The Three Upcoming Revolutions in Physics and Astronomy that will Affect Everyone

Nanotechnology

Nov. 5, 2002
Why do I have to keep replacing my computer?

Warm-up

- **How many atoms in a Pentium IV?**
 - Assume atoms are 0.5 nm apart
 - ~100 million transistors in a Pentium IV

- **Answer methodology**
 - Estimate dimensions of Pentium IV
 - Calculate volume of Pentium IV and atom
 - Divide to get atoms/Pentium IV
Why do I have to keep replacing my computer?

- **Moore’s Law and you**
 - History of transistor
 - Vacuum tubes
 - Radio
 - The ENIAC
 - Bardeen and Bell lab transistor
 - Lithography and Integrated circuits

"Where a calculator on the ENIAC is equipped with 18000 vacuum tubes and weighs 30 tons, computers in the future may have only 1000 tubes and weigh only 1 1/2 tons”

- Popular Mechanics, March 1949
Why do I have to keep replacing my computer?

• **Moore’s Law and you**
 – **Basic operating principles of a computer**
 • Central Processing Unit
 – E.g. Pentium IV
 – Clock speed
 • Memory
 – E.g. RAM, Hard Drive, CD
 • Bus
 – Moving info. Around
 – Bus speed
 • I/O
 – Keyboard, display, modem, ethernet

Magnetic recording process.
Why do I have to keep replacing my computer?
Why do I have to keep replacing my computer?

- **Moore’s Law and you**
 - **Moore’s law**
 - Features sizes halve every 3 years
 - Originally recognized in the 60s
 - **Economic drivers**
 - Cost of computers
 - Depreciation
 - Cost of retooling
Why do I have to keep replacing my computer?

- The end of Moore’s law
 - Size of transistors
 - Pentium IV: gate length 130 nm
 - Atoms: 0.5 nm apart
Why do I have to keep replacing my computer?
How to make small things smaller

Warm up

• How has the world been changed by computers?
 – In your lifetime?
 – In your parents’ lifetime?

• Where have electronics become critical today in places they didn’t exist
 – before you were born?
 – before your parents were born?
How to make small things smaller

- **How small is 1 nm?**
 - Atoms are ~0.1 nm is diameter
 - Atoms in a crystal are ~0.5 nm apart
 - Molecules
 - Can be from 0.2-200 nm
 - Viruses
 - Smaller than 100 nm
How to make small things smaller

- Microfabrication and Nanofabrication
 - Lithography: The patterning of surfaces
 - Optical/UV lithography
 - Resolution limited by wavelength of light
 - Electron beam patterning
 - 10 nm features demonstrated
 - Slow, registration
 - Stamp
 - e-beam features, but much faster
How to make small things smaller

- **Microfabrication and Nanofabrication**
 - **Writing and Etching**
 - Chemical etching
 - Lithography defines etch
 - Direct write e-beams
 - Scanning & Transmission Electron Microscopy
 - Implantation
 - Focused Ion Beam
 - **Atomic Scale Probes**
 - Scanning Tunneling Microscopy
 - Atomic Force Microscopy
 - Magnetic Force Microscopy
How to make small things smaller

- **Electronic and Optical Devices**
 - **Band engineering**
 - Building semiconductors atomic layer by atomic layer
 - 3D: bulk materials
 - 2D: quantum wells
 - 1D: quantum wires
 - 0D: quantum dots

- Mercury Nanotube Fiber
- 1 µm
How to make small things smaller

- **Electronic and Optical Devices**
 - **Band engineering**
 - **Devices**
 - Q well transistors and lasers
 - Q wires
 - Q dot transistors and lasers
 - Single Electron Transistors
Commercial Applications

CD: 0.7GB, DVD: 4.7GB, Blue Laser DVD: 12.4GB

From Nichia Corp.
How to make small things smaller

- **Mechanical Devices**
 - Micro-electrical-mechanical devices (MEMS)
 - Accelerometers for air bags
 - Microturbines

- **Bio-molecular Devices**
 - Molecular motors
 - Microfluidics
 - Micro-cooling
 - Micro drug delivery
How to make small things smaller

- **Medical Devices**
 - Medical internal nanosensors
 - Bionics
 - Artificial Eye and Nose

- **Smart Clothing**
 - Wearable electronics
 - Institute for Soldier Nanotechnologies
How to make small things smaller
Materials built from the ground up

- **A 3D periodic table**
 - Carbon
 - Buckyballs & buckytubes
 - **Molecular carpet**
 - Self-assembled monolayers of molecules
 - **Designer materials**
 - Dendrimers
 - Clusters & Composite materials
 - DNA-based assembly

1)
Denatured BWA genomic DNA
2)
Ag⁺ hydroquinone
Ag(s) quinone

BA = Bacillus Anthracis
FT = Francisella Tularensis
Materials built from the ground up

- **New materials**
 - Photonic crystals
 - Designer, artificial optical materials
 - Control and reflect light in ways we decide
New materials
- Smart materials
 - Selectively permeable
 - Sense hot & cold, humidity
- Sensors
 - Pathogen detection
 - CB agent detection
- Cure
 - Catalysis & decontamination
 - Nano drug delivery

Lead and Glucose Detection

Fig. 1 Concept for glucose sensing device for tear fluid and for implants. The color of light diffracted defines the glucose concentration.
Living in a nanomaterial world

- The impact of the nanotechnology revolution
 - Computers, computers, everywhere!
 - Speculation about the most possible computerized and interconnected world.
 - In 10 years
 - In 20 years
 - In 50 to 100 years

- Science fiction?
 - Cyborgs and Nanites?
 - Star Trek
 - Smart displays and robotic sensors?
 - Minority Report
Living in a nanomaterial world
Living in a nanomaterial world
Living in a nanomaterial world
Living in a nanomaterial world