Problems:

1. Deduce the virial expansion

\[\frac{PV}{nkT} = \sum_{l=1}^{\infty} a_l \left(\frac{\lambda^3}{v} \right)^{l-1} \]

using the expressions:

\[\frac{P}{kT} = \frac{1}{\lambda^3} g_{5/2}(z) \]

and

\[\frac{N - N_0}{V} = \frac{1}{\lambda^3} g_{3/2}(z) \]

with \(\lambda \) the thermal wavelength and \(g(z) \) the Bose Einstein functions. Verify the quoted values of the virial coefficients – it is sufficient to find the first three terms, \(a_1, a_2, \) and \(a_3 \). [30 points]

2. Consider an ideal Bose gas in the grand canonical ensemble and study fluctuations in the total number of particles \(N \) and total energy \(E \). Discuss, in particular, the situation when the gas becomes highly degenerate. Use the following definitions:

\[\langle (N - \langle N \rangle)^2 \rangle = kT \left(\frac{\partial \langle N \rangle}{\partial \mu} \right)_{T,V} \equiv (\Delta N)^2 \]

\[\langle (E - \langle E \rangle)^2 \rangle = kT^2 \left(\frac{\partial U}{\partial T} \right)_{z,V} \equiv (\Delta E)^2 \]

[20 points]