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ABSTRACT

An exact expression for the heat current in an interacting nanostructure is derived and used to calculate the thermoelectric response of three
representative single-molecule junctions formed from isoprene, 1,3-benzenedithiol, and [18]-annulene. Dramatic enhancements of the thermopower
S and Lorenz number L are predicted when the junction is tuned across a node in the transmission function, with universal maximum values
Smax ) (π/31/2)(kB/e) and Lmax ) (7π2/5)(kB

2/e2). The effect of a finite minimum transmission probability due, e.g., to incoherent processes or
additional nonresonant channels, is also considered.

Electronic phase coherence underlies many of the unique
and potentially revolutionary aspects of molecular device
technology.1 However, unequivocal experimental signatures
of phase-coherent electron transport are difficult to obtain.
Aharonov-Bohm interferometers have been used in quantum-
dot2-4 and carbon nanotube5 studies both to determine the
degree of coherence and to map the phase evolution of
transmission by controlling the magnetic field and gate
voltage, respectively. Phase information can also be extracted
from asymmetric Fano line shapes arising from interference
between resonant and nonresonant transport pathways;6 the
degree of asymmetry is related to the degree of phase
coherence, so an experiment needs to distinguish between a
symmetric Breit-Wigner line shape and a slightly asym-
metric one in order to demonstrate phase coherence.

A characteristic feature of coherent transport is the
existence of nodes in the transmission spectrum.1,7 A
transmission node can only arise from destructive quantum
interference and as such constitutes a clear signature of
coherent quantum transport in any system. Incoherent
processes may also give rise to very low transmission
probabilities, however, whose effect on the electrical con-
ductance may be experimentally indistinguishable8 from that
of a transmission node. In this Letter, we show that, in
contrast to the electrical conductance, thermoelectric effects
are dramatically enhanced in the vicinity of a transmission

node, thus providing a “smoking gun” for coherent transport
that is testable in experiments on single-molecule junctions.

In order to investigate thermoelectric effects in single-
molecule junctions, where Coulomb interactions play an
essential role,9 we first derive an exact expression for the
heat current in an interacting nanostructure. Using this result,
together with the corresponding expression for the electrical
current,10 we derive expressions for the linear thermoelectric
response of the junction. Both the thermopower S and the
Lorenz number L are calculated for three representative
molecular junctions possessing transmission nodes within the
HOMO-LUMO gap. The thermopower is predicted to reach
a temperature-independent maximum value of (πkB/31/2e ≈
(156 µV/K near a transmission node, more than an order
of magnitude larger than the values obtained in recent
measurements11,12 of molecular junctions. Moreover, a 420%
enhancement of the Lorenz number is also predicted at a
transmission node. The dramatic enhancement of thermo-
electric effects near a transmission node arises because the
flow of entropysan inherently incoherent quantitysis not
blocked by destructive quantum interference.

We consider a junction consisting of a single molecule
covalently bonded to M metallic electrodes (labeled R ∈ [1,...,
M]). The Hamiltonian of the system may be written

where Hmol is the molecular Hamiltonian. Each electrode is
modeled as a noninteracting Fermi gas
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Hjunction ) Hmol + ∑
R)1

M

[Hlead
(R) + HT

(R)] (1)
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where ckσ
† creates an electron of energy εkσ in lead R.

Tunneling of electrons between the molecule and electrode
R is described by the Hamiltonian

where dnσ
† creates an electron of spin σ on the nth atomic

orbital of the molecule.
The starting point for our derivation of the heat current is

the fundamental thermodynamic identity at constant volume,
TdS ) dE - µdN. Applying the identity to electrode R, one
finds

where IRQ is the heat current flowing from the molecule into
electrode R and TR and µR are the temperature and chemical
potential, respectively, of electrode R. The time derivatives
on the right hand side of eq 4 may be evaluated using
standard quantum mechanics to obtain

The second line of eq 5 is similar to the corresponding
formula for the electrical current,10 except for the additional
factor of εkσ - µR inside the sum. The correlation functions
in the second line of eq 5 may be formally expressed in terms
of the junction’s Green’s functions using Dyson’s equation,10

leading to the general result

where ν ) 1 gives the heat current and ν ) 0 the number
current. Here fR(E) ) {1 + exp[(E - µR)/kBTR]}-1 and
[ΓR(E)]nσ,mσ′)2πδσσ′Σk∈RVnkV mk* δ(E-εkσ)are theFermi-Dirac
distribution and tunneling-width matrix, respectively, for lead
R. G(E) and G<(E) are Fourier transforms of the retarded
and Keldysh “lesser” Green’s functions, Gnσ,mσ′ (t) )
-iθ(t)〈{dnσ(t),dmσ′

† (0)}〉 and Gnσ,mσ′
< (t) ) i〈dmσ′

† (0)dnσ(t)〉, re-
spectively. Equation 6 is an exact formal result and provides
a complete framework for calculating heat transport and
thermoelectric effects in interacting nanostructures.

In general, the retarded Green’s function has the form9

where Gmol may be evaluated by exact diagonalization of
Hmol in the sequential-tunneling limit, and the self-energy
terms ΣT + ∆ΣC describe the effects of finite tunneling width.
Here the tunneling self-energy matrix

can be calculated exactly, while the tunneling correction ∆ΣC

to the Coulomb self-energy can in general only be calculated
approximately. However, in the middle of the HOMO-LUMO
gapsthe region of principal interest in this Lettersit can be
shown9 that ∆ΣC ≈ 0. Both G(E) and G<(E) arise from time-
ordered Green’s functions on the Keldysh time-contour,13

so any prescription for calculating G(E) also yields G< (E)
without further approximations.

In many cases of interest in nanostructures, elastic
processes dominate transport. This is the case if Im∆ΣC ≈
0 and electron-phonon scattering is negligible. Then eq 6
may be simplified and cast in a form analogous to the
multiterminal Büttiker formula14,15

where the transmission function is given by16

In linear response, the set of equations (9) (with ν ) 0, 1)
may be further simplified and written in matrix form as

where

Here f(E) is the equilibrium (zero bias) Fermi distribution
with chemical potential µ and temperature T. We may then
use the L functions to compactly encode a number of
important transport properties17

Hlead
(R) ) ∑

k∈R
σ

εkσckσ
† ckσ, NR ) ∑

k∈R
σ

ckσ
† ckσ (2)

HT
(R) ) ∑

k∈R
∑
n,σ

(Vnkdnσ
† ckσ + H.c.) (3)

IR
Q ≡ TR

dSR

dt
) d

dt
〈Hlead

(R) 〉 - µR
d
dt

〈NR〉 (4)

IR
Q ) - i

p
{〈[Hlead

(R) , Hjunction]〉 - µR〈[NR, Hjunction]〉} (5)

) i
p∑

k∈R
∑
n,σ

(εkσ - µR)[Vnk〈dnσ
† ckσ〉 - V nk* 〈ckσ

† dnσ〉]

IR
(ν) ) - i

h ∫-∞

∞
dE(E - µR)νTr{ΓR(E)(G<(E) + fR(E)[G(E) -

G†(E)])} (6)

G-1(E) ) Gmol
-1 (E) - ΣT - ∆ΣC (7)

[ΣT(E)]nσ,mσ′ ) δσσ′ ∑
R

∑
k∈R

VnkVmk*

E - εkσ + i0+ (8)

IR
(ν) ) 1

h ∑
�)1

M ∫-∞

∞
dE(E - µR)νTR�(E)[f�(E) - fR(E)] (9)

TR�(E) ) Tr{ΓR(E)G(E)Γ�(E)G†(E)} (10)

(IR
(0)

IR
(1) ) ) ∑

� (L
(0)
R�

1
T

L
(1)
R�

L
(1)
R�

1
T

L
(2)
R�

)(µ� - µR
T� - TR

) (11)

LR�
(ν)(µ, T) ) 1

h ∫ dE(- ∂f
∂E)(E - µ)νTR�(E) (12)

GR�(µ, T) ) e2

h
LR�

(0)(µ, T) (13)
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where G is the electrical conductance, S is the thermopower
(Seebeck coefficient), and κ is the electronic contribution to
the thermal conductance. The linear-response transport
coefficients of an interacting system thus have a structure
identical to that of a noninteracting system, except that TR�(E)
must be calculated using the interacting Green’s functions.
It should be emphasized that eqs 13-15 can also be derived
directly from eq 6, provided lim∆µf0(Im∆ΣC/∆µ) ) 0 and
lim∆Tf0(Im∆ΣC/∆T) ) 0 (with similar conditions on the
electron-phonon self-energy).

Panels a-c of Figure 1 show results for isoprene, 1,3-
benzenedithiol, and [18]-annulene junctions, respectively.
Each junction has a transmission node in the center of the
HOMO-LUMO gap (see Figure 1, upper panels). Both the
thermopower S (middle panels) and the Lorenz number L )
κ/GT (lower panels) are strongly enhanced in the vicinity of
the midgap nodes. Although transmission nodes are generic
features of coherent transport, midgap nodes are experimen-
tally advantageous for two reasons: (i) When the lead
chemical potential is in the gap, the molecule is charge-
neutral, and (ii) the mismatch between the metal leads’ Fermi
energies and the center of the HOMO-LUMO gap is
typically small (a few electronvolts or less), so available
gating techniques18 should be sufficient to tune across the
node.

In Figure 1, isoprene and benzenedithiol were modeled
using a semiempirical π-electron Hamiltonian that accurately

describes Coulomb interactions and π-conjugation.1,9,19,20

[18]-Annulene was modeled using Hückel molecular orbital
theory (ΣC ) 0). The interaction and hopping matrix elements
were taken from ref 20. The tunneling-width matrix was
taken in the broad-band limit21 whereby Γnσ,mσ′

R (E) )
ΓRδσσ′δnaδma, where a is the π-orbital connected to lead R.
The junctions were taken to be symmetric, with Γ1 ) Γ2 )
0.5 eV. It should be emphasized, however, that the principal
findings of this Letter depend only on the existence of
transmission nodes and not on the specific form of the
molecular junction Hamiltonian.

The dramatic enhancement of thermoelectric effects
predicted at a transmission node arises because entropy
transport is less sensitive to quantum interference than is
charge transport. The entropy current IRQ/TR represents the
flow of disorder, which quantum mechanically is related to
the purity of a system’s state where, for example, a pure
state has zero entropy current. As such, the entropy current
inherently involves incoherence and therefore cannot be
completely blocked by destructive quantum interference,
whereas the electrical current can be completely coherent
and therefore may be completely blocked by destructive
quantum interference. Since thermopower is the entropy per
unit charge carried by an electrical current and the Lorenz
number is the ratio of the entropy conductance to the
electrical conductance, both are strongly enhanced at a
transmission node.

Since the integrands in the numerator and denominator of
eq 14 both include a thermal-averaging factor of -∂f/∂E,
the thermopower does not diverge when the chemical
potential is tuned across a transmission node but instead
approaches a finite value which is independent of temperature
(see Figure 1, middle panels). This latter point should be
emphasized, since the thermopower also increases in mag-

SR�(µ, T) ) - 1
eT

LR�
(1)(µ, T)

LR�
(0)(µ, T)

(14)

κR�(µ, T) ) 1
hT(LR�

(2)(µ, T) -
[LR�

(1)(µ, T)]2

LR�
(0)(µ, T) ) (15)

Figure 1. Transmission probability (upper panels, logarithmic scale), thermopower (middle panels), and Lorenz number (lower panels) as
a function of lead chemical potential for three single-molecule junctions possessing transmission nodes at the center of the HOMO-LUMO
gap, µ0 ≡ (εLUMO + εHOMO)/2. Here Γ1 ) Γ2 ) 0.5 eV for all three junctions. The thermopower spectrum S(µ) is calculated at three different
temperatures, demonstrating the invariance of the peak value Smax ) πkB/31/2e ≈ 156 µV/K near the transmission node. The Lorenz number,
given in units of LWF ) (π2/3) (kB/e)2, peaks at a temperature-independent value of 21/5 at the transmission node.
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nitude and changes sign as the chemical potential crosses a
transmission resonance.22 In the case of a resonance,
however, the peak value is dependent upon both the
temperature and lead-molecule coupling.9 From eq 14, it is
evident that S is enhanced if L (1) is large and L (0) is finite
(transmission resonance) or if L (0) is small and L (1) is finite
(transmission node). Near a quadratic transmission node
TR�(E) ∝ (E - µ0)2, it can be shown by direct evaluation of
eq 14 that the thermopower reaches a universal maximum
value23 of (Smax ) (πkB/31/2e ≈ (156 µV/K, consistent
with the numerical results shown in Figure 1. Smax is over
an order of magnitude larger than the values obtained in
recent measurements of single-molecule junctions.11,12

The Lorenz number for each molecular junction is shown
in the lower panels of Figure 1, normalized by the value
predicted by the Wiedemann-Franz (WF) law

where κ0 ) (π2/3)(kB
2 T/h) is the thermal conductance quan-

tum.24 For each molecule considered, the Lorenz number
varies by tens of percent from the WF law as the chemical
potential crosses an electronic resonance. This variation is
comparable to the variation among different metals.25 At a
quadratic transmission node, the Lorenz number may be
evaluated directly as

where we have assumed that the node is at least kBT away
from any transmission peak. The peak Lorenz number is
420% larger than the WF value, several times greater than
the variation near a transmission peak at low temperature.
The peak Lorenz number is also universal, although the width
of the peak depends on temperature.

Recent mean-field simulations suggest that tunneling
through σ-orbitals may wash out any exact transmission
nodes in small conjugated molecules.7,26 We can include the
effects of any such additional nonresonant channelssor
incoherent processes outside the scope of eq 10sphenom-
enologically by adding a small constant ε to the transmission
probability: T12′ (E) ) T12(E) + ε. The dependence of the
Lorenz number and thermopower on ε and temperature near
the center of the HOMO-LUMO gap of an isoprene junction
are shown in Figure 2 and Figure 3, respectively. Interest-
ingly, we find that if a finite minimum transmission prob-
ability reduces the predicted enhancement of thermoelectric
effects at low temperatures, the full effect is restored at
sufficiently high temperature (see Figure 3). This behavior
may be understood analytically by using T12′ (E) ) γ(E -
µ0)2 + ε in eq 12, which gives

and

where the crossover temperature is defined by kBT̃ ) (3ε/
γπ2)1/2. Here γ is a constant related to the specific resonance
structure of the molecule and the lead-molecule couplings.
If only the LUMO and HOMO levels contribute appreciably
to the transport, then γ = Γ1Γ2/2∆4, where ∆ ) (εLUMO -
εHOMO)/2. Larger molecules, such as [18]-annulene where
σ-tunneling is negligible, are thus good candidates for
experimental observation of the predicted enhancement of
thermoelectric effects if σ-tunneling washes out transmission
nodes in small conjugated molecules.

Although we have focused on predictions of the linear
thermoelectric response of single-molecule junctions in this
Letter, it should be emphasized that eq 6 is an exact result
valid for arbitrarilly large bias and temperature gradients
applied to an interacting nanostructure. To analyze the
performance of a nanoscale thermoelectric device, it is
necessary to go beyond linear response theory. For example,
eq 6 implies

LWF )
κ0h

Te2
≡ π2

3 (kB

e )2

(16)

Lmax ) 1

(eT)2

L12
(2)(µ, T)

L12
(0)(µ, T) |µ)µnode

) 7π2

5 (kB

e )2

(17)

Smax ) (
πkB

√3e
[1 + (T̃/T)2]-1/2 (18)

Figure 2. Lorenz number and Seebeck coefficient at T ) 300 K
near the middle of the HOMO-LUMO gap of an isoprene junction,
for various values of the minimum transmission probability ε. Here
Γ1 ) Γ2 ) 0.5 eV.

Figure 3. Lorenz number and Seebeck coefficient for an isoprene
junction with ε ) 10-7 for various temperatures. Here Γ1 ) Γ2 )
0.5 eV.

Lmax

LWF
) 21/5 + (T̃/T)2

1 + (T̃/T)2
(19)
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i.e., the total work done by the nanostructure against the
external voltages equals the net heat flowing into the
nanostructure. For a two-terminal heat engine with T2 > T1,
the efficiency ε ) 1 - |I1

Q|/|I2
Q|, and it is necessary to go

beyond linear response theory to evaluate this expression.
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Note Added after ASAP Publication: This paper was
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