Physics 51/53 Equivalency Exam
Equation Sheet

Kinematics

\[\mathbf{v} = \mathbf{v}_0 + a t, \]
\[\mathbf{r} = \mathbf{r}_0 + \mathbf{v}_0 t + \frac{1}{2} a t^2. \]
\[v^2 = v_0^2 + 2a \cdot (r - r_0). \]
\[a_r = \omega^2 r = \frac{v^2}{R}. \]
\[\mathbf{v}_{PA} = \mathbf{v}_{PB} + \mathbf{v}_B/A. \]

Dynamics

\[\mathbf{F}_{\text{grav}} = mg \]
\[g_{\text{eff}} = g - a_0. \]
\[F = -kx \]
\[f_s \leq \mu_s N, \ f_k = \mu_k N \]

Potential Energy

\[U(y) = mgy \]
\[U(x) = \frac{1}{2} k x^2 \]

Rotational Motion

\[\mathbf{v} = \omega \times \mathbf{r} \]
\[a_r = -\omega^2 \mathbf{r} \]
\[a_t = \alpha \times \mathbf{r} \]

Rigid Bodies

\[K_{\text{rot}} = \frac{1}{2} I \omega^2 \]
\[\tau = I \alpha \]
\[L = I \omega \]
\[v_{CM} = R \omega \]
\[K = \frac{1}{2} m v_{CM}^2 + \frac{1}{2} I \omega^2 \]

Oscillations

\[x(t) = A \cos(\omega t + \delta) \]
\[E = \frac{1}{2} m \omega^2 A^2 \]
\[\omega = \sqrt{k/m} \]

Gravity and Planetary Motion

Potential energy of point mass \(m \) at distance \(r \) from center of thin spherical shell of radius \(R \) and mass \(M \):

\[U(r) = \begin{cases}
-\frac{GMm}{r} & \text{for } r > R \\
-\frac{GMm}{R} & \text{for } r \leq R
\end{cases} \]

Potential energy of spherically symmetric mass \(M \) and point mass \(m \), for distance \(r \) from the center of \(M \) greater than the radius of \(M \):

\[U(r) = -\frac{GMm}{r} \]

Total energy of orbit for satellite of mass \(m \) around object of mass \(M \); semi-major axis of orbit is \(a \):

\[E = -\frac{GMm}{2a} \]

Wave motion

\[y(x, t) = A \cos(kx - \omega t + \delta) \]
\[k = 2\pi/\lambda, \quad \omega = 2\pi f, \quad v = f\lambda = \omega/k \]
\[\beta = 10 \log_{10}(I/I_0) \]
\[I = 4I_0 \cos^2(\delta/2) = 2I_0(1 + \cos \delta) \]

Phase difference due to path difference only:

\[\delta = k\Delta x \]

Doppler effect:

\[f = f_0 \frac{v - v_R}{v - v_S} \quad \text{(source chasing receiver)} \]

Standing waves in string fixed at both ends:

\[f_n = n f_1 = n(v/2L), \quad n = 1, 2, 3, \ldots \]
Thermal Physics

\[dE_{\text{int}} = n c vdT \]

\[PV' = \text{const.} \]

\[\frac{\Delta L}{L} = \alpha \Delta T \]

\[\frac{dQ}{dt} = -kA \frac{dT}{dx} \]

\[Q_H / T_H = Q_C / T_C \]