Reversibility and force behavior for cyclic shear of a granular material

Jie Ren, Joshua Dijksman, Robert P. Behringer
Department of Physics, Duke University, Durham, NC

Introduction
We experimentally investigate the diffusion and contact forces in a two-dimensional granular system, an array of disks, exposed to oscillatory, linear shear. By comparison, slow viscous fluid flow is governed by time-reversible evolution equations. This reversibility breaks down for even quite dilute suspensions, as was recently shown[1]. The breakdown is abrupt and occurs at finite strain amplitude, as evidenced by a marked increase in particle diffusivity. We seek an understanding of the properties of this reversibility-irreversibility for granular systems. We study the reversibility of particle motion as a function of the volume fraction of disks and the shear amplitude. We find anomalous spatial and rotational diffusion and a sudden increase of the diffusivity around a particular volume fraction. Our data suggests that the reversibility transition observed by Pine et al can also be observed in dry granular media.

2D granular system
We experimentally investigate the diffusion and contact forces in a two-dimensional granular system, an array of disks, exposed to oscillatory, linear shear. By comparison, slow viscous fluid flow is governed by time-reversible evolution equations. This reversibility breaks down for even quite dilute suspensions, as was recently shown[1]. The breakdown is abrupt and occurs at finite strain amplitude, as evidenced by a marked increase in particle diffusivity. We seek an understanding of the properties of this reversibility-irreversibility for granular systems. We study the reversibility of particle motion as a function of the volume fraction of disks and the shear amplitude. We find anomalous spatial and rotational diffusion and a sudden increase of the diffusivity around a particular volume fraction. Our data suggests that the reversibility transition observed by Pine et al can also be observed in dry granular media.

Diffusion & reversible-irreversible transition
- Mean-squared Displacement: Sub-diffusive
- Mean-squared Rotation: Super-diffusive
- Diffusivity significantly increases around this region -- Reversibility-irreversibility transition!
- But NO forces visible in the packings at the same region

Cyclic shear
- 100-500 Shear Cycles
- Sheared (red) phases: transient behavior
- Force evolution of unsheared (blue) and sheared (red) phases: transient behavior
- On increasing φ and γ, we observe:
 - Increase of force value
 - Growing timescale of force dynamics
- in systems below jamming point, where one would expect only unjammed states to exist [2].
 - Shear-Jamming!

Force behavior: shear-jamming
- Increase of force value
- Growing timescale of force dynamics
- in systems below jamming point, where one would expect only unjammed states to exist [2].
 - Shear-Jamming!

References: