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Retrapping current, self-heating, and hysteretic current-voltage characteristics in ultranarrow
superconducting aluminum nanowires
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Hysteretic I-V (current-voltage) curves are studied in narrow Al nanowires. The nanowires have a cross section
as small as 50 nm2. We focus on the retrapping current in a down-sweep of the current, at which a nanowire
re-enters the superconducting state from a normal state. The retrapping current is found to be significantly smaller
than the switching current at which the nanowire switches into the normal state from a superconducting state during
a current up-sweep. For wires of different lengths, we analyze the heat removal due to various processes, including
electron and phonon processes. For a short wire 1.5 μm in length, electronic thermal conduction is effective;
for longer wires 10 μm in length, phonon conduction becomes important. We demonstrate that the measured
retrapping current as a function of temperature can be quantitatively accounted for by the self-heating occurring
in the normal portions of the nanowires to better than 20% accuracy. For the phonon processes, the extracted
thermal conduction parameters support the notion of a reduced phase-space below three dimensions, consistent
with the phonon thermal wavelength having exceeded the lateral dimensions at temperatures below ∼1.3 K.
Nevertheless, surprisingly the best fit was achieved with a functional form corresponding to three-dimensional
phonons, albeit requiring parameters far exceeding known values in the literature.
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Understanding the dynamics of ultranarrow superconduct-
ing (SC) nanowire wires is an active area of investigation.1–15

A significant area of focus is the so-called one-dimensional
(1D) limit, delineated by the condition (w,h) < ξ , where w is
the width and h the height of the nanowire, and ξ is the super-
conducting coherence length. Investigations of the behavior
under current biasing not only elucidate the conditions and
limitations for the current carrying capabilities, as well as the
process of recovery back into the superconducting (SC) state
after driven normal by an excessive current, but also potentially
lay the foundation and pave the way for the development of
novel devices, such as a current-Josephson effect devices16 or
qubits.17

In this work we report on measurements carried out in
ultranarrow Al nanowires with a cross section as small as
50 nm2. The three nanowires studied have widths and heights
ranging between 7 and 10 nm, and lengths of 1.5 μm (wire S1)
or 10 μm (wires S2 and S4). These nanowires are exceedingly
uniform in their cross section, as indicated by their ability to
carry sizable current before being driven normal, where the
current density is nearly identical to coevaporated 2D films.
In a previous work, the behavior of the switching current Is

during an up-sweep of the current was investigated.8 There
it was found that heat deposited by phase-slips—transient
temporal-spatial events during which the superconducting
phase fluctuates and changes by 2π over a distance of order
ξ , while the core region goes normal—leads to a thermal
runaway, driving the entire nanowire into a normal state from
the SC state.

Here we focus on the down-sweep retrapping current. The
retrapping current Ir is found to be significantly smaller than
the up-sweep switching current Is , and can be a much as a
factor of 20 smaller. The history dependent current-voltage
(I-V) relation exemplified by the disparate behaviors in the up-
and down-sweep is ubiquitous, despite the fact that based on
the criteria normally applied to SNS (superconductor-normal
metal-superconductor) bridges, the nanowires should be in the

heavily overdamped regime in its dynamics.6,7,18 In MoGe
nanowires of widths ∼10 nm, Tinkham et al.6 performed a
heat flow analysis, and ascribed the retrapping behavior to
self-heating. Our work bears similarity to that work, but our
SC nanowires are in a different regime, where kF l ∼ 60 � 1,
rather than being close to 1 in their case. Here kF is the Fermi
wave number and l is the mean-free path. Moreover, their
nanowires were suspended freely, while ours are deposited
onto a narrow, 8-nm-wide InP ridge [Fig. 1(a)], and are thus
in thermal contact with an underlying substrate. Furthermore,
our analysis differs from theirs in the form of the heat flow
equations. Based on our analysis, we rule out underdamping
as the cause of the hysteresis, in agreement with recent results
in submicron SNS bridges.18

To lay the framework for understanding the behavior of
nanowires, the Josephson junction can serve as a starting
point. There, the free energy landscape under current bias
is described by the tilted washboard potential, shown in
Fig. 2(a).19 This same scenario is also applicable to 1D SC
nanowires.11,12 Josephson junctions are classified within a
resistively and capacitively shunted junction (RCSJ) model
as either under- or overdamped, depending on whether the
quality factor Q = √

2eIcC/h̄R is greater or less than 1.
Here Ic is the critical Josephson current, C is the junction
capacitance, and R is the junction normal state resistance.
When the underdamped Josephson junction is driven over
the free-energy barrier out of its metastable minimum, the
SC phase keeps running downhill as there is insufficient
damping to retrap the phase in a lower energy local minimum.
A consequence is a hysteretic current-voltage (I-V) relation,
where the up-sweep and down-sweep branches do not overlap.
In contrast, in an overdamped junction, the phase moves
diffusively between adjacent minima, and hysteresis is often
not present.21–23

The estimated Q for our nanowiresis in the range of ∼0.01,
far below unity, and the nanowires are ostensibly in the severely
overdamped limit. This estimate is relevant when the nanowire
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FIG. 1. (a) Schematic of the Al superconducting nanowire device
on a narrow InP ridge template. The ends of the nanowire are
connected to large, electrical measurement pads. The pads can either
be in the superconducting state or driven normal by a magnetic field.
(b) Top view of the nanowire geometry, and the layout used in the
heat flow model discussed in the text.

device is in the S-NW-S configuration, where S refers to
each of the two large metallic measurement pads when in
the SC state, and NW denotes the nanowire. It also provides
a reasonable estimate in the N-NW-N configuration, when
the pads are driven normal, but the ambient temperature is
below the nanowire SC transition temperature Tc. In this case,
the nanowire itself breaks up into alternating SC and normal
segments, whether during an up-sweep or a down-sweep of
the current. In the former case, the nanowire is overall in the
SC state, but during a phase-slip, the phase-slip normal core
acts as the normal region. In the latter, the central portion of
the nanowire is normal due to heating, while the regions closer
to the pads are in the SC state [Fig. 1(b)].

Nevertheless, despite the overdamping, hysteretic I-V
curves are ubiquitous, as can be seen for wire S2 in Fig. 2. In
fact, the ratio of Ir to Is can be as small as ∼1/20. For example,
in nanowire S2 at T ∼ 0.3 K, Ir ∼ 0.19 μA, while Is ∼ 4 μA.
These observations motivated us to investigate the retrapping
current systematically as a function of the temperature and
wire length, and to perform a detailed heat analysis to establish
self-heating as a cause of the substantially reduced Ir below
the value of the up-sweep Is .

Our devices were fabricated using a template method.
The template is a narrow, 8-nm-wide InP ridge, formed by
differential etching on the cleaved (110) crystallographic
plane of a molecular-beam-epitaxy (MBE) grown InGaAs-InP
crystal, where the growth direction is (001). The geometry
of our devices is depicted in Fig. 1(a). The details of the
fabrication procedure is described in a previous work.24 The
nanowire resides on the narrow InP ridge and is thus thermally
connected to the large semiconductor substrate through the
narrow ridge. The nanowire is electrically connected to large

FIG. 2. (Color online) (a) Tilted-washboard free energy land-
scape for a Josephson junction under current bias. A phase slip
occurring between adjacent minima is indicated. A similar scenario
occurs in a 1D superconducting nanowire. (b) Hysteretic I-V curves
for nanowire S2 at several temperatures. Arrows indicate direction
of current sweeps. The up-sweep switching current Is is significantly
larger than the down-sweep retrapping current Ir .

metallic measurement pads on its ends. Therefore, for heat
removal, thermal conduction both in the lateral direction along
the nanowire, and vertically through the InP ridge via phonon
processes must be considered. The I-V measurements were
carried out in a shielded copper can to minimize unwanted
environmental interference, such as external noise (e.g., from
nearby radio stations) conducted down the electrical cables,
or Johnson-Nyquist noise from resistors within the electrical
measurement circuitry. In particular, Thermocoax cables with
the ability to remove high-frequency noise is employed where
possible, as well as low-temperature rf filters. The devices are
also enclosed in metal cans with all openings plugged with
conductive tape or metal mesh.

In Figs. 3(a)–3(c) we present the measured Ir

for the three nanowires S1 (10 nm × 10 nm × 1.5 μm),
S2 (9.3 nm × 9.3 nm × 10 μm), and S4 (7 nm × 7 nm ×
10 μm), respectively, as a function of temperature. Immedi-
ately apparent is the substantial difference in the magnitude of
the retrapping current Ir for the short S1, when compared
to the longer S2 and S4. For S1, Ir = 0.99 μA at T =
0.3 K, while it is 0.19 and 0.117 μA, respectively for S2
and S4. Thus, the value of Ir in S1 is roughly 5–8 times
that in S2 or S4. The results for S2 and S4 do not depend
on whether measurements were carried out in the S-NW-S
or the N-NW-N configuration. In contrast, for S1, due to the
larger current level and associated excessive heating, it was
necessary to drive the measurement pads into a normal state,
into the N-NW-N configuration. By driving these pads into
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FIG. 3. (Color online) Solid squares: Data for the retrapping
current Ir as a function of temperature for nanowires. (a) S1
(10 nm × 10 nm × 1.5 μm), (b) S2 (9.3 nm × 9.3 nm × 10 μm), and
(c) S4 (7 nm × 7 nm × 10 μm). For S1 in (a), the solid curve is
a fit based on the heat flow model described in the main text,
where only the electronic thermal conduction is considered. The
Wiedermann-Franz constant deduced from the fitting is Lo = 3.65 ±
0.15 × 10−8 W �/K2. Vertical bars indicate certainty of the fitting
curve due to a combination of the uncertain in the parameters,
including uncertain in the superconducting transition temperature
Tc(I ) of ±2%. For S2 and S4 it is necessary to include both electronic
and phonon conduction. Various rate limiting phonon processes
were considered, including electron phonon relaxation and Kapitza
boundary resistance phonon conduction (see text). The uncertain of
the phonon parameters is ±10%.

the normal state using a small magnetic field B = 0.1 T, the
now normal pads can act as good thermal anchors, keeping
the temperatures of the ends at the ambient temperature To.
For the longer S2 and S4, the smaller current level means
that a much lower amount of heat needs to be carried out
through wire ends; thus improved thermal anchoring was
not needed. For S1, on the other hand, keeping the pads

SC (S-NW-S configuration) reduced Ir to ∼0.55 μA from
∼1 μA as heat removal becomes more difficult due to poor
thermal conduction capability of the SC pads. At the same
time, instabilities arise in the temperature profile along the
nanowire, leading to very noisy data below 0.8 K with Ir

fluctuating as much as 0.1 μA between adjacent data points.
The 0.1 T magnetic field affects the nanowires and the large,

two-dimensional electrical pads differently. The nanowires are
able to keep SC at low current levels with an overall behavior
similar to their zero magnetic field behavior, while the pads
are driven into the normal state. This difference occurs because
the nanowires and the pads behave as type II superconductors,
similar to most thin film superconductors. In the pads, the
upper critical field Hc2 is set by the condition of having roughly
on flux quantum (h/2e) fit in the area A of a square with sides ξ

the (superconducting) coherence length, that is, A ∼ ξ 2. In the
nanowires, since the width w is much smaller than ξ , the area
A is now given by ξw, resulting in an enhanced Hc2 above its
value for the pads by a factor ξ/w. Typically, for the nanowires
Hc2 ranges from 0.5 to 2 T between 20 mK and 1.4 K, while
for the pads it is below 0.05 T at all temperatures.

The configuration with normal electrical pads is relevant
for our data in Fig. 3. In the analysis which follows, we will
focus on this configuration. The retrapping process returns
a nanowire into the SC state during a down-sweep of the
current I at an ambient lattice temperature To below the zero
current critical temperature Tc(I = 0). At large I , most of the
nanowire remains normal due to self-heating, which raises
the local temperature above the switching temperature at that
current Ts(I ).

During a current down-sweep, the temperature is position
dependent along the nanowire. In the N-NW-N configuration,
each of its ends is connected to a large, normal metal electrical
measurement pads, anchored at To. Because To < Tc (I = 0),
and is in fact below Ts (I = Ir ), the end regions are in the SC
state, aside from a short proximity region lprox ∼ 100 nm in
length, immediately adjacent to each normal pad [Fig. 1(b)].
Here the Ts(I ) is the up-sweep switching temperature at current
I , On the other hand, as long as I exceeded Ir , the center of the
nanowire is above Ts(I ) and is thus in the normal state. When
I is reduced down to Ir , a blockage preventing the central
region to be cooled is suddenly removed, allowing the cooling
to propagate all the way to the center. This blockage removal
is described in detail in what follows.

The up-sweep switching temperature for a given current
Ts(I ) expresses the same relation as the switch current as a
function of temperature Is(T ), but viewed in reverse. For our
nanowires, these were reported in Ref. 8. It is worthwhile
to point out that the value of Is at a given temperature is
not unique, but depends on the up-sweep ramp rate of the
current. Conversely, Ts(I ) is also dependent on the ramp
rate. This is due to the fact that the switching is caused
by phase-slip events,7–9 and thus the relative rates of the
phase-slip generation to current up-sweep matters. The slower
the up-sweep current ramp rate, the longer waiting time is
available for phase-slip events to take place within a given
interval in current. This increases the probability for switching
within that interval and reduces the magnitude of the current at
which switching takes place. But because the rate of phase-slip
generation is exponentially dependent on the current, the
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dependence of Is on ramp rate is weak, and is approximately
logarithmic.

To estimate Ir , it is necessary to determine the position
dependent temperature T (x). Both the electronic and phonon
thermal conduction mechanisms need to be considered. The
temperature range of interest is very low compared to the
lattice Debye temperature �D ∼ 300 K and the temperature
dependence of the phonon thermal conductivity takes a
power-law form, reflecting the phonon density of states.
At these low temperatures, 0.2 < T < 1.3 K, the value of
the phonon conductivity is considerably smaller than the
electronic thermal conductivity. The only exception is in the
SC regions when T (x) < 0.35 K. Thus, in the absence of a very
large temperature rise phonons can only carry away a relatively
small amount of heat. Whereas electronic conduction requires
the heat to exit the ends of the nanowire, the phonon conduction
goes through the short InP template ridge (in height), on which
the nanowire resides. The nanowire length is microns while
the ridge is only 30 nm in height. If the wire is long, the
electronic mechanism will become much less effective, and
phonon conduction must be included as well.

For the short wire S1, electronic conduction overwhelm-
ingly dominates. For the long wire S2, both electronic and
phonon thermal conduction must take place side by side.
Phonon conduction through the InP ridge takes place via
several steps: (a) electron-phonon energy relaxation within the
aluminum nanowire, (b) conduction through the aluminum-
InP boundary, and (c) conduction through the 8-nm-wide,
30-nm-tall InP ridge. Below the ridge, the energy is dissipated
in the very highly conductive GaAs bulk material. Thus the
base of the InP ridge can safely be assumed to be held at the
ambient temperature To.

One additional mechanism of heat removal takes place
through the liquid He3, which surrounded the nanowires in
the set of measurement on S1 and S2. However, this channel
appears less important. Additional data for wire S4 obtained
in the dilution refrigerator, in which the samples are in
vacuum and thus there was no liquid surrounding the nanowire,
yielded a retrapping current which can be accounted for in a
similar manner as S2, using electronic and InP ridge thermal
conduction only. Note both wires S2 and S4 are 10 μm in
length.

We divide a nanowire into two symmetric halves of length
L/2 each, where L is the total wire length, and consider
the right half, where 0 � x � L/2, and T (x = L/2) = To, as
shown in Fig. 1(b). When slowly down-sweeping the current
I , we assume that the nanowire is in the SC state at a position
x, if T (x) < Ts(I ), but is in a normal state if T (x) > Ts(I ).

We begin by considering the short wire S1 (1.5 μm
in length) and only include electronic conduction. Phonon
conduction alone will remove ∼3% of the heat generated by
heating, and will be neglected. The diffusion equations must
account for three regions: (a) the central region for 0 � x � xb,
which is normal for I > Ir and has a resistance per unit length
of RN/L ∼ 0.33 − 0.82 k�/μm (Ref. 8) and thus self-heats;
(b) the SC segment for xb � x � L/2 − lprox, which nearly
does not self-heat, but must conduct the heat generated by the
central normal segment, and (c) the short proximity region
adjacent to the normal metal pads for L/2 − lprox � x � L/2
which is approximated as a normal region. More precisely, the

SC region close to the SC-normal boundary xb heats slightly
due to occasional phase slips as its temperature is just below
Ts(I ) � 1.1 K; the proximity region generates self-heating,
and in addition must conduct through it the heat of the central
normal region as well. For the normal metal regions, the steady
state heat diffusion equation is given by

I 2RN

L
= − d

dx

(
κNAnw

dT

dx

)
, (1)

where κN = LoLT/(RNAnw) is the electronic Wiedemann-
Franz electronic thermal conductivity, Lo is Lorenz number
determined from fitting, and Anw = w × h the nanowire cross
sectional area. In the SC region, it is replaced by

0 ≈ − d

dx

(
κSCAnw

dT

dx

)
. (2)

The equations in the three regions are supplemented by
boundary conditions at the junctions. The junction between
the center normal region and the SC region takes place at
x = xb, and between the SC and short proximity regions at
x = L/2 − lprox. The temperature is continuous across each
junction, and the heat flow is identical immediately to the left
and right. Finally, we have T (x = L/2) = To. Note that the
forms of these equations differ from those used in Ref. 6.
There the variation of the thermal conductivity κN or κSC with
position, through their dependence on temperature T, was not
accounted for.6

At a given temperature below Tc(I ), the electronic thermal
conductivity of the SC segment at a position x, with a
temperature T (x), is related to the corresponding normal metal
W-F thermal conductivity at that temperature, by the ratio
r ≡ κSC/κN :18

r = 3

π2

∫ ∞

1.76Tc(I )/T (x)

y2

cosh2(y/2)
dy. (3)

This integral evaluated numerically is shown in Fig. 4. For the
purpose of determining the position dependent temperature
at a given I , this ratio is approximated by a linear form as
indicated in the figure for 0.2 < T (x)/Tc(I ) < 1:

r ≈ 1.125[T (x)/Tc(I ) − 0.2]. (4)

FIG. 4. (Color online) Plot of the thermal heat capacity ratio
κSC/κN between the normal and superconducting states, as a function
of reduced temperature T/Tc. The line indicates the approximation
used in the calculations.

184508-4



RETRAPPING CURRENT, SELF-HEATING, AND . . . PHYSICAL REVIEW B 84, 184508 (2011)

FIG. 5. (Color online) The temperature profile vs position x at
ambient temperature To, with a corresponding retrap current Ir . Three
different current levels are depicted: I > Ir , I = Ir , and I < Ir . The
critical value of the SC-normal boundary is given approximately
by xc = 0.5(L/2 − lprox). The proximity region lies to the right of
x = (L/2 − lprox), ending at the electrical pad at L/2. The SC segment
lies immediately to the left. For I � Ir , the position of the SC-normal
boundary xb is given by the intersection of T (x) and the corresponding
switching current Ts(I ). The horizontal dotted line depicts Ts(Ir ),
while the short light solid lines correspond to I < Ir and I > Ir

with [Ts(I > Ir )] < [Ts(Ir )] < [Ts(I < Ir )]. For I > Ir , xb > xc. For
I = Ir , xb = xc. For I < Ir , indicated by the light solid curve joined
onto the light dotted curve, the dotted “normal” region is unstable; the
region immediately to the left of xc actually falls below Ts(I < Ir ) and
will go superconducting, leading to a propagation of the SC-normal
boundary toward the center at x = 0.

We next describe how the cooling blockage can be removed,
and determine the condition for this to occur. To do so we
consider the SC region and fix the current at I . The SC-normal
boundary occurs at xb, which is determined by equating the
temperature at xb, T (xb), to the switching temperature at that
current Ts(I ). Momentarily treating xb as a variable, T (xb)
attains its maximum value at a critical value xb = xc; in the
simplest approximation xc is independent of I as will be seen
below. For a large current I , the normal region is large and
the actual xb exceeds xc (Fig. 5). As I is reduced down to
Ir , the normal region shrinks and xb becomes equal to xc.
Here T (xb = xc) takes on the maximum possible value at Ir ,
since xb = xc, and is equal to Ts(Ir ). Further reducing I to just
below Ir , Ts(I < Ir ) will slightly increase from Ts(Ir ), while
at every x, T (x) will slightly decrease due to reduced heating.
The decreased maximum temperature at xc, T (x = xc), can
no longer reach the increased Ts(I < Ir ). The boundary will
become unstable, and will propagate toward the center at x =
0. Starting from the initial boundary at xb = xc, more and
more of the normal region will fall below Ts(I ) and become
superconducting, as the shrinking normal region generates less
and less heat, until the entire wire is cooled. The three cases
are depicted in Fig. 5.

The value for xc can be deduced from the steady-state
heat diffusion equation in the SC state [Eq. (2)]. Neglect-
ing the short proximity region adjacent to the pad, xc =
L/4 [0.5(L/2)]; accounting for the proximity region of length
lprox modifies this to xc ≈ (L/2 − lprox)/2. For illustrative
purposes, let us determine xc in the absence of the proximity
region. Focusing on the SC region at its border with the normal

segment x = xb, twice integrating the diffusion equation and
matching the boundary conditions yields for the left-hand-side
(LHS)

LHS =
(

I 2RN

x

L

)
(L/2 − x), (5)

which is maximal for x = L/4 for fixed I . At x = xb the
factor I 2RN

xb

L
represents the heating power generated by the

normal region where 0 � x � xb. Equating the LHS to a twice-
integrated right-hand side and solving for T (xb) thus yields the
highest temperature at the normal-SC border when xb = xc =
L/4, where the LHS is maximal.

Using the approximate form of the thermal conductivity
ratio r between the SC and normal states given by Eq. (4),
the diffusion equation can readily be solved analytically. The
solution yielded the position dependent temperature profile
shown in Fig. 6(a). The kink at the SC-proximity boundary
is an artifact of our model, where the proximity region is
approximated as a normal region. A more accurate model
would require solving the Usadel equation, which is expected

FIG. 6. (Color online) Temperature profile vs position x for
different ambient temperatures. The temperature is stepped by 0.1 K
between successive curves—(a) nanowire S1, (b) nanowire S2, and
(c) nanowire S4. The kink at x = 0.79(L/2) in (a) is an artifact
of modeling the proximity region as a normal metal, with a sharp
boundary with the SC region to its left.
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to yield a rounding and smoothing of the kink. See Ref. 24
for an example of the rounded voltage profile in the proximity
region. The fit to the Ir as a function of temperature T is
presented in Fig. 3(a) using a Lorenz number Lo = 3.65 ×
10−8 W �/K2, somewhat higher that the theoretical value of
2.45 × 10−8 W �/K2. Viewed in another way, forcing Lo to
take the theoretical value, our model would predict a low
temperature Ir ∼ 0.8 μA, rather than the 1 μA we observed.
Reconciling this discrepancy may require the development of
more sophisticated analysis using the Usadel equation, while
incorporating heating and a position dependent temperature at
the same time. Despite the discrepancies, the overall behavior
and magnitude (within 20% accuracy) are captured in our
simple model.

For the 10 μm wires S2 and S4, electronic thermal
conduction alone is not sufficient to support the measured
Ir , despite its smaller value (by a factor of 5–8 at 0.3 K).
It is necessary to include phonon conduction. We assume a
power-law temperature dependence in the heat exchange rate.
At every position, the heat-removal linear power density is set
proportional to T γ − T

γ
o , where γ may be varied to reflect the

limiting process in the phonon conduction discussed above.
The steady-state heat diffusion equation takes the forms

I 2RN

L
− β

(
T γ − T γ

o

) = − d

dx

(
κNAnw

dT

dx

)
(6)

and

−β
(
T γ − T γ

o

) ≈ − d

dx

(
κSCAnw

dT

dx

)
(7)

for the normal and SC segments, respectively. For the longer
wires S2 and S4, the smaller Ir values allow the short proximity
region adjacent to the normal-metal pads to be neglected.

This form for the heat-removal power density per unit length
assumes that phonon conduction along the wire direction is
weak, a reasonable assumption since the thermal conductivity
is small, and since the wire is much longer than the height of
the InP ridge (i.e., 10 μm � 30 nm). It also assumes that the
environment to which the energy is dissipated is well-anchored
at the ambient temperature. For instance, if the electron-
phonon relaxation is the limiting step, it is reasonable to
assume that the combination of Kapitza and InP ridge phonon
conduction is sufficiently large that the phonon temperature
within the nanowire is maintained at To. On the other hand,
if Kapitza boundary resistance limits the rate of heat removal
via the phonons, then it is reasonable to assume the phonons
within the InP ridge are at To.

Several choices are possible for γ . For electron-phonon
energy relaxation via three-dimensional (3D) phonons, γ = 5,
while for Kapitza boundary resistance γ = 4. However, the
small lateral dimensions (width and/or height) in either the
nanowire or InP ridge should render the phonons reduced
below 3D, down to 1D and 2D, respectively. This occurs
because the thermal phonon wavelength λph/2, exceeds the
lateral dimension(s) for T � 1.3 K [more precisely, λph/2 >

(w,h)]. Note that the width of the InP ridge is wInP = 8 nm
while the width/height of the nanowire w or h ∼ 10 nm. By
examining the fitted coefficient in front of the power-law term,
one seeks to exclude various possibilities. This coefficient β

naturally depends on the limiting mechanism. For example, in

the case of electron-3D phonon relaxation, β = 
e-3D-phAnw,
where 
e-3D-ph is the 3D energy relaxation rate constant and
Anw the nanowire cross sectional area. For Kapitza boundary
resistance limited thermal conduction with 3D InP phonons,
β = σK,3D-phwInP, where σK,3D-phT

3 is the Kapitza boundary
conductance at temperature T.

From the quantitative analysis presented below, it will be
shown that in the most likely scenario, thermal conduction is
limited by the Kapitza boundary resistance between the Al
nanowire and the InP ridge. Thus, it turned out not necessary
to consider the inclusion of more-than-one power-law terms,
each with a different exponent γ . At the same time, the
assumption of a power-law form also presupposes that the
conduction is dominated by intrinsic properties of nearly
crystalline materials, for both the nanowire and the InP ridge,
rather than by interface states or adsorbates on the side walls.
A partial justification is the degree of agreement achievable
with data using sensible parameter values.

These highly nonlinear equations were solved approxi-
mately by numerical methods, yielding the position dependent
temperature profiles shown in Figs. 6(b) and 6(c), respectively
for S2 and S4. The fitting to Ir versus temperature yielded
the curves in Figs. 3(b) and 3(c), with Lo fixed at the
value from wire S1, of 3.65 × 10−8 W �/K2. The critical
value xc was found to shift slightly toward the center, to
0.23L [0.46(L/2)] rather than L/4 [0.5(L/2)]. The best fit
is for γ = 5, corresponding to the electron-3D phonon energy
relaxation as the limiting step. Fits of slightly lower quality
can be achieved for γ = 4 or 3. On the other hand, the
numerical values for the coefficient β yielded values for the
parameters, which point to Kapitza boundary resistance at
the Al nanowire-InP interface as the limiting path to phonon
conduction.

For γ = 5 the extracted electron-3D-phonon relaxation rate

e-3D-ph for S2 is ∼6× as large as the established value ∼2 ×
109 W/m3 K5 (Ref. 18) and is ∼11× for S4. The values are
thus inconsistent. We are forced to consider the possibility
that the Al phonons are reduced in dimensions down to 1D.
An enhancement of ∼�D/T (a/w) ∼ 9 can be expected per
dimension reduced, where a is the lattice constant, yielding a
factor ∼81, far larger than the measured enhancement! Instead,
within this scenario, one expects the limiting step to be the
Kapitza boundary resistance between the Al nanowire and the
InP ridge.

For Kapitza boundary limited conduction, one may expect
γ = 3 rather than γ = 4 due to reduced-dimension 2D InP
phonons, despite the poorer quality fit. An enhancement factor
of ∼9 over the known 3D value should be present from the
reduction in dimension by 1. As a reference, we use σK,3D-ph ∼
20 W/m2 K4, obtained for Au on GaAs rather than Al on
InP.25 Forcing γ = 4 yield the parameter value σK,3D-ph ∼
190 W/m2 K4, which is 10 times the reference value. Instead,
after conversion of the reference value to account for 2D
phonons, the enhanced value of σK,2D-ph ∼ 280 W/m2 K3 is
consistent with the fitted values of 300 and 330 W/m2 K3,
respectively, for S2 and S4 (with γ = 3). To make certain this
picture of Kapitza boundary limited conduction is consistent,
we need to ensure the ridge phonon thermal conduction is
larger. An estimate of the phonon thermal conductivity of
the InP ridge itself yields a lower bound of 700 W/m2 K2,
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corresponding to the case of a very short, ridge-width limited
phonon mean free path ∼8 nm. Note that in this estimate, the
height of the ridge is already accounted for, and it is cast in a
form to enable a direct comparison, i.e. rate of heat flow is given
by −(700 W/m2K3) AT 2�T , where A is the cross sectional
area. This rules out phonon conduction in the InP ridge as the
limiting step, as required. Finally, as a reference, we estimate
the conductivity in the absence of any electronic contribution.
This yield a value roughly double the above values for the 2D
phonon Kapitza boundary conductance coefficient.

It is worthwhile to reemphasize the evidence for reduced
dimension Kapitza boundary conduction as the limiting step, is
based on a direct comparison of the fitting parameter values for
S2 and S4. Whereas, 
e-3D-ph (for electron-phonon-relaxation-
limited heat removal) shows a discrepancy between S2 and S4
of a factor 1.2/2.2 ∼ 1.8, the values for the reduced dimension
σK,2D-ph (for 2D InP-ridge phonon, Kapitza-boundary-limited
thermal conduction) are within 10% of each other! This, in
conjunction with the discrepancy with the known reference
value for 
e-3D-ph, helps establish the Kapitza boundary
resistance limited scenario.

One factor, which may impact the quantitative agreement
and account for the discrepancy between the model and the
data, could come from imperfections at the nanowire-InP
interface mentioned previously. For instance, grain bound-
aries in the polycrystalline nanowires (grain size ∼ wire

width), interface roughness, localized interface states, etc.,
all can influence the phonon coupling across the boundary.
In the ordinary 3D case between liquid He3 and a metal, it
is well known that interface roughness can help break the
translational invariance, and supply the momentum transfer
needed to mitigate the effects of phonon velocity mismatch
across the boundary. This leads to a weaker dependence than
T 4 in the boundary conductance, and an enhanced conductance
at low T . Unfortunately, for our nanowires such effects are
difficult to quantify.

Based on the detailed analysis presented in this work, we
establish that in the retrapping process, the longer wires S2 and
S4 require phonons to contribute to heat removal, in addition
to the electronic thermal conduction, while for the short S1,
electronic conduction alone is sufficient. The reasonable fits
using sensible parameters demonstrate that it is possible to
achieve an understanding of the heating-induced hysteresis for
nanowires S1, S2, and S4, based on heating within the normal
regions, while at the same time account for the observed
differences.
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