
Physics 162 Assignment 7

Made available: Wednesday, February 25, 2015
Due: Monday, March 16, 2015 by 9 pm.

1. Limits of formula for electric field on axis of a charged cylindrical shell This is a review
problem, to continue to improve your skills in using the generalized binomial theorem.

One can show that the z-component Ez(z) of the electric field on the axis produced by a cylindrical
shell of radius R, length L, and surface charge density σ is given by

Ez(z) = 2πKσ
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where the axis of the shell is the z-axis and z = 0 corresponds to the center of the shell. Use the
generalized binomial theorem to show that Eq (1):

(a) reduces correctly to the electric field KQ/z2 of a point particle with appropriate charge Q when z
corresponds to a point on the axis far from the shell, that is for z ≫ L,R.

(b) reduces correctly to the electric field KQz/(z2+R2)3/2 of a point on the axis of a ring of radius R
with appropriate total charge Q when the length of the solenoid L ≪ R is small compared to the
radius of the ring, i.e., short solenoids act like rings.

2. Relative brightness of identical lightbulbs The five identical bulbs P, Q, R, S, and T in this figure

are all glowing. Deduce and give the order of brightness of the bulbs, from brightest to dimmest.

Note: make the simplifying assumption that the resistance of each bulb is constant (does not vary
with the brightness of the bulb). This is not a good assumption for filament-based (incandescent)
light bulbs for which the filament resistance does increase with brightness, which corresponds to higher
filament temperature. In the Modern Physics or Thermal Physics courses at Duke (264 or 363), you
will learn an interesting fact that the light emitted by filaments is accurately understood as so-called
“black-body radiation” and has a universal spectrum (light intensity versus frequency) that depends
just on the temperature of the filament.
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3. A crazy circuit with a simple insight The following circuit has identical batteries all with emf E
and identical resistors all with resistance R.

By applying Kirchhoff’s loop law to a carefully chosen loop, determine in just a few seconds and without
any algebra the magnitude and direction of the current I flowing through the circled resistor R.

4. Maximizing how long a light source will last You are lost in a dark underground cave system,
but have in your spelunker’s backpack numerous wires and two identical flashlights that each contain
a bulb of resistance R and an ideal battery (zero internal resistance) of emf E .

(a) To maximize your chance of finding a way out of the cave system, explain with a circuit diagram
how to combine some or all of these items (wires, bulbs, batteries) to make a light source (a single
circuit that you can not change after assembling it) that will last as long as possible. How much
longer will your circuit last compared to using each flashlight separately in succession, until each
runs out of energy?

(b) If the flashlight bulbs are the classical 1.4-watt 2.4-volt incandescent flashlight bulbs (a dying
technology since new flashlights use LED-based light sources which are more power efficient), and
the batteries are 1.5-volt alkaline D-cells, each with an energy capacity of about 20 watt-hours
(Wh), estimate to the nearest power of ten how long in hours your circuit will produce light. (For
simplicity, assume that the emf of the batteries is constant until the batteries run out of energy,
not a good assumption.)

Note: you may enjoy watching the 2005 British horror movie “The Descent” about six women who
enter an unmapped cave system in North Carolina. And all of you should play the classic text-based
rather hard but pioneering adventure game “Colossal Cave” (there are free copies scattered around the
Internet for all computer systems) and see if you can figure out how to get out of its famous maze of
many twisty little passages.

5. Two batteries that have emfs of V1 and V2 and internal resistances of r1 and r2 are connected in
parallel, positive terminal to positive terminal, negative terminal to negative terminal. If a resistor of
resistance R is then connected in parallel with these batteries like this:
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show that the value of R for which the two batteries produce the most power is given by

R =
r1r2

r1 + r2
. (2)

Hint: This is a two-loop circuit with two junctions so use Kirchhoff’s rules to obtain three linear
equations in three unknown currents, solve for the current passing through the resistor R, and then
maximize the power being dissipated by the resistor. Also make sure to show that your answer gives
a maximum, not just an extremum.

6. Consider the following circuit consisting of a battery with emf E , an open switch S, and an array of
resistors and discharged capacitors with resistances and capacitances as indicated:

(a) Immediately after the switch S is closed and in terms of the quantities E , R, and C:

i. what is the power P being produced by the battery?

ii. what is the current I2R through the resistor of resistance 2R?

iii. what is the current IC through the capacitor with capacitance C?

(b) A long time after the switch S has been closed and in terms of the quantities E , R, and C:

i. what is the power P being produced by the battery?

ii. what is the current I2R through the resistor of resistance 2R?

iii. what is the current IC through the capacitor with capacitance C?

iv. what is the magnitude |QC | of the charge on the capacitor with capacitance C?

(c) A long time after the switch S has been closed, the switch is opened. If E = 100V, R = 1MΩ,
and C = 1µF

i. To the nearest power of ten, what is the total energy U in joules stored in the circuit imme-
diately after the switch is opened?

ii. To one significant digit, how long (in seconds) will it take for this energy to decrease to one
tenth of this initial value?
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7. An electronic relaxation oscillator and simple model of neuronal actional potentials As
shown and discussed in class, an oscillator circuit can be built by adding a neon gas tube to an
RC-circuit like this

Gas is normally a good insulator and the resistance of the gas tube is effectively infinite when the light
is off, which allows the capacitor to charge. But when the potential difference across the capacitor
reaches a threshold Von, the electric field inside the gas becomes strong enough to ionize the neon gas
(the so-called dielectric strength of the gas is exceeded), the resistance becomes small, a current flows,
the bulb lights with an orange glow, and the capacitor discharges rapidly through the bulb. When the
capacitor voltage has decreased below a value Voff , the electric field inside the gas becomes too weak
to sustain the ionization, the gas becomes a poorly conducting insulator again, the light turns off, and
the capacitor starts to charge as shown in the right panel of the figure. The capacitor voltage V (t)
then oscillates periodically (but not sinusoidally!) between the values Voff and Von.

(a) Show that the oscillation period T of this circuit is

T = RC ln

(
E − Voff

E − Von

)
. (3)

(b) A neon gas tube has Voff = 20V and Von = 80V. What resistance R should be used in combination
with a 10µF capacitor and a 90V battery to create a 10 Hz oscillator?

This problem is interesting for another reason, it mimics rather well one of the simplest models of how
neurons in the brain generate their digital pulses called action potentials. (The simple mathematical
for a neuron is called a “leaky integrate and fire model”.) A neuron is like an RC-circuit where C is the
capacitance of the neuron (cell body) and R is the resistance across the lipid bilayer. When a neuron is
stimulated, certain channels (complicated proteins in the lipid bilayer) change shape and create holes
through the membrane allowing some current to flow and this causes the voltage difference across
the lipid bilayer to start increasing from about -80 mV towards zero, just like the voltage across the
capacitor climbing in the neon oscillator circuit. And when the potential difference across the neuronal
membrane reaches a threshold analogous to Von, new channels open causing a fast large current to
flow, causing temporarily a large increase in the potential difference (to +30 mV) before the potential
difference drops back to -80 mV. A neuron that has a constant current stimulus will undergo oscillations
whose period is given by a formula that is essentially the same as Eq. (3).

8. The next more complicated RC circuit If a circuit has capacitances and resistances that are not
connected in series with a battery, one has little choice but to work out the details specifically for each
problem, deriving differential equations for each current that determine how the currents evolve over
time. The following is a guided tutorial to work through the details of a circuit that is just a little more
complicated than a series RC circuit. This tutorial should also help you become more comfortable
manipulating differential equations, an important skill in many areas of science and engineering.

Consider the circuit below consisting of a battery with emf E , two resistors with resistances R1 and R2,
and a capacitor with capacitance C:
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You can think of this circuit as a capacitor C in parallel with a resistance R2 that are then connected
in series to a second resistance R1 (with R1 possibly including the internal resistance r of the battery).
Initially, the switch has been open for a long time so that the capacitor C has fully discharged through
the resistance R2, and there are no currents flowing anywhere in the circuit. At time t = 0, the switch S
is closed and then, at time t = 2 s later, the switch is opened. Your goal is to understand qualitatively
and quantitatively how the current I2(t) through the resistance R2 varies with time for t ≥ 0.

(a) Explain briefly how the circuit in the above figure represents the same problem as that of Problem 6
above. So solving the current problem will tell you how the currents and charges on the capacitors
in Problem 6 behave at all moments in time, not just at early and late times.

(b) Before deriving and studying the differential equations that describe how the currents and capac-
itor charge evolve over time, understand the key points conceptually by deducing and giving the
short-time and long-time values of:

i. the current I1(t) flowing through the resistance R1 from right to left;

ii. the current I2(t) flowing through the resistance R2 from right to left;

iii. the current I3(t) flowing downwards through the capacitor;

iv. the charge Q(t) on the positive plate of the capacitor.

Here “short-time” means immediately after the switch S has been closed, and “long-time” means
a long time after the switch S has been closed.

(c) In preparation of applying Kirchhoff’s circuit laws for t ≥ 0, introduce three currents associated
with the junction at the top of the capacitor: a current I1 that goes clockwise (CW) through R1

through the battery, and through the switch; a current I2 that passes through the resistance R2

also going CW, and a current I3 that flows downwards through the capacitance C.

Now apply Kirchhoff’s laws to obtain three equations for the unknown currents I1(t), I2(t),
and I3(t) and also write down a fourth equation that relates the charge Q(t) on the positive plate
of the capacitor to the current I3. You will then have four equations in the four unknowns I1, I2,
I3, and Q.

(d) Use your four equations in part (c) to show that the charge Q(t) on the capacitor evolves in time
according to this first-order differential equation

dQ

dt
= c1 + c2Q, with c1 =

E
R1

and c2 = − 1

C

(
1

R1
+

1

R2

)
. (4)

(e) Use your equations from part (c) to show that

I2(t) =
1

CR2
Q, (5)

and so the current I2(t) evolves in time exactly as the charge Q(t), up to a constant factor.
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(f) Show by substitution of the expression

Q(t) = a+ be−t/τ , (6)

into Eq. (4) that Eq. (6) is a solution of the differential equation Eq. (4) that satisfies the initial
data

Q = 0 at t = 0, (7)

provided that the constants a, b, and time constant τ have the values

a =
R2

R1 +R2
EC, b = −a, τ = C

R1R2

R1 +R2
. (8)

So the charge Q on the capacitor explicitly evolves in time according to the expression

Q(t) =
R2

R1 +R2
EC

(
1− e−t/τ

)
, (9)

and this is also how the current I2 = Q/(CR2) through resistance R2 evolves over time, starting
from a discharged capacitor.

Draw qualitatively how Eq. (9) varies with time for t ≥ 0 and discuss briefly whether Eq. (9) is
consistent with your short- and long-time conclusions of part (b) above.

(g) But Eq. (9) is not how the current I3(t) through the branch containing the capacitor evolves in
time. Give an explicit mathematical expression for I3 and plot I3(t) qualitatively for t ≥ 0. Discuss
briefly whether your plot is qualitatively consistent with your short- and long-time conclusions
from part (b) above.

(h) Give an explicit expression for the current I1(t) through the resistance R1 as a function of time
for t ≥ 0 and draw a qualitative plot of I1. Discuss briefly whether your plot is consistent with
the short- and long-time behavior of part (b) above.

You know have a complete explicit knowledge of how all the currents and charge Q evolve in time,
starting from when the switch is first closed.

(i) Explain mathematically and separately physically why, in the limit that the resistance R2 becomes
large compared to R1, R2 ≫ R1, the time constant τ in Eq. (8) reduces to the time constant CR1

for the simpler series RC series circuit discussed in class and in the Knight book.

Note: the time constant τ in Eq. (8) should be somewhat surprising to you since it looks like the
time constant of a series RC circuit with resistance R = 1/ (1/R1 + 1/R2) of two resistances R1

and R2 in parallel, but the two resistances in this problem are not in parallel.

(j) Finally get some specific physical insight by using the numerical parameters:

E = 10V, R1 = 2.0MΩ, R2 = 5.0MΩ, C = 1.0µF, (10)

to sketch the graph qualitatively correctly of the current I2(t) versus time over the time interval 0 ≤
t ≤ 10 if the switch is closed at t = 0 and opened at t = 2 s. Give also the explicit values of I2(t)
at time t = 2 s and at time t = 8 s.

Warning: the time dependence of I2(t) after t = 2 s is different from Eq. (6)!

Note: all the above expressions are simple enough that you should be able to sketch their quali-
tative behavior directly, but you are also welcome to generate plots using Mathematica or some
other graphing software. For example, in Mathematica, you can plot the expression Eq. (6) over
the time interval 0 ≤ t ≤ 5 by typing the following:

a = 2 ;

b = -2 ;

tau = 1 ;
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Plot[

a + b Exp[-t/tau] ,

{t, 0, 5} ,

PlotRange -> All

]

and then hitting Shift-Return to execute these statements. Mathematica can also solve many or-
dinary differential equations symbolically, and more successfully and accurately than most math-
ematical experts. For example, you can solve Eq. (4) symbolically by typing

DSolve[ Q’[t] == c1 + c2 Q[t] , Q[t], t ]

then by typing Shift-Return to execute this statement. “DSolve” is an intrinsic Mathematica
function that stands for “Differential equation Solver”.

9. Time to Complete This Assignment

To one significant digit, please give the time in hours that it took you to complete this homework
assignment.

10. Optional Challenge Problems

(a) Challenge problem 7.1: An experimental and practical puzzle: you are given a complex electrical
circuit consisting of many wires, resistors, and capacitors all soldered together and you wish to
determine the resistance of a particular resistor in the circuit without cutting or unsoldering any
wires. Assuming that you have a battery of known voltage V , an ammeter, a voltmeter, and as
many wires as you need of negligible resistance, explain how to measure the resistance of some
resistor in the middle of some circuit.

(b) Challenge problem 7.2: what is the resistance between a and b of the following infinite circuit of
pairs of resistances R1 and R2?

(c) Challenge problem 7.3: This is one of the simplest problems related to polarization of a metal
object by a point charge one can solve analytically. If you take the time to solve the problem
and some plotting program to explore various features of the solution, you will get a lot of useful
insight about actual polarization of a metal sphere by a point charge.

Consider a mathematical spherical surface of radius R located at the origin of some xyz-coordinate
system and consider a point charge q located a distance d > R from the center of this surface
on the x-axis. Show that it is possible to place a point charge Q (whose value Q you need to
determine) at some location on the x axis (which you also need to determine) such that the total
potential V due to the charge Q and charge q is zero everywhere over the surface of the sphere.

Your answer provides a solution to two interesting practical problems: given a conducting sphere
of radius R that has been grounded so that its surface is an equipotential surface with V = 0,
and given a point charge q located outside the conducting sphere, what is the force acting on the
charge q? Alternatively, given a charge Q placed inside a conducting spherical shell at a point
other than the center, what is the force acting on Q? Your answer solves this problem because
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there is a mathematical uniqueness theorem which says that, for any configuration of charges and
conductors, there is only one possible potential V (x, y, z) that is equipotential on the surfaces of
the conductors. Since your two point charges produce an equipotential surface with V = 0 on
the sphere, the total electric field Etotal of the two points outside the sphere must be the same
electric field produced by the charge q outside of a conducting sphere of radius R.

Finish this problem by using your two-charge solution to calculate the force acting on the charge q.
Does your solution make sense in the limit that q is close to the surface of the sphere and in the
limit when q is far from the center of the sphere?

Can you further figure out how to calculate the surface charge density σ at any point on the
sphere? Can you figure out how to extend your solution to an isolated (not-grounded) conducting
sphere with a net charge q′?
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