

Table of Content
(1) 1.19 History
(2) 10.31 Markor chain, Id 2sing
(3) 1.27 Scaling hypotheris
1.28 1d 2sing with source field.
1.29 2d Ising
1.31 Linit cycle
2.2 Kramers-Wannier duality.

RG: study the change of physical system at different scales.
many coupled d.of. within ξ
Group: more precisely, semigroup with identity (in wilsonian point of view) or monoid.
(group who inverse)
like cosy compression.
A little history
Lorentz: mass rensmalization in classical theory physical mass $m=m_{0}+m_{\text {self }}$
mechanical mess $\quad \stackrel{\vdots}{m_{\text {self }} c^{2}}=\iint \frac{d q d q^{\prime}}{\mid r-r^{\prime \prime}}$
1930s QED and its divergence in higher perturbation expansion.
WWII
1947 © Shelter Island Conference (first postwar physics conf.) Lamb: Lamb shift
Kramers : idea of renormalization in non relativistic

Bethe (reportedly on the train back to Ithaca) estimated the lamb shift by implementing charge rensm. in the lowest order perturbation theory. (non-relativistic)
1947-1948 Schwinger. Tomonaga: covariant renormalization.
Feynman : path integral and cut-off regularization.
1949 Dyson: Show the equivalence. renormalizability of QED.

Running coupling 1953\&1954
(stuart) I think it's really a group at their tine
$1953_{\text {Erst }}$ Stückelberg \& Petermain Discover the group structure $^{\text {P }}$ of renormalization. \rightarrow Helvetica Physica Anta (published in a Swiss journal in French, and is little known at that time.)
Other ignored Nobel prize work by Stückelberg 1935 Yulawa model (discouraged by Pauli, didn't publish) 1938 Abelian Higgs model.
(1941 positron as electron travel back in time.)
$\leftarrow 1943$ a long paper outlining complete and correct description actnouldged by Feynman for QED, but rejected by Physical Review.

S "They said it was not a paper, it was a programme, by Wilson an outline, a proposal".
Gell-Mann always referred to Feynman diagrams as Stuckelherg (independently) presumblley bIc he dislike diagram.
1954 Gell-Mann \& Low Introduce the idea of scale transformation in QED and β function
(they call ψ)
Give the physical intepretation of charge remirm;
$\alpha_{0}+$ virtual pairs screening
pair creation stops at scale m_{e}, and $\alpha=\frac{1}{137}$
if $m_{l}=0, \alpha \longrightarrow 0$ (more precisely $\alpha \sim \frac{1}{\sim} \frac{1}{\log }$ and Coulomb potential $\sim \frac{1}{r \log)}$ (the \log correction is common to marginal irrelevant operators.)
near T_{C}, we can find some scale $a<L \ll \xi \rightarrow \infty$
1966 Kadar off "block spin" transformation.
coarse-graining process.
$\square \quad f(t, h)=L^{d} f(\tilde{t}, \tilde{h}) \quad(h=\beta H)$
\square-.] then all critical exponents follows.
conceptually valuable but not computativery
1970 Callan, Symanzik (independently) Callan-Symanzik eq. reformulation of Gell-Mann \& Low.

This advisors
\rightarrow principal inspiration: Gell-Mamn 1954 and Kadanoff 1966.
1971 Wilson $R G$, or exact $R G$ equation
(most clear conceptually, but hard to implement

$$
Z=\int_{p^{2} \leqslant \Lambda^{2}} D \phi e^{-S_{\Lambda}[\phi]}
$$

integrate over a shell $\left(\Lambda^{\prime}, \Lambda\right]$

$$
e^{-S_{\Lambda^{\prime}}[\phi]}:=\int_{\Lambda^{\prime} \leqslant \rho^{2} \leqslant \Lambda^{2}} D \phi e^{-S_{\Lambda}[\phi]}
$$

Then explore the flow in the space of all couplings
\Rightarrow relevant, irrelevant, marginal.
(actually few)
finite \# of relevant \Rightarrow universality.
Put this later
He also pointed out why Landau's theory fails:
Landau. $\left.F=\int d^{3} x(O M(x))^{2}+R M^{2}(x)+U M^{4}(x)\right)$
R, U should be R_{L}, U_{L}, (where the fluctuation $>L$ is integrated out), due to the long range fluctuation.
when $L>\xi$, this is where the fluctuation can be seen as independent, and chesn't change R, U
\therefore The R, U in Landau theory should be replaced by R_{ξ}, U_{ξ}, which introduce new complexity as $T \rightarrow T_{C}$.

1973 Politzer, Gross\& Wilczek asymptotically free of YM.
1975 Kadanoff, Houghton Real space RG.
1984 Polchinsti improvement: smooth cutoff easier to calculate.

Another timeline: Critical behavior:
1874 van der Walls: description of liquid-vapor critical point (eq. of state of real gas).
Maxwell gave the equal area construction is the following.
1895 P. Curie pointed out the analogy between magnets and fluids.
1907 Weiss Mean field theory description of the Curie point in magnet.

1934 Bragg \& Williams Binary alloys. introduced "Long range order".
1937 Landau generalize to "order parameter" to give a unified dessiption to all second order PT.
Macro emphasized "symmetry".
Micro $(L-G) \quad$ calculate the critical exponents of the MFT
Ginnbwig criterion $\left\langle(\delta \phi)^{2}\right\rangle<^{C} \phi^{2}$ universality class.
$\Rightarrow D \geqslant 2+2 \frac{\beta}{v}$ Intuition : high dim, reinforced by hhd. Wilson's comparison 1941 Kramers\&Wannier duality in ad Ising model.

1944 Onsager
ad Using model at zero field. (explicitly violate the MFT prediction)
\downarrow
so-called "non-classical universality"
Lots of non-classical exponents were found both theoretically and experimently afterwards.

1965 Sidon scaling hypothesis for free energy near T_{c} relationships between critical exponents.
free energy is a homogeneous function of
t and h (external field)
(lack of theoretical explanation)

$$
H=M^{\delta} h\left(t M^{-\frac{1}{\beta}}\right)
$$

$\delta, \beta, h(x)$ are universal.

Additional notes from Wilson's Nobel lecture:
water-steam transition: the surface tension is like domain wall in spin systems. $\rightarrow 0$ at T_{C}.
2019.10.31

Example 12 state Markov chain.

Now this P tells us the physics at time separation at 1 ,

p^{n} tells us the physics at time seperation n.
Diasinalize: $P^{\prime}=\left(\begin{array}{ll}1 & \\ & 1-\alpha-\beta\end{array}\right)$

$$
p^{\prime n}=\left(\begin{array}{cc}
1 & \\
& (1-\alpha-\beta)^{n}
\end{array}\right) \quad p^{\infty}=\left(\begin{array}{cc}
p & p \\
1-p & 1-p
\end{array}\right) \text { where } \quad p=\frac{b}{a+b}
$$

if α, β are not both 0,1 , when $n \rightarrow \infty$,

$$
\begin{aligned}
& 1-\alpha_{n}-\beta_{n}:=(1-\alpha-\beta)^{n} \rightarrow 0 \\
& \therefore \alpha_{n}+\beta_{n} \rightarrow 1 \\
& \xrightarrow[\alpha]{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& p^{n}=\frac{1}{\alpha+\beta}\left(\begin{array}{ll}
\alpha \lambda^{n}+\beta & \beta-\beta \lambda^{n} \\
\alpha-\alpha \lambda^{n} & \alpha+\beta \lambda^{n}
\end{array}\right) \\
& \therefore \alpha_{n}=\frac{\alpha}{\alpha+\beta}\left(1-\lambda^{n}\right) \quad(\lambda=1-\alpha-\beta) \\
& \beta_{n}=\frac{\beta}{\alpha+\beta}\left(1-\lambda^{n}\right) \\
& \frac{\alpha_{n}}{\beta n}=\frac{\alpha}{\beta}=\text { cons. }
\end{aligned}
$$

when $n \rightarrow \infty, P^{n}=\frac{1}{\alpha+\beta}\left(\begin{array}{ll}\beta \\ \alpha & \beta \\ \alpha\end{array}\right)=\frac{1}{\alpha+\beta}\binom{\beta}{\alpha}(11)$

$$
P^{n}\binom{p_{1}}{p_{2}}=\frac{p_{1}+P_{2}}{\alpha+\beta}\binom{\beta}{\alpha}=\frac{1}{\alpha+\beta}\binom{\beta}{\alpha}
$$

"Decimation" (1975 Kadanoff \& Houghton)
Example 2 Id Using Model.

$$
\begin{aligned}
& H=-J \sum_{i} Q_{i} \sigma_{i+1} \\
& z=\operatorname{tr} e^{-\beta H}=\sum_{s_{i}+1} e^{\beta J s_{i} s_{i} s_{i+1}}=\sum_{s_{i=1}} \prod_{i} e^{\left(\beta J J_{i} s_{i+1}\right.}
\end{aligned}
$$

Now let's carry out the summation over odd sites.

$$
\begin{aligned}
& \sum_{s_{i= \pm 1}=1} \prod_{i} e^{k\left(s_{i 2} s_{2 i+1}+s_{2 i+1} s_{2 i+2}\right)} \\
= & \prod_{i} \sum_{s_{i+1}+1} e^{k\left(s_{2 i} \cdots \cdots\right)} \\
= & \prod_{i}^{i} 2 \cosh \left(k\left(s_{2 i}+s_{2 i+2}\right)\right) \\
= & \prod_{i} e^{\left.\ln 2\left(\cosh \left(s_{i}+s_{i}+s_{2 i+2}\right)\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
\therefore H_{i}^{\prime}=-\ln 2\left(\cosh \left(J\left(s_{2 i}+s_{2 i+2}\right)\right)\right. & =\left\{\begin{array}{l}
-\ln \cosh 2 J-\ln \alpha \quad \text { align } \\
-\ln \alpha
\end{array} \quad \begin{array}{rl}
\text { anti-align }
\end{array}\right. \\
& =-\frac{1}{2} \ln \cosh 2 J\left(S_{2 i} S_{2 i+1}+1\right)-\ln \alpha \\
J^{\prime} & =\frac{1}{2} \ln \cos 2 J .<\frac{1}{2} \ln e^{2 J}=J \quad k \ll \quad \frac{1}{2} \ln \cosh k \approx 2 k^{2}
\end{aligned}
$$

$$
k \gg 1 \quad \approx k-\frac{1}{2} l_{2}
$$

stable fixed point $k=0$ (trivial) un

$$
w=\infty
$$

$\$$ is irrelevant near $k=60$
Id Using model is disordered at finite temperature.
1.27 Scaling hypothesis

On the critical point, system is scale invariant Near .. systems are similar under scaling.

We expect the free energy per spin is a universal function

$$
f(t, h)=-\log 2
$$

After blocking $N \rightarrow N^{x}=l^{-d} N, \quad t \rightarrow t^{\prime}, h \rightarrow h^{\prime}$

$$
\begin{aligned}
N^{\prime} f\left(t^{\prime}, h^{\prime}\right) & =N f(t, h) \\
f(t, h) & =l^{-d} f\left(t^{\prime}, h^{\prime}\right)
\end{aligned}
$$

Near the critical point t is small, also assume h small $t^{\prime}=L^{y t} t, \quad h^{\prime}=L^{y_{h} h} \quad\left(y_{t}, y_{h}\right.$ are scaling dim of t and h.
$\therefore f(t, h)=l^{-d} f\left(l^{y t} t, l^{y_{h} h}\right)$ (scaling hypothesis).
i.e. f is homogeneous. Therefore f can be expressed in terms of \tilde{f} : dimensionless \mapsto dimensionless.
by dimensional analysis: $f=|t|^{d / g t} \tilde{f}\left(\frac{h}{t^{t a r y t}}\right)$
proof: $f=\sum_{b} \lambda_{b} t^{a} h^{b}$

$$
\begin{aligned}
&=l^{-d} \sum_{n} \lambda_{b}\left(l^{y_{t}} t\right)^{a}\left(l^{w_{h} h}\right)^{b} \\
&=\sum_{b} l^{a y_{t} t b y_{h}}-d \lambda_{b} t^{a} h^{b} \\
& \Rightarrow a y_{t}+h y_{h}=d \\
& \therefore f=\sum_{b} \lambda_{b} t \frac{d-b y_{h}}{y_{t}} h^{b} \\
&=t^{\frac{d}{y_{t}}} \sum_{b} \lambda_{b}\left(t^{\left.-\frac{y_{s}}{t} h\right)^{b}} .\right.
\end{aligned}
$$

$$
\Rightarrow a y_{t}+b y_{h}=d
$$

$$
\tilde{f}(x)=\sum_{b} \lambda_{b} x^{b}
$$

1.28

By dim analysis.

$$
\begin{aligned}
& t \propto \xi^{-y_{t}} \\
& \xi \propto t^{-\frac{1}{y_{t}}} \quad \frac{1}{y_{t}}:=v \\
&=t^{-\nu}
\end{aligned}
$$

$f \propto t^{d v}$
\therefore specific heat $C=T^{2} \frac{\partial^{2}}{\partial T^{2}} f \propto t^{d v-2} \quad$ (if $T_{c} \neq 0$) $=: t^{-\alpha}$, where $\alpha=2-d \nu$.
order parameter $m=-\frac{\partial}{\partial h} f \propto 1^{\left.\right|^{d \nu}-\frac{y_{h}}{y t}}$ (hypascedins rebtain)

$$
=: t t^{\beta} \beta \text {, where } \beta=d v-\frac{y t}{y_{t}}
$$

$\propto h^{\beta \frac{y_{t}}{J h}}=h^{\frac{1}{\delta}}$ where $\delta=\frac{y_{h}}{y_{t}} \cdot \frac{1}{\beta}$
susceptibility $\quad x=\frac{\partial m}{\partial h} \propto t^{d v-2 \frac{y m}{y t}}$
$=: t^{-\gamma} \quad$ where $\gamma=2 \frac{2 u}{y t}-d v$.
correlation function $\left.x=\int d^{d} r<\sigma(0) \sigma(r)\right\rangle$

$$
\begin{aligned}
& \therefore\langle\sigma(0) \sigma(r)\rangle \propto t^{-\gamma} r^{-d} \\
& \propto r^{\gamma y_{t}-d} \\
& =: r^{-(d-2+\eta)} \text { where } \eta=-y_{t} \gamma+2 \\
& \text { disorderedphase: } \alpha, \gamma, \nu \quad \text { fran Naive dim }=d+2-2 y_{h} \text {. } \\
& \text { ordered phase: } \alpha^{\prime}, \beta, \gamma^{\prime}, \nu^{\prime} \text { (anometare dim: } \frac{1}{2} \text {) } \\
& \Delta_{\sigma}=\frac{1}{2}(d-\alpha+\eta)
\end{aligned}
$$

critical point : δ, η.
MET: $\quad \rho \alpha=\alpha^{\prime}=0$

$$
\begin{aligned}
& \beta=\frac{1}{2} \\
& \gamma=\gamma^{\prime}=1 \\
& \delta=3
\end{aligned} \quad\left\{\begin{array}{l}
\nu=\frac{1}{2} \\
\eta=0
\end{array}\right.
$$

Id Using with source field.

$$
\begin{aligned}
& z=\sum_{\left\{\sigma_{i}\right\}} e^{\sum_{i} K_{1} \sigma_{i} \sigma_{i+1}+\frac{1}{2} K_{2}\left(\sigma_{i}+\sigma_{i+1}\right)} \\
& \left\{\begin{array}{l}
K_{1}^{\prime}=\frac{1}{4} \ln \left(\cosh \left(2 K_{1}+K_{2}\right) \cosh \left(2 K_{1}-K_{2}\right)\right)-\frac{1}{2} \ln \cosh K_{2} \\
K_{2}^{\prime}=K_{2}+\frac{1}{2} \ln \left(\cosh \left(2 K_{1}+K_{2}\right) / \cosh \left(2 K_{1}-K_{2}\right)\right)
\end{array}\right.
\end{aligned}
$$

Let $g(x)=\frac{1}{2} \ln \cosh (x)$, then

$$
k_{1}^{\prime}=\frac{1}{2}\left(g\left(k_{2}+2 K_{1}\right)+g\left(K_{2}-2 k_{1}\right)\right)-g\left(k_{2}\right)
$$

Since g is convex, $k_{1}{ }^{\prime} \geqslant 0$
\rightarrow physics: antiferromagnet acts like ferromagnet transformation is invariant under $k_{2} \rightarrow-k_{2}$
\rightarrow physics: \mathbb{Z}_{2} symmetry of zero-field $I \sin$ model.

Near $K_{1}=\infty, K_{2}=0$,

$$
\left\{\begin{array}{l}
k_{1}^{\prime} \approx k_{1}-\frac{1}{2} \ln \alpha \\
k_{2}^{\prime} \approx 2 k_{2}
\end{array}\right.
$$

Change of variable $t=e^{-p k_{1}} \quad(t \approx 0)$

$$
\therefore t^{\prime} \approx 2^{\frac{p}{2}} t
$$

we see $y_{1}=\frac{p}{2}, y_{2}=1$
essential singularity

$$
\therefore\left\{\begin{array} { l }
{ \alpha = 2 - \frac { 2 } { p } } \\
{ \beta = 0 } \\
{ \gamma = \frac { 2 } { p } } \\
{ \delta = \infty }
\end{array} \quad \left\{\begin{array}{l}
\nu=\frac{2}{p} \\
\eta=1
\end{array}\right.\right.
$$

Wilson did a brute force calculation, keeping 418 interaction parameters. The result were accurate and confirmed his hypothesis
11.1 that the local couplings of shortest range were the most important.
Example 3 ad Ising Model.
Renormalization requirement:
system is bipartite, therefore we can sum over one part.

$$
\begin{aligned}
& \sum_{s_{0= \pm}} e^{k \sigma_{0}\left(s_{1}+s_{2}+s_{3}+s_{4}\right)} \\
& =2 \cosh R\left(\sigma_{1}+S_{2}+s_{3}+S_{4}\right) \\
& H^{\prime}=-\ln 2 \cosh k\left(S_{1}+\cdots+S_{4}\right)= \begin{cases}-\ln \cosh 4 k & \text { all align } \\
-\ln \cosh 2 k & 1 \text { anti align } \\
0 & 2\end{cases}
\end{aligned}
$$

What interactions can reproduce this one?
All terms respecting the original \mathbb{Z}_{2} symmetry. quadratic: $\frac{1}{2} \sin _{1} n . n$. , sin.n.n.
quartic: $\mathbb{N}_{3}^{\prime} S_{1} S_{2} S_{3} S_{4}$.

$$
\left\{\begin{aligned}
2 \mathbb{R}_{1}^{\prime}+2 \mathbb{K}_{2}^{\prime}+\mathbb{R}_{3}^{\prime} & =\ln \cosh 4 K_{K}+c & & \text { all align } \\
-J_{3} & =\ln \cosh 2 J+C & & 1 \text { anti } \\
-2 J_{2}+J_{3} & =c & & \text { anti }\left\{\begin{array}{l}
n . n . \\
n . n . n .
\end{array}\right. \\
-2 K_{1}^{\prime}+2 J_{2}+J_{3} & =C & &
\end{aligned}\right.
$$

2020.1.29

Solution

$$
\left\{\begin{array}{l}
K_{1}^{\prime}=\frac{1}{4} \ln \cosh 4 K_{1} \\
K_{2}^{\prime}=\frac{1}{8} \ln \cosh 4 K_{1} \\
K_{3}^{\prime}=\frac{1}{8} \ln \cosh 4 K_{1}-\frac{1}{2} \ln \cosh 2 K_{1} \\
-C=\frac{1}{2} \ln \cosh 2 K_{1}+\frac{1}{8} \ln \cosh 4 K_{1}
\end{array}\right.
$$

Cut off at K_{1} yields trivial result as $1 d$ Let's cut off at K_{2}.
but for K_{2}, summation only induce new interaction outside k_{1} and k_{2}

After a iteration, $k_{2} \rightarrow k_{1}$, therefore

$$
\left\{\begin{array}{l}
K_{1}^{\prime}=\frac{1}{4} \ln \cosh 4 K_{1}+k_{2} \\
K_{2}^{\prime}=\frac{1}{8} \ln \cosh 4 k_{1}
\end{array}\right.
$$

Solve $\left\{\begin{array}{l}K_{10}^{*}=\frac{1}{4} \ln \cosh 4 K_{10}^{*}+K_{24}^{*} \\ K_{2 d}^{*}=\frac{1}{8} \ln \cosh 4 K_{10}^{*}\end{array} \Rightarrow K_{14}^{*}=\frac{3}{8} \ln \cosh 4 K_{16}^{*}\right.$

$$
\approx \begin{cases}3 k_{1}^{2} & k_{1}<1 \\ \frac{3}{2} k_{1}-\frac{3}{8} \ln 2 & k_{1}>1\end{cases}
$$

$$
k_{1 c}=0.507 \Rightarrow K_{2 c}=\frac{1}{3} k_{1 c}=0.169
$$

linearize around $(0.507,0.169)$,

$$
\left\{\begin{array}{l}
k_{1}^{\prime}=0.966 k_{1}+k_{2} \\
k_{2}^{\prime}=0.483 k_{1}
\end{array} \text { or } \quad\binom{k_{1}^{\prime}}{k_{2}^{\prime}}=\left(\begin{array}{ll}
0.966 & 1 \\
0.483 & 0
\end{array}\right)\binom{k_{1}}{k_{2}}\right.
$$

Eigenvalues and eigenvectors

$$
\begin{array}{ll}
\lambda_{1}=1.329 & u_{1}=\binom{0.840}{0.341} \\
\lambda_{2}=-0.363 & u_{2}=\binom{-0.601}{0.799}
\end{array}
$$

We have tune our original model to
$(0.63222320162791151,0)$ to hit the critical point. c.f. $K_{c}=\frac{1}{2} \sinh ^{-1} 1 \approx 0.4407$.

If we had impliment renormalization for spin $\sigma^{\prime}=\sqrt{2}^{\frac{2}{2}} \sigma$, where $\eta=\frac{1}{4}$, famously claimed by Onsager (1948) and proved by Yang (1952).

Since $\xi=a t^{-\nu}, \quad l^{-1} \xi=a(\lambda, t)^{-v}$
$\therefore l^{-1}=\lambda_{1}^{-\nu} \Rightarrow \nu=\frac{\ln l}{\ln \lambda_{1}}=1.218 \quad$ c.f. $\nu=1$.

Wilson: fixed points:
(1) 0.281758
(2) 0.095562
(3) -0.017242

(4) 0.008422
(5) $\quad 0.004704$
(b) -0.004008

3d Ising Model:

$$
H^{\prime}=\ln \cosh K\left(\sigma_{1}+\sigma_{2}+\cdots+\sigma_{0}\right)
$$

6 different configurations \uparrow states:
(1) ϕ
(8) 1
(3) 1,2
(4) 1,3
(B) $1,2,3$
(b) $1,2,5$

6 couplings:

$$
\begin{aligned}
& \frac{1}{4} k_{1}: 1,2 \\
& k_{2}: 1,3 \\
& k_{3}: 1,2,3,4 \\
& k_{4}: 1,2,3,5 \\
& k_{5}: 1, \cdots, 6 \\
& c
\end{aligned}
$$

Matching Hamiltonian.

e
e
e
0
0

1 \& 1 \& -1 \& -4 \& -1 \& 1 \\
0 \& -1 \& -1 \& 0 \& 1 \& 1 \\
-1 \& 3 \& 3 \& -4 \& 1 \& 1 \\
-1 \& 1 \& -1 \& 4 \& -1 \& 1 \\
0 \& -3 \& 3 \& 0 \& -1 \& 1\end{array}\right)\left($$
\begin{array}{l}K_{1}^{\prime} \\
K_{2}^{\prime} \\
K_{3}^{\prime} \\
K_{4}^{\prime} \\
K_{5}^{\prime} \\
K_{6}^{\prime}\end{array}
$$\right)=\left($$
\begin{array}{c}\ln \cosh 6 K_{1} \\
\ln \cosh 4 K_{1} \\
\ln \cosh 2 K_{1} \\
\ln \cosh 2 k_{1} \\
0 \\
0\end{array}
$$\right)\)

Solution:

$$
\begin{gathered}
k_{1}^{\prime}=\frac{1}{8}\left(\ln \cosh 6 k_{1}+2 \ln \cosh 4 k_{1}-\ln \cosh 2 k_{1}\right)+k_{2} \\
k_{2}^{\prime}=\frac{1}{4} k_{1}^{\prime} \\
\binom{k_{1}^{*}}{k_{2}^{*}}=\binom{0.249311}{0.049862} \\
\binom{k_{1}^{\prime}}{k_{2}^{\prime}}=\left(\begin{array}{ll}
1.32348 & 1 \\
0.09748 & 0
\end{array}\right)\binom{k_{1}}{k_{2}} \\
\lambda_{1}=1.39343 \quad V_{1}=\binom{0.997562}{0.0697852} \\
\lambda_{2}=-0.0699558 \quad V_{2}=\binom{-0.583048}{0.812438} \\
\Rightarrow k_{1 c}\left(k_{2}=0\right)=
\end{gathered}
$$

1.31 Limit cycle of $R G$ in $Q M$.

David Kaplan, Dam Son, etc. (2009)
Consider the potential $V(x)=\frac{\alpha}{x^{2}}-g \delta(x)$
The potential is singular at the origin, we introduce a UV cutoff MOV $=x_{0}{ }^{-1}$, and write the following potential

$$
V(r)= \begin{cases}\frac{x}{x^{2}} & x>x_{0} \\ -\frac{9}{x_{0}} & x<x_{0}\end{cases}
$$

We solve the Schrödinger eq. at $E \approx 0$, boundary between bound state and scattering state.

$$
\begin{cases}-\frac{1}{2 m} \frac{d^{2}}{d x^{2}} \psi+\frac{\alpha}{x^{2}} \psi=0 & |x|>x_{0} \\ -\frac{1}{2 m} \frac{d^{2}}{d x^{2}} \psi-\frac{9}{x_{2}}=0 & |x|<x_{0}\end{cases}
$$

we see m just rescale α and g, let's set $2 m=1$
(1): $\psi(x)=c_{1} x^{s_{1}}+c_{2} x^{\rho_{2}}$

$$
\frac{d^{2}}{d x^{2}} x^{s}=s(s-1) x^{s-2}=\alpha x^{s-2}
$$

(2): $\tilde{\psi}(x)=c \cos \left(\sqrt{\frac{9}{x_{x}} x} x\right)$

$$
\Rightarrow S_{1,2}=\frac{1}{2}(1 \mp \sqrt{1+4 \alpha})
$$

match the boundary condition:

$$
\begin{aligned}
& \psi\left(x_{0}\right)=\tilde{\psi}\left(x_{0}\right) \Rightarrow c_{1} x_{0}^{s_{1}}+c_{2} x_{0}^{s_{2}}=c \cos \sqrt{g} \\
& \psi^{\prime}\left(x_{0}\right)=\tilde{\psi}\left(x_{0}\right) \Rightarrow c_{1} s_{0} x_{0}^{s_{1}-1}+c_{2} s_{2} x_{0}^{s_{0}-1}=-c \frac{\sqrt{g}}{x_{0}} \sin \sqrt{g} \\
\therefore & \frac{c_{1} s_{1} x_{0}^{s_{1}-1}+c_{2} s_{2} x_{0}^{s_{s}-1}}{c_{1} x_{0}^{s_{1}}+c_{2} x_{s_{2}}^{s_{2}}}=-\frac{\sqrt{g}}{x_{0}} \tan \sqrt{g}:=-\frac{\gamma}{x_{0}} \\
& \frac{s_{1}+\left(\frac{c_{1}}{1_{1}}\right) x_{0}^{s_{2}-s_{1}}}{x_{0}+\left(\frac{c_{0}}{1}\right)} x_{0}^{s_{0}-s_{1}+1}
\end{aligned}=-\frac{\gamma}{x_{0}} .
$$

Now we want to change the cutoff x_{0} but leave the longrange wave function unchanged. This requires

$$
\begin{aligned}
& 0=\frac{d}{d x_{0}}\left(\frac{c_{2}}{c_{1}}\right)=-\left(s_{1}-s_{2}\right) x_{0} s_{1}-s_{2}-1 \frac{\gamma+s_{1}}{\gamma+s_{2}}-x_{0} s_{1}-s_{2} \frac{s_{2}-s_{1}}{\left(\gamma+s_{2}\right)^{2}} \frac{\partial \gamma}{\partial x_{0}} \\
& \begin{aligned}
\therefore x_{0} \frac{\partial \gamma}{\partial x_{0}} & =\left(\gamma+s_{1}\right)\left(\gamma+s_{2}\right) \\
\beta(\gamma) & =\frac{\partial \gamma}{\partial t}
\end{aligned}=-\left(\gamma+s_{1}\right)\left(\gamma+s_{2}\right) \quad t:=-\ln x_{0} \\
& \\
& =-\left(\gamma+\frac{s_{1}+s_{2}}{2}\right)^{2}+\left(\frac{s_{1}-s_{2}}{2}\right)^{2} \\
& \\
& =-\left(\gamma+\frac{1}{2}\right)^{2}+\alpha+\frac{1}{4}
\end{aligned}
$$

When $\alpha<-\frac{1}{4}$, there is no solution, λ increase monotonicdly in $2 R$. The "time" (\log Energy) for γ flow from $-\infty$ to ∞ is

$$
T=\int d t=\int_{-\infty}^{\infty} \frac{d \gamma}{\beta(\gamma)}=\int_{-\infty}^{\infty} \frac{d \gamma}{-\left(\gamma+\frac{1}{2}\right)^{2}+\alpha+\frac{1}{4}}=\frac{\pi}{\sqrt{\frac{1}{4}-a}}
$$

\Rightarrow There are scales $\mu_{0}, \lambda \mu_{0}, \cdots \lambda^{n} \mu_{0}$ where $\lambda=e^{-\frac{\pi}{\sqrt{4}-a}}$ Efimer state.
Suppose at $\mu_{0}, \gamma=-\infty, g=g_{0}$ is a zero of $\frac{1}{\gamma(g)}$
Then at $\lambda \mu_{0}, \gamma=+\infty, g=g$, is the next zero of $\frac{1}{r(g)}$, etc.

Therefore there is a limit cycle behavior in γ.
2.2 Kramers-Wannier duality

$$
Z=\sum_{\left.\sigma_{i=1}+1<i j\right)} \prod^{k \sigma_{i} \sigma_{j}}
$$

High temperature (small K) expansion

$$
e^{K \sigma_{i} \sigma_{j}}=\cosh K+\sigma_{i} \sigma_{j} \sinh K=\cosh K\left(1+\sigma_{i} \sigma_{j} v\right)
$$

$$
v=\tanh k \text { is small. }
$$

Then $\prod_{i, i}, e^{K \sigma_{i} \sigma_{j}}=(\cosh K)^{2 N} \prod_{i, j,}\left(1+\sigma_{i} \sigma_{j} v\right) \quad 2 N$: \# of binds.
if \# of σ_{i} is odd, summation $\sum_{i=1}=0$
Therefore \# of σ_{i} must be even \Rightarrow closed loop

$$
\begin{array}{cc}
\therefore z=2^{N}(\cosh K)^{2 N} \sum_{r} n(r) u^{r} & \cdots \\
n(r)=\#^{\#} \text { of closed graphs } \\
\text { with } r \text { bonds. }
\end{array}
$$

Low temperature expansion:
Ground state dominant, expand around ground state count anti-aligned bonds: r
aligned bonds: $2 N-r$

$$
\begin{aligned}
& H=-J(2 N-r-r)=-2 J(N-r) \\
& \begin{aligned}
& z=\sum_{r} m(r) e^{2 k(N-r)} \quad m(r)=\# \text { of configs with } r \\
&=e^{2 K N} \sum_{r} m(r) e^{-2 k r} \quad \text { anti-aligned bonds. } \\
& \uparrow \uparrow \uparrow \uparrow \\
& \uparrow \frac{\downarrow \downarrow \uparrow}{} \\
& \uparrow \uparrow \uparrow
\end{aligned}
\end{aligned}
$$

Suppose we have a small K_{0}, then

$$
Z_{0}=2^{N}\left(\cosh K_{0}\right)^{2 N} \sum_{r} n(r)\left(\tanh k_{0}\right)^{r}
$$

Now find \tilde{k}_{0}, s.t. $e^{-2 \tilde{k}_{0}}=\tanh k_{0} \Rightarrow \tilde{k}_{0}$ is large, then

$$
\begin{aligned}
\tilde{Z}_{0} & =e^{2 \tilde{k}_{0} N} \sum_{r} m(r) e^{-2 \tilde{k}_{0} r} \\
& =e^{2 \tilde{K}_{0} N} \sum_{r} n(r)\left(\tanh k_{0}\right)^{r} \\
& =\left(\tanh k_{0}\right)^{-N} \cdot 2^{N}\left(\cosh k_{0}\right)^{2 N} Z_{0} \\
& =2^{N}\left(\cosh k_{0} \sinh k_{0}\right)^{N} z_{0} \\
& =\left(\sinh 2 k_{0}\right)^{N} z_{0}
\end{aligned}
$$

$\therefore K_{0}$ and \widetilde{K}_{0} have same physics.
We know Z_{c} is diverge of at T_{c}
if there is a unique T_{c}, then it must be self dual.

$$
\Rightarrow \sinh 2 k_{c}=1 \Rightarrow k_{c}=\frac{1}{2} \sinh ^{-1} 1
$$

$$
2.2 \varepsilon \text {-expansion }
$$

