^2}{L^2})^{3/2} \approx 2 \left[1 + \frac{-3}{2} \left(\frac{d}{L} \right)^2 + \frac{3 \cdot 5 / 2}{1 \cdot 2} \left(\frac{d}{L} \right)^4 + \ldots \right] \]

we can drop (ignore) the $(\frac{d}{L})^4$ since it is much smaller than $(\frac{d}{L})^2$

\[\approx 2 \left[1 - \frac{3}{2} \left(\frac{d}{L} \right)^2 \right] \]

2. \[-\left(1 - \frac{d}{L}\right)^2 = - \left[1 + \frac{2 \cdot 3}{1} \left(\frac{d}{L} \right) + \frac{(-1) \cdot 2 \cdot (-3)}{1 \cdot 2} \left(\frac{d}{L} \right)^2 + \text{cubic} \ldots \right] \]

\[\approx -1 + \frac{3}{2} \left(\frac{d}{L} \right)^2 - 3 \left(\frac{d}{L} \right)^2 \]

3. \[-\left(1 + \frac{d}{L}\right)^2 \approx -1 + 2 \left(\frac{d}{L} \right) - 3 \left(\frac{d}{L} \right)^2 \]

Adding (1) + (2) + (3) gives

\[2(1 + \frac{d^2}{L^2})^{3/2} - \left(1 - \frac{d}{L}\right)^2 - \left(1 + \frac{d}{L}\right)^2 \]

\[\approx 2 - 3 \left(\frac{d}{L} \right)^2 - 1 - 2 \left(\frac{d}{L} \right) + 3 \left(\frac{d}{L} \right)^2 \]

\[\approx -3 \left(\frac{d}{L} \right)^2 + 2 \left(\frac{d}{L} \right) - 3 \left(\frac{d}{L} \right)^2 \]
We conclude that

\[F_{\text{tot}} \approx \sum \frac{k_\text{B} q^2}{l^2} \left(-q(x) \right) = -\frac{9k_\text{B} q d^2}{l^4} \]

This is a force that decreases as \(1/l^4 \) with increasing \(l \).

The minus sign means the total force on \(Q \) due to the quadrupole acts to the left, i.e., the quadrupole and charge \(Q \) attract each other, although weakly at long distances, \(L \gg d \). This is in agreement with our qualitative reasoning based on the fact that charge \(Q \) at \((x, y) \) is closer to \(Q \) than \(Q \) to \(Q \) so dominates the interaction.