Often thermodynamic functions involve Legendre transformations and Maxwell relations.

We have encountered a collection of thermodynamic "potentials" including F, G, H, and I. Each of these contains the same information as $U(T,V,N)$, when expressed in terms of their respective natural variables.

The connections among potentials involve Legendre transformations. The basic idea of an L.T. is to represent the same information given by a function $y(x)$ in terms of a different variable, namely the slope $s = \frac{dy}{dx}$.

The L.T. takes the original function $y(x)$, and computes the intercept $f(s)$. This process is reversible (for well-behaved $y(x)$).

$$f = y - sx = f(s)$$
Now let's look at the various terms that have appeared.

\[F = U - \pi \tau = F(\tau, V, N) \]

\[dF = -\tau d\pi + \beta dV + \mu dN \]

This yields the Maxwell relation

\[\left(\frac{\partial F}{\partial V} \right)_T = \left(\frac{\partial \mu}{\partial T} \right)_N \]

We have looked briefly at a further transformed function

\[G = F - (\pi V) = F + \beta V = U - \pi \tau + \beta V \]

\[G(\tau, V, N) \]

This is the Gibbs free energy and

\[dG = -\tau d\pi + \beta dV + \mu dN \]

Maxwell relation:

\[\left(\frac{\partial V}{\partial \beta} \right)_\pi = -\left(\frac{\partial \mu}{\partial \tau} \right)_T \]
We have also considered the enthalpy:

\[H = U - (pV) = U + pV = \mathcal{H}(\xi, p, N) \]

\[dH = \tau d\xi + Vdp + \mu dN \]

Maxwell relation \(\left(\frac{\partial \tau}{\partial p} \right)_\xi = \left(\frac{\partial V}{\partial \mu} \right)_p \)

Finally we considered the Grand Canonical Potential:

\[\Xi = U - \beta S - \mu N = \mathcal{\Xi}(\beta, \mu, N) \]

\[d\Xi = - \beta dS - \mu dN - N dp + V dp = N dp \]

Maxwell relation \(\left(\frac{\partial \beta}{\partial \mu} \right)_N = \left(\frac{\partial V}{\partial S} \right)_{\mu, N} \)