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The resonant-level model represents a paradigmatic quantum system which serves as a basis for many other
quantum impurity models. We provide a comprehensive analysis of the nonequilibrium transport near a quantum
phase transition in a spinless dissipative resonant-level model, extending earlier work [Phys. Rev. Lett 102, 216803
(2009)]. A detailed derivation of a rigorous mapping of our system onto an effective Kondo model is presented. A
controlled energy-dependent renormalization-group approach is applied to compute the nonequilibrium current
in the presence of a finite bias voltage V . In the linear-response regime V → 0, the system exhibits as a
function of the dissipative strength a localized-delocalized quantum transition of the Kosterlitz-Thouless (KT)
type. We address fundamental issues of the nonequilibrium transport near the quantum phase transition: Does
the bias voltage play the same role as temperature to smear out the transition? What is the scaling of the
nonequilibrium conductance near the transition? At finite temperatures, we show that the conductance follows
the equilibrium scaling for V < T , while it obeys a distinct nonequilibrium profile for V > T . We furthermore
provide different signatures of the transition in the finite-frequency current noise and ac conductance via a
recently developed functional renormalization group (FRG) approach. The generalization of our analysis to
nonequilibrium transport through a resonant level coupled to two chiral Luttinger liquid leads, generated
by fractional quantum Hall edge states, is discussed. Our work on the dissipative resonant level has direct
relevance to experiments on a quantum dot coupled to a resistive environment, such as H. Mebrahtu et al.,
[Nature (London) 488, 61 (2012)].
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I. INTRODUCTION

Quantum phase transitions (QPTs)1,2 which separate com-
peting ground states represent generic phenomena in solid-
state systems at zero temperature. The transition is frequently
found to be continuous, often times giving rise to a quantum
critical point. In the neighborhood of a quantum critical
point of a metallic system the finite temperature properties
as a rule show non-Fermi-liquid behavior.3 In recent years,
quantum phase transitions at the nanoscale have attracted
much attention.4–15 Much of the effort has been focused
on the breakdown of the Kondo effect in transport of a
quantum dot due to its coupling to a dissipative environment.
However, relatively less is known about the corresponding out-
of-equilibrium properties.16–25 A finite bias voltage applied
across a nanosystem is expected to smear out the equilibrium
transition, but the current-induced decoherence might act
quite differently as compared to thermal decoherence at
finite temperature T , resulting in exotic behavior near the
transition.

Meanwhile, understanding the interplay of electron inter-
actions and nonequilibrium effects in quantum systems is one
of the most challenging open questions in condensed-matter
physics. Many of the theoretical approaches that have been
proven so successful in treating strongly correlated systems
in equilibrium are simply inadequate once the system is out
of equilibrium. The real-time Schwinger-Keldysh formalism26

has been known as the most successful approach to nonequi-
librium dynamics since it offers a controlled perturbative
expansion of the density operator. However, care must be
taken to avoid the appearance of infrared divergences, in
the perturbative approaches. Though much is known for
quantum impurity systems in equilibrium, understanding their
properties in nonequilibrium steady state is still limited. Nev-
ertheless, significant progress has been made by different ap-
proaches, such as (1) analytical approximations: perturbative
renormalization-group method (RG),27,28 Hamiltonian flow
equations,29 functional RG,30,31 strong-coupling expansions,32

master equations;33 (2) exact analytical solutions: field theory
techniques,34 the scattering Bethe ansatz,35 mapping of a
steady-state nonequilibrium problem onto an effective equi-
librium system,36–39 nonlinear-response theory approach to
current fluctuations;40 (3) numerical methods: time-dependent
density-matrix renormalization group (RG),41 time-dependent
numerical RG,42 diagrammatic Monte Carlo,43 and imaginary-
time nonequilibrium quantum Monte Carlo.44

In this paper, we provide a comprehensive analysis of
the nonequilibrium transport near a quantum phase transition
in a dissipative resonant level model by employing the
recently developed frequency-dependent RG27 and functional
RG approaches,31 and extending our earlier work in Ref. 16.
We aim to address several fundamental questions related to
the nonequilibrium transport in quantum dot settings, such
as what is the distinct nonequilibrium conductance profile
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at zero temperature compared to that in equilibrium at finite
temperatures near the transition? Is there any scaling behavior
of the conductance at finite temperatures and finite bias voltage
near the transition?

For this purpose, we investigate three classes of typical
nanomodels comprising a spinless resonant level coupled to
(i) two noninteracting Fermi-liquid leads subject to an Ohmic
dissipative environment, where an Ohmic environment can be
realized in a nanoscale resistor and has many applications in
physics ranging from mesoscopic physics (see Refs. 8, 10, and
11) to biological systems;45 (ii) two interacting fermion baths,
in particular two fractional quantum Hall edge (FQHE)46 leads,
or the “chiral Luttinger liquids” where electrons on the edge
of a two-dimensional (2D) fractional quantum Hall system
show one-dimensional chiral Luttinger liquid behaviors with
only one species of electrons (left or right movers); (iii)
two interacting Luttinger liquid leads subject to an Ohmic
dissipative environment.

In the class (i) model, the QPT separating the conducting
and insulating phase for the level is solely driven by dissipa-
tion, which can be modeled by a bosonic bath. Dissipation-
driven QPTs have been addressed theoretically and experi-
mentally in various systems, such as quantum dot systems,9,47

Josephson junction arrays,48–50 superconducting thin film,51–53

superconducting qubit,54 qubits or resonant level systems
coupled to photonic cavities,55,56 and biological systems.45,57

Very recently, new Majorana physics in dissipative nanostruc-
tures has attracted much attention.58 Here, we focus on the
nonequilibrium properties of the system near a quantum phase
transition. Meanwhile, for the class (ii) model, tunneling of
electrons or quasiparticles between two FQHE states may in
general suffer from the electron-electron interactions in FQHE.
Interesting experimentally relevant questions arise regarding
how interaction effects modify the nonequilibrium charge
transport in such systems. Furthermore, one can extend the
above two classes of models to a more general class (iii) model
where both electron-electron interactions and the dissipation
are present in the FQHE setups.4 Our results have relevance
for the recent experiment in Ref. 47 where the electronic
transport through a resonant level in a nanotube exhibits
Luttinger liquid behavior, namely the conductance demon-
strates a nontrivial power-law suppression as a function of bias
voltage.

This paper is organized as follows: In Sec. II A, the model
Hamiltonian of class (i) is introduced. In Sec. II B, we establish
rigorous mappings of our model system, the class (i) model at
a finite bias voltage, onto the out-of-equilibrium anisotropic
Kondo model as well as onto class (ii) and (iii) model systems
subject to a finite voltage bias. We compute the current operator
in Sec. II C for these three classes of models. We employ
the nonequilibrium RG approach in Sec. III. Our results on
nonequilibrium transport near the quantum phase transition
both at zero and finite temperatures are presented in Sec. IV,
followed by the results on the nonequilibrium finite-frequency
current noise in Sec. V. We make a few remarks on the
important issues of nonequilibrium quantum criticality in
Sec. VI. Finally, we draw conclusions in Sec. VII. The novel
aspect of this extended paper compared to our previous work
in Ref. 16 is the investigation of the finite-frequency noise near
the transition.

II. MODEL HAMILTONIAN

A. Dissipative resonant level model

Our Hamiltonian corresponding to the class (i) model
mentioned above takes the following generic form:

H =
∑

k

∑
i=1,2

[ε(k) − μi]c̄
†
ki c̄ki + ti c̄

†
kid + H.c.

+
∑

r

λr (d†d − 1/2)(br + b†r ) +
∑

r

ωrb
†
rbr , (1)

where ti is the (real-valued) hopping amplitude between the
lead i and the quantum dot, c̄ki and d are electron operators for
the (Fermi-liquid type) leads and the quantum dot, respectively,
the Planck constant h̄ is fixed to unity. μi = ±V/2 is the
chemical potential shift applied on the lead i (V will denote
the bias voltage throughout this paper), while the dot level is at
zero chemical potential. Here, br are the boson operators of the
dissipative bath with an Ohmic type spectral density:8 J(ω) =
π
∑

r λ2
r δ(ω − ωr ) = 2παω. Note that usually we introduce a

cutoff via a exp(−ω/ωc) function in J(ω); here, we assume
that ωc is a large energy scale comparable to the energy
bandwidth of the reservoir leads. To simplify the discussion,
we assume that the electron spins have been polarized through
the application of a strong magnetic field. Our model can be
realized experimentally in a quantum dot coupled to resistive
environment as shown in Ref. 47. Note also that our generic
Hamiltonian Eq. (1) is related to the other two types of models
[class (ii) and (iii)] via mappings described in Sec. II B and
Appendix A.

In this section, we briefly summarize the behavior of our
model system at equilibrium which means in the absence
of a finite bias voltage (V =0). A dissipative resonant-level
systems in equilibrium coupled to several leads maps onto
the anisotropic one-channel Kondo model8,10,11 where the
dimensionless transverse Kondo coupling g

(e)
⊥ is proportional

to the hopping t between the level and the leads and the
longitudinal coupling g(e)

z ∝ 1 − √
α (the exact prefactors are

given in Refs. 8, 10, and 11; see also Sec. II B and Appendix A).
Here, the superscript (e) in g

(e)
⊥/z refers to the equilibrium

couplings. The model exhibits a Kosterlitz-Thouless (KT) QPT
from a delocalized (Kondo screened) phase for g

(e)
⊥ + g(e)

z > 0,
with a large conductance, G ≈ e2/h, to a localized (local
moment) phase for g

(e)
⊥ + g(e)

z � 0, with a small conductance,
as the dissipation strength is increased (see Fig. 1). For g

(e)
⊥ →

0, the KT transition occurs at αc = 1. As α → αc, the Kondo
temperature TK obeys7 ln TK ∝ 1/(α − αc). Note that here we
assume our resonant level system exhibits the particle-hole
(p-h) symmetry; namely, the resonant-level energy εd is set to
be zero (εd = 0). However, in a more general resonant-level
model where p-h symmetry is absent, an additional term of
the form εdd

†d is present in the Hamiltonian Eq. (1). In terms
of its equivalent Kondo model, this p-h symmetry breaking
term plays the role as an effective local magnetic field Bz ∝ εd

acting on the impurity spin in the Kondo model,11 which needs
more involved treatments and exceeds the scope of a simple
and generic model system considered in the present work.

In equilibrium, the dimensionless scaling functions
g

(e)
⊥ (T ) and g(e)

z (T ) at the transition are obtained via the
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FIG. 1. RG flow of g⊥,cr (V/2) at the transition as a function of
bandwidth cutoff D (in units of D0); the bare couplings are g⊥ =
−gz = 0.1 (in units of D0). We have set V = 0.72 (in units of D0).
The decoherence rate � is around 0.001 17D0.

renormalization-group (RG) equations of the anisotropic
Kondo model:

g
(e)
⊥,cr (T ) = −g(e)

z,cr (T ) = [2 ln(D/T )]−1, (2)

where D = D0e
1/(2g⊥), with D0 being the ultraviolet cutoff.

Having in mind a quantum dot at resonance, D0 = min(δε,ωc),
with δε being the level spacing on the dot and ωc the cutoff of
the bosonic bath, D0 is of the order of a few kelvin.16 At low
temperatures T � D0, the conductance drops abruptly with
decreasing temperatures:9

Geq(αc,T � D0) ∝ [
g

(e)
⊥,cr (T )

]2 ∝ 1

ln2(T/D)
. (3)

Below, we analyze the nonequilibrium (V �= 0) transport
of our model system at the KT transition and in the local-
ized phase in the double-barrier resonant tunneling regime
where the dissipative resonant level couples symmetrically
to the two leads (t1 = t2 = t). Note, however, that when the
dissipative resonant level couples asymmetrically to the leads
t1 �= t2, as has been observed experimentally in Ref. 47, the
system reaches the single-barrier tunneling regime, leading
to Luttinger liquid behavior in conductance with power-law
dependence in bias voltage. For the sake of convenience,
we set the following units throughout the rest of the paper:
e = h̄ = D0 = kB = 1.

B. Useful mappings

Our generic model Hamiltonian Eq. (1) in fact can be
mapped onto various related model systems as we shall
discuss below, including the anisotropic Kondo model [class
(i)], and the class (ii) and (iii) systems mentioned above.
Here, we will address the nonequilibrium transport through
a dissipative resonant level based on one of the equivalent
models: the two-lead anisotropic Kondo model. The mappings
for the three classes of models discussed below will be derived
in an analogous way. The general scheme of these mappings
is via bosonization followed by refermionization (or in the
opposite order).59,60

1. Mapping the dissipative resonant level model onto
the anisotropic Kondo model

First, we envision a nonequilibrium mapping revealing
that the leads are controlled by distinct chemical potentials.
Through similar bosonization and refermionization procedures
as in equilibrium, our model is mapped onto an anisotropic
Kondo model7,8,10,11 with the effective (Fermi-liquid) left (L)
and right lead (R)61 (see Appendix A for details):

HK =
∑

k,γ=L,R,σ=↑,↓
[εk − μγ ]c†kγ σ ckγ σ

+ (
J

(1)
⊥ s+

LRS− + J
(2)
⊥ s+

RLS− + H.c.
)

+
∑

γ=L,R

Jzs
z
γ γ Sz, (4)

where c
†
kL(R)σ is the electron operator of the effective lead

L(R), with σ the spin quantum number, γ = L,R is the
index for the effective noninteracting fermionic leads, S+ =
d†, S− = d, and Sz = Q − 1/2 where Q = d†d describes
the charge occupancy of the level. Additionally, s±

γβ =∑
α,δ,k,k′

1
2c

†
kγ ασ±

αδck′βδ are the spin-flip operators between

the effective leads γ and β, J
(1),(2)
⊥ ∝ t1,2 embody the

transverse Kondo couplings, Jz ∝ (1 − 1/
√

2α∗), and μγ =
±V

2

√
1/(2α∗). It should be noted that this mapping is exact

near the phase transition where α → 1 or α∗ ≡ 1
1+α

→ 1/2,
and thus μγ = ±V/2. Note that the above mapping takes
a spinless dissipative resonant level model with spinless
fermionic baths c̄α=1,2 to the anisotropic Kondo model with a
“spinful” quantum dot (with spin operator given by S+,−,z) and
“spinful” conduction electron leads cσ

γ=L,R . The appearance of
the “pseudospin” degrees of freedom in the effective Kondo
model can be understood in terms of the “charge Kondo” effect:
the tunneling between a resonant level (which can be repre-
sented by a “qubit” or a “spin”) and the spin-polarized leads
plays an equivalent role as the pseudospin flips between the
spin of a quantum dot and that of the conduction electrons, and
the coupling of the charge of the resonant level to the bosonic
environment acts as the Ising coupling between z components
of the pseudospins on the dot and in the effective leads.7,8

Meanwhile, as mentioned above, when the resonant-level
model shows p-h asymmetry, an additional term εdd

†d appears
in the Hamiltonian, which is equivalent to a local magnetic field
acting on the impurity spin εdd

†d → BzSz via the identifica-
tion d† = S+, d = S−, and d†d − 1/2 = Sz. For simplicity,
we do not intend to study further this p-h asymmetry term and
focus mainly on the effective Kondo model in the absence of
magnetic field. Note also that the mapping has been derived
earlier in Ref. 16 and is well known at equilibrium (Ref. 8). In
Appendix A, we will provide more details regarding the dif-
ferent theoretical steps, in particular with a finite bias voltage.

2. Mapping for a resonant level coupled to a FQHE

Our analysis for the nonequilibrium transport of a dissi-
pative resonant level model is applicable for describing a
resonant level quantum dot coupled to two chiral Luttinger
liquid leads, which is relevant for describing quasiparticle
tunneling between two fractional quantum Hall edge (FQHE)
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states46 [the class (ii) model mentioned above]. In the absence
of bias voltage, this case has been studied in Refs. 8 and 11.
Via the standard bosonization,59

c̄α(0) = 1√
2πa

Fαe
i ϕα (0)√

K , (5)

where Fα is the Klein factor that guarantees the fermionic anti-
commutation relations of electron operators, the Hamiltonian
of such system can be written as7,8,11,46 (see Appendix A)

HFQHE = Hchiral + Ht + Hμ, (6)

where the lead term Hchiral describes two chiral Luttinger liquid
leads with lead index α = 1,2, Ht denotes the tunneling term,
and the bias voltage term Hμ is given respectively by

Hchiral = 1

2

∫ +∞

−∞

∑
α=1,2

(
dϕα

dx

)2

dx,

Ht = t1e
i ϕ1√

K d + t2e
i ϕ2√

K d + H.c., (7)

Hμ = −V

2

1√
K

(∂ϕ1 − ∂ϕ2),

where the boson field ϕα=1,2 denotes the chiral Luttinger
liquid in lead α, the tunneling between lead and the resonant
level is given by tα , V is the bias voltage, and K refers to
the Luttinger parameter. Here, we set 2πa = 1 throughout
the paper with a being the lattice constant. Through the
similar refermionization, we arrive at the effective Kondo
model as shown in Eq. (4) with the bare Kondo couplings

J
(1),(2)
⊥ = te

i(
√

2− 1√
K

)ϕ2,1 , Jz = 1 − 1/
√

2K . We can further
map this model backwards onto the dissipative resonant level
model Eq. (1) following Appendix A with the identification
1
K

= 1
Kb

+ 1 where Kb ≡ 1
α

with α being the dissipation
strength defined in Eq. (1). The nonequilibrium RG scaling
equations for HFQHE have the same form as in Eq. (14).

3. Mapping for a dissipative resonant level coupled
to interacting leads

So far, we consider here just a dissipative resonant single
level coupled to two noninteracting leads. Nevertheless, the
mapping can be straightforwardly generalized to the same
system but with a spinless quantum dot which contains many
energy levels. In this case, the effective Luttinger liquid
parameter K ′ is modified as 1

K ′ = 1
K

+ 1 [see Eq. (A21) in
Appendix A]. The mapping can be further generalized to
the system of a single-level or many-level spinless quantum
dot with Ohmic dissipation coupled to two chiral Luttinger
liquid leads with Luttinger parameter K [the class (iii) model
mentioned above], giving rise to the effective Luttinger liquid
parameter K̃ defined as [see Eq. (A23) in Appendix A]

1

K̃
= 1

K
+ 1 + 1

Kb

(8)

for a many-level spinless quantum dot and

1

K̃
= 1

K
+ 1

Kb

(9)

for a spinless quantum dot with a single resonant level. Here,
Kb = 1

α
with α being the dissipation strength defined in Eq. (1).

Details of the mapping are given in Appendix A.

C. Average current

We may compute the nonequilibrium current operator in the
effective models through the mappings. We will first compute
the current operator within the effective anisotropic Kondo
model as it is the main focus of this paper. From the mapping
described in Sec. II B1, we can establish the invariance of
the net charge on the resonant level upon the mapping N1 −
N2 = NL − NR , where Ni = ∑

ki c̄
†
ki c̄ki represents the charge

in lead i = 1,2, whereas Nγ = ∑
k c

†
kγ σ ckγ σ represents the

charge in the effective lead γ = L,R. This allows us to check
that the averaged currents within the Keldysh formalism26 are
the same in the original and in the effective Kondo model (see
Appendix B for details):

I = i[QL − QR,HK ]

= iJ (1)
⊥ (s−

LRS+ − s+
RLS−) − (1 → 2,L → R). (10)

Thus, the current I can be computed from the Kondo model
due to the invariance of the average current upon the mapping
mentioned above. Note that through the various mappings
mentioned above, it is straightforward to see that the current
operator for other related models—resonant level coupled
to FQHE leads and dissipative resonant level (both small
and large in size) coupled to interacting Luttinger liquid
leads—take exactly the same form as shown in Eq. (10).

III. NONEQUILIBRIUM RG APPROACH

A. RG equations

Now, we employ the nonequilibrium RG approach to the
effective Kondo model27 in Eq. (4). In this approach, the
Anderson’s poor-man scaling equations are generalized to
nonequilibrium RG equations by including the frequency
dependence of the Kondo couplings and the decoherence due
to the steady-state current at finite bias voltage.27 The fact that
the running Kondo couplings acquire energy dependence in the
presence of a finite bias voltage is related to the existence of
two different Fermi levels at the left (right) lead, each of them
hosting a Kondo resonance peak. A full treatment of the energy
dependence requires a functional RG formulation involving
integrals over energy.31 For the sake of simplicity, we assume
that the resonant level (quantum dot) is symmetrically coupled
to the right and to the left lead, t1 = t2 (or J

(1)
⊥ = J

(2)
⊥ ≡ J⊥).

We will discuss in Appendix C the more general case with
t1 �= t2. The dimensionless Kondo couplings as a function of
frequency ω exhibit an extra symmetry due to the particle-hole
symmetry of the effective Kondo model: g⊥(z)(ω) = g⊥(z)(−ω)
where g⊥(z)(D0) = N (0)J⊥(z) is the initial value, with N (0)
being the density of states per spin of the conduction electrons.
Here, we suppress the upper script symbol (e) in the Kondo
couplings since we will now focus on the nonequilibrium case
V not zero. We obtain27

∂gz(ω)

∂ ln D
= −

∑
β=−1,1

[
g⊥

(
βV

2

)]2

�ω+βV/2,

(11)
∂g⊥(ω)

∂ ln D
= −

∑
β=−1,1

g⊥

(
βV

2

)
gz

(
βV

2

)
�ω+βV/2,
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where �ω = �(D − |ω + i�|), D < D0 is the running cutoff.
Here, � is the decoherence (dephasing) rate at finite bias which
cuts off the RG flow.27 In the Kondo model, � corresponds to
the relaxation rate due to spin-flip processes (which are charge
flips in the original model), defined as the broadening � = �s

of the dynamical transverse spin susceptibility χ⊥(ω) in the
effective Kondo model:62

χ⊥(ω) = χ0
i�s

ω + i�s

(12)

with χ⊥(ω) being the time Fourier transform of the
spin susceptibility χ⊥(t) = iθ (t)〈[S−(t),S+(0)]〉 =
iθ (t)〈[f †

↓(t)f↑(t),f †
↑(0)f↓(0)]〉, and χ0 being χ⊥(ω = 0).

Here, we take the pseudofermion representation of the
spin operators S+,−,z = 1

2fασ
+,−,z
αβ fβ with fσ=↑,↓ being the

pseudofermion operator and σ+,−,z being the Pauli matrices.27

In the original model the decoherence rate � corre-
sponds to the charge flip rates, defined as the broadening
�d of the resonant-level (d−electron) Green’s function [or
equivalently the imaginary part of the resonant-level self-
energy Im(�d (ω))]: � = �d = Im(�d (ω)) where the self-
energy �d (ω) of the d electron Green’s function is defined via
1/Gd (ω) ∝ ω + εd + Re(�d (ω)) + iIm(�d (ω)) with Gd (ω)
being the Fourier transform of the resonant-level Green’s
function Gd (t) = iθ (t)〈[d(t),d†(0)]〉. These two definitions for
� agree with each other with the proper identification: d = S−,
d† = S+.

Note that these RG equations in the present context were
already discussed in the short Ref. 16, but now we will
elaborate the methodology. The configurations of the system
out of equilibrium are not true eigenstates, but acquire a finite
lifetime. The spectral function of the fermion on the level
is peaked at ω = ±V/2, and therefore we have g⊥(z)(ω) ≈
g⊥(z)(±V/2) on the right-hand side of Eq. (11). Other Kondo
couplings are not generated. From Ref. 27 via the Fermi’s
“golden rule” of the spin-flip rates � in the Kondo model, we
identify

� = π

4

∑
γ,γ ′,σ

∫
dω

[
nσg2

z (ω)fω−μγ
(1 − fω−μγ ′ )

+ nσ g2
⊥(ω)fω−μγ

(1 − fω−μγ ′ )
]
, (13)

where fω is the Fermi function. Here, γ = γ ′ for the g2
z (ω)

terms while γ �= γ ′ for the g2
⊥(ω) terms with γ , γ ′ being L or

R. We have introduced the occupation numbers nσ for up and
down spins satisfying n↑ + n↓ = 1 and Sz = (n↑ − n↓)/2. In
the delocalized phase, we get n↑ = n↓ = 1/2, in agreement
with the quantum Boltzmann equation.27 At the KT transition,
we can use that g⊥(ω) = −gz(ω) from the symmetry of the
Kondo model and that

∑
σ nσ = 1. Finally in the localized

phase, we have g⊥ � −gz, and nσ satisfies |Sz| → 1/2 (see
Refs. 7, 8, 10, and 11), which remains true at a finite bias
voltage.

B. Solutions to RG equations

Following the scheme of Ref. 27, we solve Eqs. (11) and
(13) self-consistently. First, we compute g⊥(z)(ω = ±V/2) for
a given cutoff D. We then substitute the solutions back into
the RG equations to get the general solutions for g⊥(z)(ω) at
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FIG. 2. (Color online) �(ω) at T = 0 versus ω across the KT
transition. The bias voltage is fixed at V = 0.32D0. �(ω) develops a
peak (dip) at ω = 0 in the delocalized (localized) phase, respectively.
At ω ≈ ±V (vertical dotted lines), �(ω) shows peaks (for localized
phase) or dips (for delocalized phase). Note that �(ω) weakly depends
on ω for |ω| < V , �(|ω| < V ) ≈ �(ω = 0).

finite V , and finally extract the solutions in the limit D → 0.
When the cutoff D is lowered, the RG flows are not cut off
by V but they continue to flow for � < D < V until they are
stopped for D � �.

In Fig. 1 we show a typical RG flow of g⊥(V/2) at the KT
transition as a function of bandwidth D with the analytical
approximation g⊥(V/2) ≈ 1

2 ln (D/D) for D > V , g⊥(V/2) ≈
1

ln (D2/DV )
for � < D < V , and g⊥(V/2) ≈ 1

ln (D2/V �)
for D <

�. Here, D = D0e
1/(2g⊥), with D0 being the ultraviolet cutoff,

and D is the running cutoff scale set by the RG scaling
equations for g⊥/z. This clearly shows that the RG flow of
g⊥(V/2) is stopped at �, a much lower energy scale than V .

Note that the charge (or pseudospin) decoherence rate � is
a function of frequency �(ω) in the more general and rigorous
functional renormalization group (FRG) framework.31 Here,
� = �(ω = 0) within FRG. Nevertheless, we find �(|ω| � V )
at T = 0 depends weakly on ω and can be well approximated
by its value at ω = 0, �(T = 0,ω) ≈ �(T = 0,ω = 0) (see
Fig. 2). We have checked that the nonequilibrium current
I(V,T = 0) and conductance G(V,T = 0) obtained from this
approximation [�(T = 0,ω) ≈ �(T = 0,ω = 0)] agrees very
well with that from the more rigorous FRG approach based on
the frequency-dependent decoherence rate �(T = 0,ω) [see
Eq. (36) below] as a consequence of the fact that the current
and conductance are integrated quantities over the frequencies,
and they are insensitive to weak frequency dependence of
�. In Fig. 3 we show the RG flow of the decoherence rate
�(ω = 0) as a function of D, using the same parameter as
in Fig. 1. One observes that � tends to a finite value as
D → 0. The inset shows � as a function of V (see also
Sec. VI). Note that, unlike the equilibrium RG at finite
temperatures where RG flows are cutoff by temperature T ,
here in nonequilibrium the RG flows will be cut off by the
decoherence rate �, an energy scale typically much higher
than T , but much lower than V , T � � � V . Moreover,
�(V ) is a nonlinear function in V . [For example, at the
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FIG. 3. (Color online) RG flow of �(D) at T = 0 versus D (in
unit of D0) at a fixed bias voltage V0 = 0.72D0 (vertical dashed line)
at the KT transition with bare Kondo couplings g⊥ = 0.1 = −gz.
Under RG, � approaches a constant value as D → 0: �(D → 0) ≈
0.001 17D0. Inset: � as a function of V for the same bare Kondo
couplings.

KT transition �KT (V ) ∝ V/[ln(D
V

)]2.] The unconventional
properties of �(V ) lead to a nonequilibrium conductance
[G(V,T = 0)] distinct from that in equilibrium [G(T ,V = 0)]
near the KT transition.16 In contrast, the equilibrium RG will
lead to approximately frequency independent couplings [or
“flat” functions g⊥(ω) ≈ g⊥,z(ω = 0)].

Notice that the mapping mentioned above works near the
KT transition, α∗ ≡ 1

1+α
→ 1/2. However, for a general case

deep in the localized phase, the effective Kondo couplings

acquire an additional phase J
(1),(2)
⊥ ∝ t1,2e

i(
√

2− 1√
K

)φ̃s;2,1 where
the more general form of J

(1),(2)
⊥ and its phase φ̃s;2,1 are derived

and defined in Eq. (A10) of Appendix A. This results in
a nonzero bare scaling dimension59 for J

(1),(2)
⊥ , [J (1),(2)

⊥ ] =
1
2 (

√
2 − 1√

K
)2 = 1 −

√
2
K

+ 1
2K

. This slightly modifies the
nonequilibrium RG scaling equations to the following form:

∂gz(ω)

∂ ln D
= −

∑
β=−1,1

[
g⊥

(
βV

2

)]2

�ω+βV/2,

∂g⊥(ω)

∂ ln D
= −

∑
β=−1,1

[(
1 − 1√

2K

)2

g⊥

(
βV

2

)
(14)

+ g⊥

(
βV

2

)
gz

(
βV

2

)]
�ω+βV/2,

where the linear term 1
2 (1 −

√
2
K

+ 1
2K

)g⊥( βV

2 ) in Eq. (14) for

g⊥(ω) comes from the bare scaling dimension of J
(1),(2)
⊥ terms

mentioned above, and it vanishes in the limit of K → 1/2, as
expected. In fact, this term applies to the three models [cases
(i)–(iii)] through the mappings. Note that the above scaling
equations may be cast in the same form as in Eq. (11) through

redefinition of the coupling gz: gz → ḡz = gz + 1
2 (1 −

√
2
K

+
1

2K
). All the previous results remain valid upon the above shift

of gz.

IV. NONEQUILIBRIUM CONDUCTANCE

In the section, we present our results for nonequilibrium
conductance. All explicit results will be obtained for the
KT transition point and the localized phase, but not for the
delocalized phase.

A. Nonequilibrium conductance at the KT transition

At the KT transition, we both numerically and analytically
solve Eqs. (11) and (13) (in the limit of D → 0). In particular,
the approximated analytical solution within the approximation
�V ≈ �(D − V ) due to � � V is obtained:

g⊥,cr (ω) ≈
∑

β

�(|ω − βV/2| − V )
1

4 ln
[

D
|ω−βV/2|

]
+�(V − |ω − βV/2|)

×
[

1

ln[D2/V max(|ω − βV/2|,�)]
− 1

4 ln D
V

]
.

(15)

The solutions at the transition (denoted g⊥,cr and gz,cr ) are
shown in Fig. 4. Since g⊥,cr (ω) decreases under the RG
scheme, the effect of the decoherence leads to minima; the
couplings are severely suppressed at the points ω = ±V

2 . We
also check that g⊥,cr (ω) = −gz,cr (ω).

From the Keldysh calculation up to second order in the
tunneling amplitudes, the current reads

I = π

8

∫
dω

[∑
σ

4g⊥(ω)2nσfω−μL
(1 − fω−μR

)

]

− (L ↔ R). (16)
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0

FIG. 4. (Color online) g⊥,cr (ω) = −gz,cr (ω) at the transition at
various bias voltages V (in units of D0); the bare couplings are g⊥ =
−gz = 0.1 (in units of D0). Here, g⊥,cr (ω) = g⊥,z(ω,D → 0). The
arrows give the values of g⊥(ω = 0) at these bias voltages. Inset:
Dips of g⊥,cr (ω) near ω = 0 for V = 0.01 (green) where separation
of the two dips, given by V , is comparable to the width of the dip �g

(defined in the text), i.e., V ≈ �g , and for V = 0.000 08 (magenta)
where two dips are not well separated, V � �g .
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FIG. 5. (Color online) Nonequilibrium current at the localized-
delocalized transition. The naı̈ve approximate analytical expression
Eq. (17) fits well with the numerical result at low bias voltages up to
V ≈ � ≈ 10−2D0; see inset). However, it starts to deviate from the
numerical result at higher bias voltages.

At T = 0, it simplifies as I = π
2

∫ V/2
−V/2dωg2

⊥(ω). Then, we nu-
merically evaluate the nonequilibrium current. The differential
conductance is obtained as G(V ) = dI/dV . The T = 0 results
at the KT transition are shown in Figs. 5 and 6.

First, it is instructive to compare the nonequilibrium current
at the transition to the (naı̈ve) approximation:

Icr ≈ πV

2

[
g⊥,cr (ω = 0)

]2 ≈ π

8

V

[ln2(D/V )]
. (17)

As shown in Fig. 5, our numerically obtained nonequilib-
rium current fits well with the above analytical approximation
for V < 0.01D0. However, it starts to deviate from its
numerically obtained values for higher bias voltages V >

0.01D0 (see the inset of Fig. 5). This deviation is due to
the fact that the equilibrium form of the conductance at the
transition is obtained by treating gcr⊥(ω) a flat function within

0 0.2 0.4 0.6 0.8 1
V / D

0

0

0.2

0.4

0.6

0.8

1

G
/G

G(   c,V) by numerics
G(   c,V) by equilibrium scaling
G(   c,V) by Eq. (15)
G(   c,V) by Eq. (18)

0

α
α
α
α

FIG. 6. (Color online) Nonequilibrium conductance G = dI/dV

at the KT transition. G0 is the equilibrium conductance at the
transition for T = D0: G0 = Geq (αc,T = D0) = 0.005π with the
bare couplings g⊥ = −gz = 0.1D0.

−V/2 < ω < V/2: gcr⊥(ω) ≈ gcr⊥(ω = 0) ≈ g
eq

cr⊥(T → V ).
We have checked that the equilibrium coupling gcr⊥(ω = 0)
indeed corresponds to g

eq

⊥ (T = V ), therefore the transport
recovers the expected equilibrium form for V → 0. However,
since g⊥(ω) is not a flat function for −V/2 < ω < V/2 (it
has two minima at ω = ±V/2), with increasing V (say for
V ≈ 0.01D0) the nonequilibrium current exhibits a distinct
behavior due to the frequency dependence of the coupling.

Note that the crossover in conductance from equilibrium
to nonequilibrium profile happens when separation of the two
dips at ω = ±V/2 in g⊥(ω), given by the voltage bias V , is
comparable to the width of the dip �g , i.e., V ≈ �g (see Fig. 4
and the inset therein). Here, �g is estimated as the width of ω in
g⊥(ω) such that the magnitude of the dip |g⊥ − g⊥(ω = V/2)|
is reduced by about 20%. For the parameters used in Figs. 4 and
5 (g⊥ = 0.1D0 = −gz), we find that the crossover occurs for
V ≈ �g ≈ 0.01D0. In general, �g is a function of voltage bias
V , the decoherence rate �, and initial (bare) Kondo couplings
[see, for example Eq. (15)]. Hence, the crossover scale occurs
at a different voltage V when different initial (bare) couplings
are considered.

In fact, the more accurate approximate expression for the
nonequilibrium current at the transition is found to be

I (αc,V ) ≈ πV

2

(π

4

[
g⊥,cr (ω = 0)

]2
)

+ πV

2

[(
1 − π

4

)
[g⊥,cr (ω = V/2)]2

]
, (18)

where

g⊥,cr (ω = V/2) ≈ 1/ ln

( D2

�V

)
,

(19)

g⊥,cr (ω = 0) ≈ 2

(
1

ln(2D2/V 2)
− 1

4 ln(D/V )

)
.

Here, we have treated g⊥,cr (ω)2 within the interval −V/2 <

ω < V/2 as a semi-ellipse.
As demonstrated in Fig. 6, the conductance G(V ) obtained

via the approximation in Eq. (18) fits very well with that
obtained numerically over the whole range of 0 < V < D0. In
the low-bias V → 0 (equilibrium) limit, since g⊥,cr (ω = 0) ≈
g

(e)
⊥,cr (T = V ) � 1, we have I (αc,V ) ≈ πV

2 (g(e)
⊥,cr (T = V ))2;

therefore the scaling of G(αc,V ) is reminiscent of the equilib-
rium expression in Eq. (3), G(αc,V ) ≈ π

2 (g(e)
⊥,cr (T = V ))2 =

π
8

1
ln2(D/V )

. This agreement between equilibrium and nonequi-
librium conductance at low V persists up to a crossover scale
V ≈ 0.01D0 (determined for the parameters used in Fig. 6). At
larger biases, the conductance shows a unique nonequilibrium
profile; see Eq. (18). We find an excellent agreement of
the nonequilibrium conductance obtained in three different
ways—pure numerics, analytical solution Eq. (15) and the
approximation in Eq. (18).

For large bias voltages V → D0, since g⊥,cr (ω) approaches
its bare value g⊥, the nonequilibrium conductance increases
rapidly and reaches G(αc,V ) ≈ G0 = π

2 g2
⊥. Note that the

nonequilibrium conductance is always smaller than the
equilibrium one, G(αc,V ) < Geq(αc,T = V ), since g⊥(ω =
±V/2) < g⊥(ω = 0). Additionally, in the delocalized phase
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for V � TK > 0, the RG flow of g⊥ is suppressed by the
decoherence rate, and G ∝ 1/ ln2(V/TK ) (Ref. 27).

B. Nonequilibrium conductance in the localized phase

In the localized phase, we first solve the equilibrium RG
equations of the effective Kondo model analytically, resulting
in

G
(e)
loc(T ) = π

2

(
g

(e)
⊥,loc(T )

)2
, (20)

g
(e)
⊥,loc(T ) = 2cg⊥(c + |gz|)

(c + |gz|)2 − g2
⊥
(

T
D0

)4c

(
T

D0

)2c

, (21)

where c =
√

g2
z − g2

⊥. We introduce the energy scale T ∗ =
D0e

−π/
√

g2
z −g2

⊥ (which vanishes at the KT transition) such
that g

(e)
⊥,loc(T ) ∝ (T/T ∗)2c for T → 0, leading to G

(e)
loc(T ) ∝

(T/T ∗)4c.
At a finite bias, we then solve for the self-consistent

nonequilibrium RG equations both analytically and numeri-
cally, resulting in

g⊥,loc(ω = V/2) ≈ g⊥ + A

2c
[V 2c

√
c2 + A2V 4c

−
√

A2 + c2] + B

2c
[�c

√
c2 + B2�2c

−V c
√

c2 + B2V 2c]

+ c

2
ln

[
B�c + √

c2 + B2�2c

BV c + √
c2 + B2V 2c

]

+ c

2
ln

[
AV 2c + √

c2 + A2V 4c

A + √
c2 + A2

]
, (22)

g⊥,loc(ω = 0) ≈ g⊥ + A

2c
[V 2c

√
c2 + A2V 4c

−
√

A2 + c2] + B

c

⎡
⎣(V

2

)c
√

c2 + B2

(
V

2

)2c

−V c
√

c2 + B2V 2c

⎤
⎦

+ c

2
ln

⎡
⎣B

(
V
2

)c +
√

c2 + B2
(

V
2

)2c

BV c + √
c2 + B2V 2c

⎤
⎦

+ c

2
ln

[
AV 2c + √

c2 + A2V 4c]

[A + √
c2 + A2

]
, (23)

and similarly we get

gz,loc(ω = V/2) ≈ gz + A2

2c
[1 − V 4c]

+ B2

2c
V 2c

[
1 −

(
�

V

)2c
]

, (24)

gz,loc(ω = 0) ≈ gz + A2

2c
[1 − V 4c] + B2

c
V 2c[1 − 2−2c],

(25)
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FIG. 7. (Color online) Conductance in the localized phase (in
units of π ). (a) G(V ) at low bias follows the equilibrium scaling
(dashed lines). (b) The conductance G(V )/Gc is a function of V/T ∗

where we have defined Gc = G(αc,V ) and T ∗ = D0e
−π/

√
g2
z −g2

⊥ .

where we unambiguously identify A = g⊥
2 + cg⊥

c+|gz| , B =
AV c; in this expression, V and � have been normalized
to D0.

The nonequilibrium current in the localized phase Iloc(V )
is obtained via the same approximation leading to Eq. (18) at
the KT transition:

Iloc(V ) ≈ πV

2

(π

4
[g⊥,loc(ω = 0)]2

)
+ πV

2

[(
1 − π

4

)
[g⊥,loc(ω = V/2)]2

]
. (26)

As shown in Fig. 7, we numerically obtain the nonequilibrium
conductance in the localized phase. For very small bias
voltages V → 0, we find that the conductance reduces to
the equilibrium scaling: G(V ) → G

(e)
loc(T = V ) ∝ (V/T ∗)4c

[see Figs. 7(a) and 7(b)]. For g⊥,loc � |gz,loc| and α∗ =
1

1+α
→ 1/2, we get that the exponent 4c ≈ 2α∗ − 1, in

perfect agreement with that obtained in equilibrium at low
temperatures: G(T ) ∝ T 2α∗−1 (Ref. 9). At higher bias voltages
0.01D0 < V < D0, the conductance now follows a unique
nonequilibrium form (consult Fig. 8) whose qualitative behav-
ior is similar to that at the KT transition. Our nonequilibrium
conductance obtained numerically in this phase is in very good
agreement with that from the above approximated analytical
solutions in Eq. (26) (see Fig. 8).

C. Nonequilibrium conductance at finite temperatures

We have also analyzed the finite-temperature profile of
the nonequilibrium conductance at the transition and in the
localized phase. We distinguish two different behaviors. At the
KT transition, for V > T , the conductance G(V,T ) exhibits
the same nonequilibrium form as T = 0, G(V,T = 0) [see
Fig. 9(a) ], while as for V < T it saturates at the value for
the equilibrium conductance (V = 0) at finite temperatures
[see Fig. 9(b)]. In the localized phase, while for V < T the
conductance saturates at G(V = 0,T ) [Fig. 10(a)], for V > T ,
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FIG. 8. (Color online) Conductance in the localized phase (in
units of π ). At large bias voltages V , the nonequilibrium conductance
G(V ) (solid lines) is distinct from the equilibrium form (dashed
lines). The dot-dashed lines stem from an analytical approximation
via Eq. (26).

however, G(V,T ) exhibits universal power-law scaling:

G(V,T )/G(V = 0,T ) ∝ (V/T )4c (27)

[see Fig. 10(b)]. This universal power-law scaling behavior in
G(V,T ) looks qualitatively similar to that from the recent
experiment on the transport through a dissipative resonant
level in Ref. 47. However, these two power-law behaviors
in conductance at a finite bias and temperature are different
in their origins: The authors in Ref. 47 studied the quantum
critical behavior of a dissipative resonant level in the regime
of the delocalized phase (α < αc = 1). As the resonant
level is detuned from the Fermi level, the system at low
temperatures exhibits power-law scaling in conductance at a
large bias voltage V > T : G(V/T ) ∝ (V

T
)2α with 0 < α < 1.

They showed further that this behavior is equivalent to that
for a single-barrier tunneling of electrons through a Luttinger
liquid. By contrast, the Luttinger-liquid-like power-law scaling
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transition (same unit as in Fig. 6). (a) For V � T , the conductance
follows the nonequilibrium scaling G(αc,V ). (b) For V < T , now the
conductance follows the equilibrium scaling Geq (αc,T ).

10
-8

10
-6

10
-4

10
-2

10
0

V / D
0

10
-5

10
-4

10
-3

10
-2

G

T=0.01
T=0.001
T=0.0001
T=0.00001

10
-6

10
-4

10
-2

10
0

10
2

10
4

V / T

10
0

10
1

G
(V

 , 
T

) 
/ G

(0
,T

)

FIG. 10. (Color online) Scaling of the conductance in the lo-
calized phase with g⊥ = 0.08,gz = −0.12 (in units of D0). (a) For
V � T , the conductance follows the nonequilibrium scaling G(α,V ).
(b) For V � T , now the conductance follows the equilibrium scaling
Geq (αc,T ).

in G(V,T ) [see Eq. (27)] we find here is the generic feature of a
dissipative resonant level in the localized phase (α > αc = 1),
which has not yet been explored experimentally. Therefore,
our theoretical predictions on the nonequilibrium transport
at a dissipative quantum phase transition offer motivations
for further experimental investigations in the regime of our
interest. The above two qualitatively different behaviors in
conductance for V < T and V > T cross over at V = T .
Note that similar behavior has been predicted in a different
setup consisting of a magnetic single electron transistor (SET)
in Ref. 22 where a true quantum critical point separates the
Kondo screened and the local moment phases.

V. NONEQUILIBRIUM FINITE-FREQUENCY
CURRENT NOISE

In addition to nonequilibrium current and conductance near
the localized-delocalized transition addressed above, further
insight on the phase transition can be obtained from the current
fluctuations (or noise). The zero-frequency shot noise has been
used to probe the fractional charge of quasiparticle excitations
in FQHE state tunnelings.63,64 However, even more useful
information can be found in the finite-frequency (FF) current
noise, which can be used to probe the crossover between
different quantum statistics of the quasiparticles. Recently,
there has been theoretical studies on the FF current noise of
a nonequilibrium Kondo dot.65–67 So far, these studies have
not been extended to the nonequilibrium FF current noise
of a dissipative quantum dot. In this section, we perform
completely new calculations (compare to those presented in
Ref. 16) to provide further signatures of the transition in FF
current noise spectrum.

A. Functional RG approach

To address this issue, we combine recently developed
functional renormalization-group (FRG) approach in Refs. 31
and 17 and the real-time FRG approach in Ref. 67. Within our
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FRG approaches, as the system moves from the delocalized to
the localized phase, we find the smearing of the dips in current
noise spectrum for frequencies ω ≈ ±V ; more interestingly,
we find a peak-to-dip crossover in the ac conductance at
ω ≈ ±V . These features are detectable in experiments and
can serve as alternative signatures (besides conductance) of
the QPT in the dissipative resonant level quantum dot.

First, via the above mapping, the current through the dis-
sipative resonant level quantum dot is given by the transverse
component of the current Î⊥(t) in the effective anisotropic
Kondo model as shown in Eq. (10).16 Following the real-time
RG approach in Ref. 67 the Keldysh current operator through
the left lead in the effective Kondo model [via a generalization
of Eq. (10)] is given by Î⊥

L (t):

Î⊥
L (t) = e

4

∑
κ

∫
dt1dt2

∑
α,β

∑
dt1dt2L

⊥
αβ(t1 − t,t − t2)

× [s+
αβ(t1,t2)S−

f (t) + H.c.] (28)

with α,β = L,R, �Sf (t) = f κ†(t)�σf κ (t), s±
αβ(t1,t2) =

cκ†
α (t1)σ±cκ

β (t2). Here, Lαβ(t1 − t,t − t2) is the left
current vertex matrix with bare (initial) matrix
elements: L0⊥

LL = L0⊥
RR = 0, L0⊥

LR = −L0⊥
RL = ig0

LR ≡ g⊥,
L0z

LL = L0z
RR ≡ gz, L0z

LR = −L0z
RL = 0, and κ = ±1 being the

upper and lower Keldysh contour, respectively. The emission
component of the nonequilibrium FF noise of a Kondo
quantum dot, S<(t), is given by the current-current correlator:

S<
LL(t) ≡ 〈Î⊥

L (0)Î⊥
L (t)〉. (29)

Similarly, the absorption part of the noise is defined as
S>(t) ≡ 〈Î⊥

L (t)Î⊥
L (0)〉. Note that the current operator Î⊥

L (t)
is nonlocal in time under RG; the current vertex function
Lαβ(t1 − t,t − t2) therefore acquires the double-time struc-
ture: it keeps track of not only the times electrons enter
(t1) and leave (t2) the dot, but also the time t at which the
current is measured.67 The double-time structure of the cur-
rent operator automatically satisfies the current conservation:
Î⊥
L (t) = −Î⊥

R (t).67

The frequency-dependent current noise S(ω) is computed
via the second-order renormalized perturbation theory (see
diagram in Fig. 11). Note that due to the double-time
structure of the current vertex function Lαβ(t1,t2), in the
Fourier (frequency) space, Lα,β (ε + ω,ε) has a two-frequency
structure; it depends on the incoming (ε + ω) and outgoing (ε)

ε

ν+Ω

ν

ε+Ω+ω

β

αα

β
L
αβ

(ε,ε+Ω+ω)(ε+Ω+ω,ε)L
βα

FIG. 11. Diagram for the FF current noise S(ω). The solid lines
represent conduction electron propagators; the dashed lines denote the
pseudofermion propagators. The current vertex functions Lαβ (ω1,ω2)
are denoted by the shaded squares.

frequencies of the electron (see Fig. 11). The result reads

S<(ω) =
∑

α,β=L,R

−2Re[Dαβ(ω)<], (30)

where the correlator Dαβ(ω) is computed by the diagram in
Fig. 11:

Dαβ(ω)< =
∫

d�

2π
[χαβ(�,ω)χf (�)]<,

χαβ(�,ω) =
∫

dε

2π
Ĝα(ε)Ĝβ(ε + � + ω)

(31)
×L⊥

αβ(ε + ω,ε)L⊥
βα(ε,ε + ω),

χf (�) =
∫

dν

2π
Ĝf (ν)Ĝf (ν + �),

where Ĝ is the Green’s function in 2 × 2 Keldysh space, and its
lesser and greater Green’s functions are related to its retarded,
advanced, and Keldysh components by

G< = (GK − GR + GA)/2,
(32)

G> = (GK + GR − GA)/2.

The lesser (G<) and greater (G>) components of the
Green’s function of the conduction electron in the leads and of
the quantum dot (impurity) are given by

G<
L/R(ε) = iAc(ε)fε−μL/R

,

G>
L/R(ε) = iAc(ε)(1 − fε−μL/R

),
(33)

G<
f σ (ε) = 2π iδ(ε)nf σ (ε),

G>
f σ (ε) = 2π iδ(ε)[nf σ (ε) − 1],

where Ac(ε) = 2πN0�(D0 − ε) is the density of states of
the leads, nf σ (ε) = 〈f †

σ fσ 〉 is the occupation number of the
pseudofermion which obeys nf ↑ + nf ↓ = 1, nf σ (ε → 0) =
1/2 in the delocalized phase, and nf ↑(ε → 0) → 0, nf ↓(ε →
0) → 1 in the localized phase.16,18 Here, the pseudofermion
occupation number nf σ and the occupation number on the
dot nd are related via 〈nf ↑ − nf ↓〉 = 〈nd〉 − 1/2.16,17 The
renormalized current vertex function L⊥

αβ(ω1,ω2) and the
Kondo couplings g⊥(ω), gz(ω) are obtained from the nonequi-
librium functional RG approaches in Refs. 67, 31, and 27,
respectively. Carrying out the calculations, the finite-frequency
noise spectrum reads

S<(ω) =
∑

α,β=L,R

3

8

∫
dεL⊥

αβ(ε + ω,ε)L⊥
βα(ε,ε + ω)

× fε−μα
(1 − fε−μβ

), (34)

where fε−μα
is the Fermi function of the lead α = L/R

given by fε−μα
= 1/(1 + e(ε−μα )/kBT ). The symmetrized noise

spectrum reads

S(ω) = 1
2 [S<(ω) + S>(ω)] (35)

with the relation between emission and absorption parts of the
noise spectrum in frequency space S<(ω) = S>(−ω) being
used.

The frequency-dependent Kondo couplings g⊥,z(ω) and
current vertex functions L⊥

αβ(ω1,ω2) are obtained self-
consistently within the FRG approaches, which can be divided
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into two parts. First, the Kondo couplings g⊥,z(ω) are solved
via Eq. (11)17,27,31 together with the generalized frequency-
dependent dynamical decoherence rate �(ω) appearing in
�ω = �(D − |ω + i�(ω)|) in Eq. (11). Here, �(ω) is ob-
tained from the imaginary part of the pseudofermion self-
energy:17,31,62

�(ω) = π

4

∫
dεg⊥(ε + ω)g⊥(ε)

[
f L

ε − f R
ε+ω

]
+ gz(ε + ω)gz(ε)

[
f L

ε − f L
ε+ω

]
+ (L → R). (36)

Note that the zero-frequency decoherence rate �(ω = 0)
corresponds to the decoherence rate � obtained in Eq. (13).27

We have solved the RG equations Eq. (11) subject to Eq. (36)
self-consistently.68

The solutions for g⊥(ω), gz(ω), and �(ω) close to the KT
transition are shown in Refs. 16 and 17 (see also Figs. 2
and 4). As the system goes from the delocalized to localized
phase, the features in g⊥(ω = ±V/2) undergo a crossover
from symmetric double peaks to symmetric double dips, while
the two symmetric peaks in gz(ω = ±V/2) still remain peaks
(see Fig. 4). The finite-frequency nonequilibrium decoherence
rate �(ω) monotonically increases with increasing ω, it
shows logarithmic singularities at |ω| = V in the delocalized
phase.17 As the system moves to the localized phase, the
overall magnitude of �(ω) decreases rapidly and the singular
behaviors at ω = ±V get smeared out.17

Next, following Ref. 67, we generalize the RG scaling
equation for the general current vertex function Lαβ(ω) for
the anisotropic Kondo model (see diagrams in Fig. 12 and also
in Fig. 1 of Ref. 67). The RG scaling equations for the general
vertex functions L

⊥,z
αβ (ω1,ω2) can be simplified as

dLαβ(ω1,ω2)

d ln D
=

∑
γ=L,R

Lαγ (ω1,ω2)�μγ
(ω2)gγβ(ω2)

+ gαγ (ω1)�μγ
(ω1)Lγβ(ω1,ω2), (37)

where we make the following identifications: gLR/RL(ω) →
g⊥

LR/RL(ω) ≡ g⊥(ω), gαα(ω) → gz
LL/RR(ω) ≡ gz(ω). Simi-

larly, LLR/RL(ω1,ω2) → L⊥
LR/RL(ω1,ω2) refers to only the

transverse component of the current vertex function
Lαβ(ω1,ω2), while LLL/RR → Lz

LL/RR refers only to the lon-
gitudinal part of Lαα . Here, the frequency-dependent Kondo

ω1 ω1’

ω ω

ω

ωf1 f2
f’

2α
β

γ

=

ω

ω ωf1 1

f2 ω1’
α

γ

ω1ω1’

ω ω

ω2

f1 f2

αγ

ωf’

β

ω1 ω1’ ω1ω1’

+

++

ω ω

ω

ωf1 f2
f’

2α
β

γ

ω ω

ω2

f1 f2

αγ

ωf’

β

FIG. 12. Diagram for renormalization of the current vertex func-
tion Lαβ (ω1,ω

′
1) (the squares). The solid lines represent conduction

electron propagators; the dashed lines denote the pseudofermion
propagators. Here, the Kondo couplings g(ω) are denoted by the
circles.

FIG. 13. (Color online) 3D plot for LLR(ω1,ω2) at zero tem-
perature in the delocalized phase with bare Kondo couplings being
g0

⊥ = 0.05D0, g0
z = 0.05D0. The bias voltage is fixed at V = 0.32D0.

couplings g⊥,zσ (ω) in Eq. (37) are obtained from Eqs. (11)
and (36). Note that the scaling equations for Lαβ(ω1,ω2) via
Ref. 67 can also be expressed within the RG approach in
Ref. 27 via a straightforward generalization by allowing for the
two-frequency-dependent vertex functions Lαβ(ω1,ω2) where
ω1(2) refers to the incoming (outgoing) frequency (see Figs. 11
Fig. 12).

B. Results

We solved the self-consistent RG scaling equations Eq. (37)
for the current vertex functions with the help of the solutions
for the renormalized Kondo couplings via Eqs. (11) and
(36). The typical results at zero temperature are shown in
Figs. 13 and Fig. 14; they exhibit the following symmetry:
Lαβ(ω1,ω2) = −Lβα(ω2,ω1). Note that since the initial condi-
tions for the current vertex function have the following struc-
tures: L0

αα = 0, L0
LR �= 0, we find Lαα(ω1,ω2) � LLR(ω1,ω2).

In the delocalized (Kondo) phase, a sharp peak is developed
in LLR(ω1,ω2) for (ω1,ω2) = (V/2, − V/2), while a small
dip (valley) is formed at (ω1,ω2) = (V/2,0) (see Fig. 13).

FIG. 14. (Color online) 3D plot for LLR(ω1,ω2) at zero temper-
ature in the localized phase with bare Kondo couplings being g0

⊥ =
0.05D0, g0

z = −0.1D0. The bias voltage is fixed at V = 0.32D0.
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CHUNG, LE HUR, FINKELSTEIN, VOJTA, AND WÖLFLE PHYSICAL REVIEW B 87, 245310 (2013)

-0.4 -0.2 0 0.2 0.4
     / D

0

1

1.2

S
 / 

S
0

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
   / D

0

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

S

0.1     0.1 
0.1     0.05
0.1     0
0.1     -0.05
0.1     -0.1
0.075 -0.125
0.05   -0.15

g g⊥ z

ω

ω

FIG. 15. (Color online) S(ω) at zero temperature versus ω across
the KT transition. The bias voltage is fixed at V = 0.32D0. Inset:
S(ω) at zero temperature versus ω normalized to S0 = S(ω = 0).

Meanwhile, in general LLR(ω1,ω2) is maximized at ω1(2) =
±V/2 for fixed ω2(1). This agrees perfectly with the result in
Ref. 67. In the localized phase, however, we find the opposite:
LLR(ω1,ω2) develops a sharp dip at (ω1,ω2) = (V/2, − V/2),
and it is minimized at ω1(2) = ±V/2 for fixed ω2(1). The
peak-dip structure of the current vertex function Lαβ plays
a crucial role in determining the noise spectrum both in
delocalized and in the localized phases.

Substituting the numerical solutions for Lαβ(ω1,ω2) and
gαβ(ω) into Eq. (34), we get the zero-temperature FF noise
S(ω). The results at zero temperature are shown in Fig. 15.
First, the overall magnitude of S(ω) decreases rapidly as the
system crosses over from the delocalized to the localized
phase. This can be understood easily as the current decreases
rapidly in the crossover, leading to a rapid decrease in the
magnitude of noise. For |ω| > V , S(ω) in both phases increases
monotonically with increasing ω due to the increase of the
photon emission at higher energies.67 For |ω| � V , however,
it changes from a peak to a dip centered at ω = 0 as the system
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FIG. 16. (Color online) (a) The zero-temperature ac conductance
GAC(ω) defined in Eq. (38) versus ω across the KT transition. (b)
GAC(ω) at zero temperature versus ω normalized to G0 ≡ GAC(ω =
0). The bias voltage is fixed at V = 0.32D0.
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FIG. 17. (Color online) (a) �

V
and (b) � as a function of V/D0

near the KT transition.

crosses overs from delocalized to localized phase (see Fig. 15).
At |ω| = V , S(ω) exhibits a dip (minima) in the delocalized
phase, a signature of the nonequilibrium Kondo effect, while
as the system crosses over to the localized phase the dips
are gradually smeared out and they change into a “kinklike”
singular point at ω = ±V , connecting two curves between
ω < V and ω > V .

We furthermore computed the nonequilibrium ac conduc-
tance at zero temperature,67,69,70

GAC(ω) = S<(ω) − S>(ω)

ω
, (38)

across the transition. Note that G(ω = 0) = dI/dV corre-
sponds to the nonequilibrium differential conductance. As
shown in Fig. 16(a), in the delocalized phase the split peaks
in GAC(ω) at ω = ±V are signatures of the Kondo resonant
at finite bias, and are consistent with the dips at seen in the
noise spectrum. As the system moves to the localized phase,
the overall magnitudes of GAC(ω) as well as the pronounced
split Kondo peaks at ω = ±V get suppressed; they change into
dips deep in the localized phase [see Fig. 16(b)]. In response
to this change in the split Kondo peaks, the overall shape of
GAC(ω → 0) shows a dip-to-hump crossover near ω = 0. Note
that the suppression of the Kondo peaks for GAC(ω) at ω =
±V corresponds to the smearing of the dips at ω = ±V shown
in the noise spectrum S(ω) (see Fig. 15). The above evolution
in the noise spectrum matches well with the nonequilibrium
transport properties studied in Refs. 16 and 18, and can serve
as alternative signatures of the localized-delocalized transition
in future experiments.

VI. DISCUSSION

We would like to make a few remarks before we conclude.
First, the distinct nonequilibrium scaling behavior seen here is
in fact closely tied to the nontrivial (nonlinear) V dependence
of the decoherence rate �(V ) which cuts off the RG flow
[see Figs. 17(a) and 17(b)]. The decoherence rate � near the
transition clearly plays a very different role as compared to the
temperature near the transition. In particular, at T = 0 we find
that � ∼ 1

2I is a highly nonlinear function in V , resulting in the
observed deviation of the nonequilibrium scaling from that in
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equilibrium. In fact, we can obtain the analytical form via the
approximation in Eqs. (18) and (26). At the KT transition, �/V

shows a logarithmic decrease as V decreases [see Eqs. (18)
and (19)], while in the localized phase it exhibits a combined
power-law and logarithmic dependence on V [see Eqs. (22)–
(26)].

By contrast, the equilibrium decoherence rate �(V = 0,T )
shows a clear power-law behavior in the localized phase at low
temperatures, T → 0 [see Eq. (21)]:

�(V = 0,T ) ∝
(

T

T ∗

)1+4c

, (39)

which is consistent with the prediction made in Ref. 71 for the
electron lifetime in Luttinger liquids.

Meanwhile, at the KT transition and in the localized phase,
since � � V , the RG flow for g⊥/z are cut off at an energy
scale � much lower than V , leading to smaller renormalized
couplings g⊥/z in magnitude compared to their correspond-
ing equilibrium values g

(e)
⊥/z(T = V ), |g⊥/z| < |g(e)

⊥/z(T = V )|.
This results in smaller conductance than that in equilibrium,
G(V ) < Geq(T ).

Second, it is of fundamental importance to study further
the possible scaling behaviors in nonequilibrium dynamical
quantities near the transition, such as the ω/T scaling in
dynamical charge susceptibility at the KT transition and in
the localized phase. In particular, the question has been raised
of the existence of the concept of “effective temperature”
that allows one to extend the fluctuation-dissipation theorem
in equilibrium to the nonequilibrium (nonlinear) regime.72

It is also interesting to address the crossover between the
delocalized phase with G(V ) ∝ 1/ ln2(V/TK ) where ln TK ∝
1/(α − αc) to KT point with G(V ) ∝ 1/ ln2(T/D) and further
to the localized phase with power-law conductance G(V ) ∝
V β . To date, the full crossover function of the conductance is
not known yet. Further study is therefore needed to investigate
these issues.

VII. CONCLUSIONS

In summary, we have investigated the nonequilibrium
transport at a QPT using a standard nanomodel, the dissipative
resonant level model. By employing an exact mapping onto
the anisotropic Kondo model and by applying a controlled
energy-dependent RG and functional RG approaches to our
model system we have calculated the renormalized cou-
pling functions g⊥,z(ω), the decoherence rate �, the current
I , differential conductance G(V,T ), and the current noise
spectrum S(ω). For V → 0, the conductance G follows
the equilibrium behavior; by increasing V , the frequency
dependence of the couplings begins to play an important
role and therefore we systematically find scaling behavior
of the nonequilibrium conductance very distinct from that
of the equilibrium counterpart. We have also analyzed the
finite-temperature profile of G(V,T ) at the transition as well
as in the localized phase and found that the conductance shows
different behaviors for V > T and V < T ; it exhibits V/T

scaling behavior for V � T .
Regarding transport properties of our system near the

transition, the role played by the bias voltage is very different

from that played by the temperature. The key to these very
different behaviors lies in the fact that the nonequilibrium
charge (or effective spin) decoherence rate, which serves as a
cutoff for the RG flows of the Kondo couplings, is a highly
nonlinear function of the bias voltage. Further investigations
are needed to address the full crossover function in con-
ductance as well as the scaling behaviors of the dynamical
quantities near the transition in a search for the existence of the
“effective temperature” that allows one to generalize the equi-
librium fluctuation-dissipation theorem to the nonequilibrium
regime. Furthermore, we provide signatures of the localized-
delocalized transition in the finite-frequency current noise
spectrum and the ac conductance. Our results have a direct
experimental relevance for dissipative two-level systems;
moreover, they are applicable for describing nonequilibrium
transport of a resonant level coupled to interacting chiral
Luttinger liquid generated by fractional quantum Hall edge
states via the mappings discussed in Appendix A. Finally, our
model system has direct relevance for the recent experiment
in a quantum dot coupled to resistive environment as shown
in Ref. 47. Our work motivates future experimental as well
as theoretical investigations on dissipative quantum phase
transitions in nanosystems.
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APPENDIX A: USEFUL MAPPINGS

In this Appendix, we provide detailed derivations on
various mappings mentioned in Sec. II. Via bosonization and
refermionization techniques, the three mappings described
below will follow one from the other, but there are a few
technical details that will change.

1. Mapping a dissipative resonant level model onto
anisotropic Kondo model

We provide details on the mapping of the dissipative
resonant level model in Eq. (1) onto the anisotropic Kondo
model in Eq. (4). Our goal is to connect the parameters of
these two equations in the main text.
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We first start from Eq. (1):

H =
∑

k,i=1,2

(ε(k) − μi)c̄
†
ki c̄ki + ti c̄

†
kid + H.c.

+
∑

r

λr (d†d − 1/2)(br + b†r ) +
∑

r

ωrb
†
rbr , (A1)

where ti is the (real-valued) hopping amplitude between the
lead i and the quantum dot, c̄ki and d are (spinless) electron
operators for the (Fermi-liquid type) leads and the quantum
dot, respectively. μi = ±V/2 is the chemical potential applied
on the lead i (V denotes the bias voltage), while the dot level
is at zero chemical potential. Here, br are the boson operators
of the dissipative bath with an Ohmic-type spectral density.
It proves to be more convenient to re-express the dissipative
boson fields br and b

†
r in terms of the canonical fields φ̂0(x,t)

and �̂0(x,t) as7,73

φ̂0(x,t) =
∫ ∞

−∞

dp

2π
√

2|p| [bpeipx + b†peipx]e−a|p|/2

(A2)
�̂0(x,t) = ∂t φ̂0(x,t),

where ωr = vbpr with vb being the phonon velocity, and the
boson fields φ̂0(x,t) and �̂0(x,t) satisfy the commutation re-
lation [φ̂0(x,t),�̂0(x ′,t)] = iδ(x − x ′). The dissipative boson
bath can therefore be re-expressed as

Hdiss =
∑

r

ωrb
†
rbr =

∫
dp

2π
|p|b†pbp

= 1

2

∫
dx

[
(∂xφ̂0)2(x,t) + �̂2

0(x,t)
]
. (A3)

Here, the velocity of the boson field φ̂0 is set to be 1.
We continue the mapping by bosonizing the fermionic

operators in the leads:

c̄α(0) = 1√
2πa

Fαeiϕα (0), (A4)

where we have introduced the (standard) Klein factors Fα

ensuring anticommutation relations and a is a short-distance
cutoff (lattice spacing). The fermionic baths of conduction
electrons can be rewritten as

Hleads =
∑

k,i=1,2

[ε(k) − μi]c̄
†
ki c̄ki

= 1

2

∫
dx

∑
α=1,2

[
(∂xϕα)2(x,t) + �2

α(x,t)
]
, (A5)

where the Fermi velocity of the electrons is set to be 1.
The level on the quantum dot can be mapped onto a pseu-

dospin: d = FdS
− and Sz = d†d − 1/2; α = 1,2 represent the

two leads. The coupling between the dot and the dissipation
bath (λi term) can be absorbed in the tunneling part of the
Hamiltonian through the unitary transformation UB :7

UB = e
i
√

1
Kb

Szφ̂0
,

H̃t = U
†
BHtUB

=
∑
i=1,2

tiF
†
i Fde

i
√

1
Kb

φ̂0
eiϕα (0)S− + H.c. (A6)

with Kb ≡ 1
α

. Here, α refers to the strength of the coupling
between the resonant level and the dissipative boson bath, and
we set 2πa = 1 for simplicity.

We can simplify our variables even further by combining
the above fields describing the leads and the noise: φ̃s,α =√

K(ϕα +
√

1
Kb

φ̂0), φ̃a,α = √
K(

√
1

Kb
ϕα − φ̂0), where 1

K
=

1
Kb

+ 1 = α + 1 ≡ 1
α∗ . Note that here K may be interpreted

as the effective Luttinger liquid parameter as the effect of
Ohmic dissipation on the quantum dot plays a similar role as
interactions in the Luttinger liquid leads coupled to the dot
with the identification K = 1

1+α
. The combined bosonic and

fermionic bath H̃bath can be re-expressed in terms of these new
boson fields:

H̃bath ≡ Hleads + Hdiss

= 1

2

∫
dx

∑
α=1,2

[
(∂xϕα)2(x,t) + �2

α(x,t)
]

+ 1

2

∫
dx

[
(∂xφ̂0)2(x,t) + �̂2

0(x,t)
]

= 1

2

∫
dx

∑
α=1,2

[
(∂xφ̃s,α)2(x,t) + �̂2

s,α(x,t)

+ (∂xφ̃a,α)2(x,t) + �̂2
a,α(x,t)

]
, (A7)

where �s(a),α fields are canonically conjugate to the fields
φ̃s(a),α . Note that, as we shall see below, only the fields from
symmetric combinations φ̃s,α and �s,α couple to the tunneling
and chemical potential terms; the antisymmetric combinations
φ̃a,α and �a,α are decoupled from the rest of the Hamiltonian.

The tunneling and chemical potential parts of the Hamilto-
nian now become

H̃t = U
†
BHtUB =

∑
α=1,2

tαF †
αFde

i φ̃s,α√
K S− + H.c.,

(A8)

H̃μ = U
†
BHμUB = −V

2

√
1

K
(∂xφ̃s,1 − ∂xφ̃s,2).

Close to α∗ = 1/2 (transition), we can map our model onto
the two-channel anisotropic Kondo model. After applying the

two unitary transformations U1 = e
i(

φ̃s,1√
K

−√
2φ̃s,1)Sz and U2 =

e
i(

φ̃s,2√
K

−√
2φ̃s,2)Sz , we obtain

H̃
′′
t = U

†
2U

†
1 H̃tU1U2

= [
t1F

†
1 Fde

i(
√

2− 1√
K

)φ̃s,2ei
√

2φ̃s,1

+ t2F
†
2 Fde

i(
√

2− 1√
K

)φ̃s,1ei
√

2φ̃s,2
]
S− + H.c.

−
(√

2 − 1√
K

)
(∂xφ̃s,1 + ∂xφ̃s,2)Sz. (A9)

Note that there are additional phase factors e
i(

√
2− 1√

K
)φ̃s,α in the

hopping terms. Since we are interested in the physics close to
the localized-delocalized transition, i.e., K = α∗ → 1/2, we
may drop these phase factors in the following analysis. The
chemical potential term after the above two transformations
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now becomes

H̃
′′
μ = U

†
2U

†
1 H̃μU1U2

= −V

2

√
1

2K
[∂x(

√
2φ̃s,1) − ∂x(

√
2φ̃s,2)]. (A10)

Note that since the hopping H̃
′′

and chemical potential H̃
′′
μ

terms involve only φ̃s,α fields, φ̃a,α fields are decoupled from
the Hamiltonian.

Now, we can refermionize the bosons and map our
transformed Hamiltonian

H̃RLM ≡ H̃bath + H̃
′′
t + H̃

′′
μ (A11)

onto the anisotropic Kondo model in Eq. (4) via the following
identifications:

−
√

2φ̃s,1 = �
↑
L − �

↓
R,

−
√

2φ̃s,2 = �
↑
R − �

↓
L, (A12)

cσ
L/R(0) = Fσ

L/Rei�σ
L/R ,

where Fσ
L/R is the Klein factor for the effective lead L and R,

respectively.
To see the equivalence between these two models, we

bosonize Eq. (4) and compare it with Eq. (A11):

HK = Hleads + HJ⊥ + HJz
,

Hleads =
∑

k,γ=L,R,σ=↑,↓
[εk − μγ ]c†kγ σ ckγ σ

= 1

2

∫
dx

∑
α=L,R

[
(∂x�α)2(x,t) + �2

α(x,t)
]

− V

2

√
1

2K

∑
σ=↑,↓

[
∂x�

σ
L − ∂x�

σ
R

]
,

HJ⊥ = J
(1)
⊥ s+

LRS− + J
(2)
⊥ s+

RLS− + H.c.

= J
(1)
⊥ F

†↑
L F

↓
Rei�↑

L−i�↓
R + J

(2)
⊥ F

†↑
R F

↓
Lei�↑

R−i�↓
L,

HJz
=

∑
γ=L,R

Jzs
z
γ γ Sz

= −Jz

∑
α=L,R

[∂x�
↑
α − ∂x�

↓
α]. (A13)

With the proper redefinitions of the Klein factors, F
†
1 Fd ≡

F
†↑
L F

↓
R , F †

1 Fd ≡ F
†↑
R F

↓
L , and the identifications, d = S−, d† =

S+, d†d − 1/2 = Sz, J
(α)
⊥ = tα , Jz = 1 − 1√

2K
, we finally

establish the equivalence between a Kondo model with the
effective left (L) and right lead (R) in Eq. (4) and a dissipative
resonant level model in Eq. (A11).

2. Mapping a dissipative resonant level model onto a resonant
level coupled to FQHE

We provide details here on the mapping of a dissipative
resonant level model Eq. (1) onto a resonant level coupled
to fractional quantum Hall edge states (FQHE) as shown in
Eq. (6).

We start from the Hamiltonian Eq. (6) describing a resonant
level coupled to two FQHE states:

HFQHE = Hchiral + Ht + Hμ, (A14)

where the lead term Hchiral describes two chiral Luttinger liquid
leads with lead index α = 1,2, Ht denotes the tunneling term,
and the bias voltage term Hμ is given respectively by

Hchiral = 1

2

∫ +∞

−∞

∑
α=1,2

(
dϕα

dx

)2

dx,

Ht = t1e
i ϕ1√

K d + t2e
i ϕ2√

K d + H.c.,

Hμ = −V

2

1√
K

(∂ϕ1 − ∂ϕ2),

where the boson field ϕα=1,2 denotes the chiral Luttinger liquid
in lead α, the tunneling between lead and the resonant level is
given by tα , V is the bias voltage, and K refers to the Luttinger
parameter.

Via similar unitary transformations shown in Eq. (A11),

U1 = e
i( ϕ1√

K
−√

2ϕ1)Sz and U2 = e
i( ϕ2√

K
−√

2ϕ2)Sz , Eq. (6) now
becomes

H̄FQHE = U
†
2U

†
1HFQHEU1U2 = Hchiral + H̄t + H̄μ,

(A15)

where the tunneling term Ht in Eq. (A14) becomes (assuming
t1 = t2 = t)

H̄t = t
[
e

i(
√

2− 1√
K

)ϕ2ei
√

2ϕ1 + e
i(
√

2− 1√
K

)ϕ1ei
√

2ϕ2
]
S− + H.c.

−
(

1 −
√

1

2K

)
(∂

√
2ϕ1 + ∂

√
2ϕ2)Sz, (A16)

and the chemical potential term in Eq. (A14) becomes

H̄μ = −V

2

√
1

2K
[∂x(

√
2ϕ1) − ∂x(

√
2ϕ2)]. (A17)

The equivalence between a resonant level coupled to FQHE
Eq. (6) and a dissipative resonant level model Eq. (1) is
established by comparing the transformed Hamiltonian H̄FQHE

in Eq. (A14) for the former model and H̃RLM [see Eqs. (A7),
(A10), and (A11)] for the latter one.

3. Mapping a dissipative resonant level onto a dissipative
resonant level coupled to chiral Luttinger liquid leads

Below we provide details on the mapping of a large
dissipative resonant level onto a large resonant level (spinless
quantum dot) with Ohmic dissipation coupled to two chiral
Luttinger liquid leads. The mapping is easily extended to the
latter case with a small (single-level) resonant level.

First, we take the same dissipative boson environment as
shown in Eq. (A3). Via standard bosonization [see Eq. (5)],
the Luttinger leads and the chemical potential term take the
same bosonized form as Eqs. (A5) and (7), respectively. The
remaining parts of the Hamiltonian are modified as follows:

Hdot = Hd + Ht + Hdb,

Hd =
∑

k

εdk
d
†
kdk,

(A18)
Ht =

∑
k,k′,α=1,2

tαc̄
†
k,αdk′S− + H.c.,

Hdb =
∑
r,k′

λr (d†
k′dk′ − 1/2)(br + b†r ),
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where εdk
refers to the energy spectrum of the many-level dot,

the electron destruction operator on the dot d(0) is defined
as d(0) = ∑

k dk , and spin-flip operator S± represents for the
hopping of charge between lead and the dot.7 We then bosonize
the electron operators in the leads [see Eq. (5)] and on the dot:
d(0) = 1√

2πa
Fde

iφd . Via the unitary transformation UB defined
in Eq. (A7), we arrive at

H̃t = U
†
BHtUB

=
∑

α=1,2

tαF †
αFde

i
√

1
Kb

φ̂0
e

i[ ϕα (0)√
K

−φd ]
S− + H.c. (A19)

To further simplify the hopping term, we define new boson
fields φs(a),α via linear combinations of the fields (ϕα(0) and
φd ):

φa,α =
√

K ′
(

ϕα(0)√
K

− φd

)
,

(A20)

φs,α =
√

K ′
(

ϕα(0)√
K

+ φd

)
,

with 1
K ′ = 1

K
+ 1. The combined fermionic baths of the leads

and the dot are given by

Hf ≡ Hleads + Hd

= 1

2

∫
dx

∑
α=1,2

[
(∂xφs,α)2(x,t) + �̃2

s,α(x,t)

+ (∂xφa,α)2(x,t) + �̃2
a,α(x,t)

]
, (A21)

where �̃s(a),α are canonically conjugate boson fields to φs(a),α

fields. In terms of the new fields φs(a),α , the hopping and
chemical potential terms now become

H̃t =
∑

α=1,2

tαF †
αFde

i
√

1
Kb

φ̂0
e

i φa,α√
K′ S− + H.c.,

Hμ → H̃μ = −V

2

√
K

K ′ [∂x(φa,1) − ∂x(φa,2)]. (A22)

We may furthermore combine the boson fields from the
leads φa,α and from the dissipative bath φ̂0 via the following
definitions:

φ̃s,α =
√

K̃

(
φa,α

K ′ +
√

1

Kb

φ̂0

)
,

(A23)

φ̃a,α =
√

K̃

(
φa,α

K ′ −
√

1

Kb

φ̂0

)
,

where 1
K̃

= 1
K ′ + 1

Kb
. Upon applying the unitary transforma-

tion, the combined fermionic and bosonic baths terms become

Hf = 1

2

∫
dx

∑
α=1,2

[
(∂xφ̃s,α)2(x,t) + �̄2

s,α(x,t)

+ (∂xφ̃a,α)2(x,t) + �̄2
a,α(x,t)

]
, (A24)

where �̄s(a),α are canonically conjugate boson fields to φ̃s(a),α

fields.
Meanwhile, the corresponding hopping and chemical po-

tential terms become

H̃t =
∑

α=1,2

tαF †
αFde

i φ̃s,α√
K̃ S− + H.c., (A25)

Hμ → H̃μ = −V

2

√
K ′

K̃
[∂x(φ̃s,1) − ∂x(φ̃s,2)]. (A26)

Via the similar unitary transformation shown in Eq. (A11),

U1 = e
i( φ̃1√

K̃
−√

2ϕ1)Sz and U2 = e
i( φ̃2√

K̃
−√

2φ̃s,2)Sz , the tunneling
term becomes (assuming t1 = t2 = t)

Ht = t
[
e

i(
√

2− 1√
K̃

)φ̃s,2ei
√

2φ̃s,1

+ e
i(
√

2− 1√
K̃

)ϕ1ei
√

2φ̃s,2
]
S− + H.c.

−
(

1 −
√

1

2K̃

)
(∂

√
2φ̃s,1 + ∂

√
2φ̃s,2)Sz. (A27)

The chemical potential term therefore becomes

Hμ → H̃μ = −V

2

√
K ′

2K̃

[
∂x(

√
2φ̃s,1) − ∂x(

√
2φ̃s,2)

]
. (A28)

We may now follow the same refermionization procedure
as shown in Eq. (A13) to map our Hamiltonian onto the
anisotropic Kondo model in the same form as Eq. (4) with
the following identifications:

J
(1),(2)
⊥ ∝ tαei(

√
2− 1

K̃
)φ̃s;2,1 , Jz ∝ 1 − 1

2K̃
,

(A29)

μ → μ̃ = V

2

√
K ′

K̃
.

The above mapping can easily be generalized to a small
quantum dot with single resonant level with K̃ given by Eq. (9)
where the contribution from the many-level big dot is absent
here.

APPENDIX B: AVERAGE CURRENTS

In this Appendix, we prove that the average currents in
the original model Îori is equivalent to that in the effective
Kondo model ÎKondo. The current operators in both models are
given by

Îori = d/dt(N1 − N2)

= it1
∑

k

(c̄†k1d − d†c̄k1) − (1 → 2), (B1)

ÎKondo = d/dt(NL − NR)

= iJ (1)
⊥ (s−

LRS+ − s+
RLS−) − (1 → 2,L → R). (B2)

On the other hand, from the bosonized forms of the two
models (at the transition) we have

〈Îori〉 = 〈d/dt(N1 − N2)〉
=
∫

dx

〈
d

dt
[∂xϕ1 − ∂xϕ2]

〉

=
∫

dx

√
1

2K

〈
d

dt
[∂x(

√
2φ̃s,1) − ∂x(

√
2φ̃s,2)]

〉
(B3)

〈ÎKondo〉 = 〈d/dt(NL − NR)〉

=
∫

dx

〈
d/dt

∑
σ=↑,↓

[
∂x�

σ
L − ∂x�

σ
R

]〉

=
∫

dx 〈d/dt[∂x(
√

2φ̃s,1) − ∂x(
√

2φ̃s,2)]〉. (B4)
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Therefore, we have

〈Îori〉 = 1√
2K

〈ÎKondo〉 (B5)

(or 〈Îori〉 = 1√
2α∗ 〈ÎKondo〉). The above relation obtained so far

from the mapping is exact at finite bias voltages. In the limit
of our interest K = α∗ → 1/2, 〈Îori〉 = 〈ÎKondo〉.

We can also prove this equivalence through Keldysh
perturbation theory. We now would like to prove that

〈ÎKondo〉K = 〈Îori〉ori, (B6)

where

〈IKondo(t)〉K
= 1

ZK

Tr
{
e−βHK Tc

[
SK

c (−∞,∞)IKondo(t)
]}

, (B7)

ZK = Tr
{
e−βHK Tc

[
SK

c (−∞,∞)
]}

,

SK
c (−∞,∞) = e−i

∫
c
dt ′Heq

K (t ′), (B8)

and

〈Îori(t)〉ori = 1

Zori
Tr
{
e−βH Tc

[
Sori

c (−∞,∞)Îori(t)
]}

,

Zori = Tr
{
e−βH Tc[Sori

c (−∞,∞)]
}
, (B9)

Sori
c (−∞,∞) = e−i

∫
c
dt ′Heq (t ′).

Here H
eq

K (Heq) is the Kondo (original) Hamiltonian in
equilibrium (μ = 0); Tc(· · · ) orders the operators along the
Keldysh contour c.

(1) We first show that ZK = Zori (the two partition
functions from the original and the effective Kondo models
are equivalent) where

Zori = Tr
{
e−βH Tc

[
Sori

c (−∞,∞)
]}

,
(B10)

Sori
c (−∞,∞) = e−i

∫
c
dt ′Heq (t ′).

To prove this, we first note that the original and the effective
Kondo models are related by the above-mentioned unitary
transformations: HK = U †HU with U = U2U1UB . A similar
relation holds for the current operators: ÎKondo = U †ÎoriU . To
carry out the calculation in Eq. (B10), we apply the following
two identities:

e− ∫ β

0 dτU †(τ )H (τ )U (τ )

=
∞∑

n=0

(−1)n

n!

(∫ β

0
dτU †(τ )H (τ )U (τ )

)n

, (B11)

and

Tr[Â(τ )B̂(τ )Ĉ(τ )] = Tr[Ĉ(τ )Â(τ )B̂(τ )]

= Tr[B̂(τ )Ĉ(τ )Â(τ )] = · · · (B12)

with τ = it the imaginary time and Â,B̂,Ĉ being any quantum
mechanical operators. Via Eqs. (B10)–(B12), it becomes clear
that ZK = Zori.

(2) In a similar way, we can prove that

Tr
{
e−βHK Tc

[
SK

c (−∞,∞)IKondo(t)
]}

= Tr
{
e−βH Tc

[
Sori

c (−∞,∞)Iori(t)
]}

, (B13)

where we have used Eq. (B11) and ÎKondo = U †ÎoriU .

From (1) and (2) mentioned above, we conclude that
〈ÎKondo(t)〉K = 〈Îori(t)〉ori holds for all orders in Keldysh
perturbation theory.

APPENDIX C: NONEQUILIBRIUM CURRENT FOR t1 �= t2

In this Appendix, we derive the general expression for the
average current for t1 �= t2. From Eq. (B3), the average current
in the Kondo model is given by

〈Î 〉 =
∫ ∞

−∞

∑
k

J
(1)
⊥ [G<

k,d (ω) − G<
d,k(ω)] − (1 → 2,L → R),

(C1)
where G<

k,d (t) = i〈s−
LRSd (t)〉. Following Ref. 74, Dyson’s

equation for G<
k,d (ω) is given by

G<
k,d (ω) = J

(1)
⊥ [χ+−

LR

t
(ω)χ+−

d

<
(ω)

−χ+−
LR

<
(ω)χ+−

d

t̃
(ω)] − (1 → 2,L → R), (C2)

where χ+−
LR

<
(t) = 〈s−

LRs+
LR(t)〉, χ+−

LR

<
(t) = 〈s−

LR(t)s+
LR〉,

χ+−
d

< = 〈S−
d S+

d (t)〉, χ+−
LR

t
(ω), and χ+−

d

t̃
are time-order

and anti-time-ordered Green’s functions, respectively. The
following relations hold among these correlation functions:

χ<(ω) + χ>(ω) = χt (ω) + χt̃ (ω),
(C3)

χ>(ω) − χ<(ω) = χR(ω) − χA(ω),

where χR/A(ω) is the retarded (advanced) Green’s function,
respectively. Straightforward calculation gives

χ+−
LR

<
(ω) = 2πfω−μL

(1 − fω−μR
)δ[ω − ε(k)]

(C4)
χ+−

LR

>
(ω) = −2πfω−μR

[1 − fω−μL
)δ(ω − ε(k)].

The average current reads

〈Î 〉 =
∫ ∞

−∞
[fω−μL

(1 − fω−μR
)�̃1

− fω−μR
(1 − fω−μL

)�̃2]
[
χR

d (ω) − χA
d (ω)

]
+ (�̃1 − �̃2)χ<

d (ω), (C5)

where �̃1,2 = 2πρ0(J (1),(2)
⊥ )2 with ρ0 being the constant density

of states of the leads.
Following Ref. 74, for �̃1 = λ�̃2, we have

〈Î 〉 =
∫ ∞

−∞
(fω−μL

− fω−μR
)�̃(ω)

[
χR

d (ω) − χA
d (ω)

]
, (C6)

where �̃(ω) = (2πρ0)2 [g1
⊥(ω)g2

⊥(ω)]2

[g1
⊥(ω)]2+[g2

⊥(ω)]2 . Note that the Kondo
couplings have been generalized to be frequency dependent
following the nonequilibrium RG approach.
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155301 (2004); J. Paaske, A. Rosch, and P. Wölfle, ibid. 69, 155330
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