
Physics 162: Assignment 4

Made available: Monday, February 2, 2015
Due: Sunday, February 8 by 10 am.

1. Tutorial on the gradient ∇f of a multivariable function f(x, y, z)

This problem is a tutorial that gives you some practice with a few concepts from multivariable calculus.
Galileo Galilei said that “Mathematics is the language with which God has written the universe.” and
the mathematical concepts of gradient, curl, and divergence are key parts of the language that describes
electromagnetism (and fluids, and plasmas, and quantum mechanics, Galileo was very much right).

Most of this problem involves reading and then carrying out a few modest calculations that are indicated
in bold print below.

Although this first problem may seem long and possibly intimidating, it is actually quick and easy since
all you need to know to answer the problems is how to evaluate the partial derivative ∂f/∂x of some
function, which is also often denoted as ∂xf(x, y, z). This in turn is the same as taking an ordinary
derivative d/dx of some expression by treating all symbols in the expression as constants except the
differentiation symbol x.

We will not be using the mathematics of this tutorial substantially this semester but it is good for you
to start to become familiar with these mathematical ideas. Especially important is the insight that
the electric field E(x, y, z) of a static arrangement of charges can be expressed as the gradient −∇V
(some kind of derivative) of a scalar field V (x, y, z) called the electric potential, and it is often more
productive and insightful to think about electric field problems first in terms of V , and first to carry
out calculations in terms of V since it is easier to work with a scalar field than with a vector field.
You should also appreciate that there is a precise easy-to-compute mathematical criterion to determine
whether some vector field is conservative, see Eq. (19) below.

So let’s begin the tutorial. An important mathematical concept is the gradient of some scalar
field f(x, y, z), denoted as the vector field ∇f(x, y, z) and pronounced in English as “grad f”. (The
symbol ∇ is called “nabla”, and sometimes people write grad(f) instead of ∇f .) You can think of the
gradient as a way to convert a function f that assigns a number to any given point in space (x, y, z)
into a vector function ∇f(x, y, z) that assigns a vector to any point in space. The gradient gener-
alizes the derivative df/dx of a scalar function f(x) of a single variable to the derivative of a scalar
function f(x, y, z) of several variables.

The gradient is important for electromagnetism in that it connects1 a concept related to energy, the
electric potential V (x, y, z), to the electric field E via the relation E = −∇V . The gradient is also
important in that it occurs in the second term of the multivariable Taylor series expansion of some
scalar function f(x, y, z) = f(x) about some point x0 of interest

f(x) = f (x0) +∇f (x0) • (x− x0) + · · · , (1)

which you should compare with the one-dimensional version

f(x) = f (x0) +
df

dx
(x0) (x− x0) + · · · . (2)

Because multivariate Taylor-series approximations like Eq. (1) are so widely used in many areas of
physics, engineering, and mathematics (to approximate some complicated function locally with a sim-
pler linear function) gradients are a very important tool in mathematics. Also, just as df/dx = 0

1Something may seem funny here, that a single function V (x, y, z) can generate three functions Ex(x, y, z), Ey(x, y, z)
and Ez(x, y, z) corresponding to the components of the electric field via E = −∇V . But the components of a static electric
field are not independent because static electric fields are conservative which, according to Eqs. (18) and (19) below, implies
the three conditions ∂yEz = ∂zEy , ∂zEx = ∂xEz , and ∂xEy = ∂yEx. So static electric fields can not be arbitrary vector fields
since the components are related to one another although in a rather non-obvious way.
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indicates where a function of one variable has an extremum (local minimum, local maximum, or in-
flection point), Eq. (1) implies that the extrema of a multivariable scalar function are determined by
the algebraic conditions ∇f = 0, which is of great importance in many fields when trying to optimize
some scientific, engineering, or economic problem.

Given a differentiable scalar function f(x, y, z), its gradient ∇f is defined to be the vector field

∇f(x, y, z) = ∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ (3)

=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
. (4)

For two scalar functions f(x, y, z) and g(x, y, z) and for constants c1 and c2, show that

∇(fg) = f∇g + g∇f and ∇ (c1f + c2g) = c1∇f + c2∇g, (5)

Eq. (5) says that the gradient operator ∇ has properties similar to those of the one-dimensional
derivative d/dx applied to a product of functions f(x)g(x) and to a linear combination of functions c1f+
c2g.

From a previous physics or math course, you know that the product of a number c times a vector a is
defined in terms of the vector components like this:

ca = c (ax, ay, az) = (cax, cay, caz) . (6)

Since the usual multiplication of numbers doesn’t depend on the order, xy = yx for any two real
numbers, you might also be motivated to explore defining the product of a vector times a number. I
hope you would agree that the following definition is reasonable

a c = (ax, ay, az) c = (cax, cay, caz) , (7)

since a vector times a number should be a vector and the right side of Eq. (7) is a rather obvious
choice.

Given Eqs. (6) and (7), you might be motivated to explore writing the definition Eq. (3) also as a
vector times a number, like this:

∇f =
∂f

∂x
x̂+

∂f

∂y
ŷ +

∂f

∂z
ẑ =

(
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

)
f, (8)

which indeed looks like a vector (a rather funny looking vector since it has derivatives) times some
number-valued function f . From this, you might be encouraged to guess that the expression

∇ =
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ, (9)

could be treated as a vector in its own right. This indeed turns out to be a fruitful idea. This kind
of expression involving derivatives is called an “operator” since it operates on some function f to give
some new expression involving functions2.

If ∇ as defined by Eq. (9) is a vector, you might now wonder what is the dot product of this vector
with some vector function such as

f = fx(x, y, z) x̂+ fy(x, y, z) ŷ + fz(x, y, z) ẑ. (10)

2If you continue on with physics or biophysics to take quantum mechanics, you will learn that, in the quantum theory,
experimental observables are represented by operators of this kind which is strange but very cool. For example, momentum in
quantum mechanics is represented by the vector operator p = iℏ∇.

2



Since derivatives act on functions, there seems to be little choice but to put ∇ on the left side of f and
so we might guess that the expression

∇ • f =

(
∂

∂x
x̂+

∂

∂y
ŷ +

∂

∂z
ẑ

)
•

(
fxx̂+ fyŷ + fz ẑ

)
(11)

=
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

, (12)

is the way to define the dot product of nabla with a vector function.

Note that the dot product of two vectors must be a number and indeed the right side of Eq. (12) is a
number as a sum of number-valued functions. Note also that, while the order of the dot product of two
ordinary vectors a •b = b •a doesn’t matter, the order f •∇ does not mean the same thing as∇ • f since
f •∇ = fx∂x+fy∂y +fz∂z is an operator containing several derivatives that do not have meaning until
they operate on some some specific function. For example, (f •∇)g(x, y, z) = fx∂xg + fy∂yg + fz∂zg.

The right side of Eq. (12) seems reasonable and so people define the dot product ∇ • f (pronounced as
“div ef”) to be

∇ • f = div(f) =
∂fx
∂x

+
∂fy
∂y

+
∂fz
∂z

. (13)

This dot product is also called the divergence of the vector function f and is often written as div(f),
which is why ∇ • f is pronounced “div ef”. Eq. (13) has the physical meaning of the total flux per unit
volume of the vector field ∇f into an infinitesimal volume centered on the point (x, y, z).

Show that for some scalar function f(x, y, z), the divergence of the gradient of f (pro-
nounced “div grad f”) is given by the following expression:

∇ • (∇f) = ∇2f =
∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
. (14)

Since the dot product of a vector with itself a •a is often written as a2 (magnitude a of the vector
squared), the scalar combination of second-order partial derivatives Eq. (14) is often written as ∇2 =
∇ •∇ in which case ∇2f is called “the Laplacian of the scalar function f(x, y, z)” The Laplacian
operator is quite important and shows up in many areas of physics, engineering, applied mathematics,
and computer science3.

Compute the Laplacian of a general quadratic polynomial in x, y, and z:

∇2
(
c1 + c2x+ c3y + c4z + c5xy + c6xz + c7yz + c8x

2 + c9y
2 + c10z

2
)
=? (15)

where c1 through c10 are constants.

OK, we are on a roll. After defining the dot product of the gradient operator ∇ with some vector
function, you may next be curious how to define the cross product of the vector ∇ with some vector
function f = (fx, fy, fz). This should give a vector-valued expression since the cross product a× b of
two vectors is a vector. Let’s continue to run with the idea of thinking of the gradient as a vector given
by Eq. (9). Remembering that the cross product of two vectors a = (ax, ay, az) and b = (bx, by, bz) is
defined to be

a× b = (aybz − azby) x̂+ (azbx − axbz) ŷ + (axby − aybx) ẑ, (16)

and thinking of a as the vector ∇, we could try making the substitutions

ax → ∂

∂x
, ay → ∂

∂y
, az → ∂

∂z
, (17)

3For example, the electric potential V (x, y, z) associated with some system with charge density ρ(x, y, z) satisfies a partial
differential equation equation called Poisson’s equation, which looks like this: ∇2V = −ρ/ϵ0. Poisson’s equation is actually the
best practical way to calculate the electric field E for complicated charges by first calculating V from Poisson’s equation (which
can be solved rapidly and accurately with modern computer codes) and then using the fact that E = −∇V .
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to get the following tentative definition of the cross product of ∇ with some vector function f :

∇× f = curl(f) =

(
∂fz
∂y

− ∂fy
∂z

)
x̂+

(
∂fx
∂z

− ∂fz
∂x

)
ŷ +

(
∂fy
∂x

− ∂fx
∂y

)
ẑ. (18)

This cross product is pronounced in English as either “grad cross f” or more often4 as “the curl of f”
since many books write ∇× f as the vector field curl(f).

Although Eq. (18) appears complicated, you really only have to memorize the first component ∂yfz −
∂zfy since the other components are obtained by a cyclic substitution of indexes: x → y → z → x.

Now that you know about the curl of a function, I can tell you without proof that a vector func-
tion f(x, y, z) is conservative in some region of space if and only if its curl vanishes in that region of
space:

f is conservative ⇐⇒ ∇× f = 0. (19)

As a technical aside, I mention briefly that Eq. (19) is a consequence of an important theorem of
multivariable calculus known as “Stoke’s theorem” which relates a line integral

∮
Γ
over some closed

curve Γ to a surface integral over any surface S spanning the curve Γ:∮
Γ

f • dl =

∫
S

(∇× f) • dA. (20)

(If you want to learn more, one of the clearest and most insightful discussions of Stoke’s theorem that
I can recommend is Chapter 2 of the book “Electricity and Magnetism, third edition” by E. Purcell
and D. Morin.) If the vector field ∇ × f vanishes in some region of space, the line integral over any
closed loop is zero in that region of space. This then implies that the line integral between two points is
independent of the path connecting those points, since any two paths connecting the same two points
constitute a closed loop to which you can apply Stoke’s theorem.

(a) Show that any vector field f = ∇g that can be written as the gradient of some scalar
field g(x, y, z) is conservative:

∇× (∇g) = 0. (21)

(b) Show that the vector function

f =
[
2xy − z3

]
x̂+

[
x2

]
ŷ +

[
−
(
3xz2 + 1

)]
ẑ, (22)

is a conservative force field, that is ∇× f = 0.

Eq. (21) implies the useful result that any central vector field of the form g(r) r̂, that is such that

the magnitude depends only on the distance r =
√
x2 + y2 + z2 from the origin and that points along

radial lines r̂ = (x, y, z)/
√
x2 + y2 + z2 must be conservative. To see this, define a new function f(r)

in terms of the given function g by

f(r) =

∫ r

0

g(r′) dr′. (23)

You should then be able to show that g(r)r̂ = ∇f(r) has a gradient form. Coulomb’s law and Newton’s
gravity law, which give central forces, then implies that static electric fields and gravitational fields are
conservative.

There is a converse result of importance for understanding electrostatic fields: if ∇× f = 0 over some
region of space, there exists a function g in that region such that f = ∇g. The function g(x, y, z) can be
determined by evaluating a line integral of f from some fixed arbitrary reference point p0 = (x0, y0, z0)
to the point (x, y, z) using any continuous path. So if

g(x, y, z) = g(x) =

∫ x

p0

f • dl, (24)

4The “curl” name comes from taking the curl of a fluid velocity field v(t, x, y, z), in which case the physical meaning of
Eq. (18) is how much the fluid is swirling or curling around some point of interest in the fluid.
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then I claim that f = ∇g.

For f defined by Eq. (22), use Eq. (24) to determine the “potential” g such that f = ∇g,
then verify your result by showing directly that ∇g = f .

A hint is to make the evaluation of the line integral on the right side of Eq. (24) easy by choosing the
reference point p0 = (0, 0, 0) to be the origin, and then by using the fact that f is conservative so you
can use any path that connects the origin to a general point (x, y, z). One convenient path is one that
integrates along successive line segments that are always parallel to the coordinate axes, this involves
only one component of f at a time and integrates over only one variable at a time. For example,
first use the straight path that goes from (0, 0, 0) to (x, 0, 0) along the x-axis. Along this path, the
differential vector dl becomes dl = dx x̂ which points only along the x-axis, f • dl = fx = 2xy − z3

becomes only the x-component of the force field f , and the line integral in Eq. (24) along just this first
part of the path becomes:∫ (x,0,0)

(0,0,0)

f • dl =

∫ (x,0,0)

(0,0,0)

f • (dx′ x̂) =

∫ (x,0,0)

(0,0,0)

(
2x′y − z3

)
dx′. (25)

This integral actually vanishes since y = 0 and z = 0 along the x-axis and so the integrand itself
vanishes along this path. Next integrate from (x, 0, 0) to (x, y, 0) along the line parallel to the y axis,
in which case the length differential becomes dl = dy ŷ and so∫ (x,y,0)

(x,0,0)

f • dl =

∫ (x,y,0)

(x,0,0)

f • (dy′ ŷ) =

∫ (x,y,0)

(x,0,0)

fy dy
′ =

∫ (x,y,0)

(x,0,0)

x2 dy′, (26)

and you hold x constant when you integrate w.r.t. y′. The last part of the line integral will be along a
vertical line segment parallel to the z axis, so dl = dz ẑ and f • dl = fzdz along this line, giving∫ (x,y,z)

(x,y,0)

f • dl =

∫ (x,y,z)

(x,y,0)

f • (dz′ ẑ) =

∫ (x,y,z)

(x,y,0)

fz dz
′ = −

∫ (x,y,z)

(x,y,0)

3x(z′)2 dz′. (27)

Your final answer will be the sum of the three values along each path:∫ (x,y,z)

(0,0,0)

f • dl =

∫ (x,0,0)

(0,0,0)

f • dl+

∫ (x,y,0)

(x,0,0)

f • dl+

∫ (x,y,z)

(x,y,0)

f • dl. (28)

2. Deducing E from V Three identical point charges, each with a charge equal to q, lie in an xy-
coordinate plane. Two of the charges are on the y-axis with coordinates y = ±a, and the third charge
is on the x-axis with location x = a.

(a) Find the potential V (x) as a function of position along the x axis, and plot it qualitatively.

(b) Use your result for V to calculate the x-component of the electric field via Ex = −dV/dx, and
verify the correctness of your result by calculating Ex directly for this problem via superposition.

Note: you will need to write two different expressions for the cases x > a and x < a.

3. What does it really mean to ground a conductor? Consider two concentric spherical conducting
surfaces of radius R1 and radius R2 > R1 such that the inner surface has a total charge Q and the
outer surface has an opposite charge of −Q.

(a) If a ground wire is connected to the outer surface, explain why no charge will move off or onto
the outer surface.
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(So grounding a conductor does not always eliminate its charge. The situation would also be
different if the two spheres were placed side, rather than one inside the other, then grounding one
of the spheres will cause some charge to transfer.)

(b) If instead a ground wire is connected to the inner surface (say by passing a thin ground wire
through a tiny hole made in the outer surface), determine the amount of charge Qi (in terms
of Q, R1, and R2) on the inner surface after electrostatic equilibrium is attained.

Some hints: grounding a conductor, say by connecting it to a wire that is itself electrically connected to
the Earth’s soil, forces the electric potential V of the conductor to have the same value V = 0 as a point
arbitrarily far away from the conductor since the Earth basically has an electric potential of V = 0.
This implies that, when a ground wire is touched to a conductor, charge will move onto or off the
grounded conductor until its potential difference ∆V = V (conductor) − V (∞) = V (conductor) = 0.
So to solve this problem, you need to evaluate some line integrals between infinity and the grounded
conductor, and adjust the charge on the grounded conductor until its electric potential is zero.

4. Potential of charged plane and parallel conducting plate A long planar slab of thickness 2d
consists of a non-conducting material with constant negative charge density ρ < 0. At a distance d to
the right of the non-conducting slab, a neutral long planar solid conductor of thickness d is placed as
shown in the figure on the following page, which shows the slabs edge on:

You can assume that the slabs are so long compared to their width that you can ignore fringing effects
of the fields at their ends.
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(a) On a similar bigger diagram in your homework, show the direction of the E field at locations x = 0,
0.5d, 1.5d, 2.5d, and 4d. Then calculate and give mathematical expressions for the magnitude |E|
for 0 ≤ x ≤ 5d, and plot your magnitude on the given axes.

(b) Calculate and give mathematical expressions for the electric potential V (x) for 0 ≤ x ≤ 5d with
the reference point chosen to be V (x = 0) = 0. Then plot your V (x) expression on the given axes,
and discuss briefly how or why your plot makes physical sense.

5. An unstable system of two positrons and two protons Two positrons (positively charged
antiparticles of the electron, which have the same mass as an electron) lie at opposite corners of a
square of side L = 1 cm. The other two corners of the square are occupied by protons. Initially
the four particles are held in these positions at rest and then are released simultaneously. When the
particles are all far away from each other, explain why the speeds of the positrons will be about 350m/s
while the speeds of the protons will be about 3m/s.

Hint: a positron has a mass that is about 1/2000 the mass of a proton so think about the relative
accelerations of these particles right after they are released.

6. Potential due to a charged rod and point charge A thin rod of length L is placed on the x-axis
of an xyz-Cartesian coordinate system so that its ends lie at coordinates x = −L and x = 0, and
then an amount Q of positive charge is spread uniformly over the rod. A point particle with positive
charge Q is then placed at coordinate x = L as shown in this figure:

(a) Show that the location on the x-axis between the rod and point charge where the electric field
vanishes is x = L/3. (Note that this is not the answer that you would get if you replaced the rod
by a point particle of charge Q at its center.) Are there any other places in space where E = 0?

(b) Assuming V (∞) = 0 so that it is ok to use the formula Kq/r for the electric potential of a point
that is a distance r from a point charge q, calculate and given an expression for the potential V (x)
of this “rod plus charge” system for x < −L and x > 0 and give a qualitative plot of V (x) over
the range [−2L, 2L].

Discuss briefly whether it is meaningful to talk about the potential V (x) inside the rod itself.

(c) A point particle with positive charge q and mass m is placed at the location x = L/3 where E = 0
and given a tiny push. Show that a sufficiently long time later, the speed v of the particle is given
by

v =

[
2KqQ

mL

(
3

2
+ ln 4

)]1/2
. (29)

7. Potential difference across a charged ice cream cone A non-conducting surface in the shape of
a hollow ice-cream cone (no top and no ice cream) with height H and radius R has a constant surface
charge density σ:
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(a) Obtain and give a mathematical expression in terms of H, R, σ, and z for the potential dif-
ference V (z) − V (0) between a point on the axis of the cone with coordinate z and the tip of
the cone for which z = 0. You should evaluate any integrals in your expression (it is ok to
use Mathematica or Wolfram Alpha for this, although this is also a valuable chance to practice
your integration skills). Can you tell from your answer for what z you get the largest potential
difference |V (z)− V (0)|?
Also discuss briefly some limits of your expression that help to convince you that your final answer
is scientifically reasonable.

(b) For a cone that you could make by cutting a sector of a circle out a sheet of notebook paper, rolling
the sector up into a cone, and then charging the cone with a rubber rod that has been rubbed
with cat fur, estimate to the nearest power of ten the largest potential difference |V (z) − V (0)|
you would expect between a point on the axis and the tip of the cone. Make sure to explain any
assumptions or approximations you make in getting your answer.

Note: do not use any electric fields in this problem, instead start with the known formula of Exam-
ple 28.12 on page 829 of Knight for the potential of a point (with respect to infinity) that lies on the
axis of a uniformly charged ring of known radius. You may also want to use a result known to the
Greeks, that if you rotate a line segment of length l around a radius of length R that passes through
the center of the line segment, the line segment sweeps out an area S = (2πR)l. This formula is a
straightforward deduction from the formula for the surface area S = πRL of a cone of radius R at its
base and of side length L, see the video tutorial https://www.youtube.com/watch?v=K2ghejiUDXg
for the pretty insight of how to get this formula.

8. Time to Complete This Assignment

To the nearest integer, please give the time in hours that it took you to complete this assignment.
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