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Irreversible effects in thermoelectric materials limit their efficiency and economy for applications in
power generation and refrigeration. While electron transport is unavoidably irreversible in bulk materials,
here we derive conditions under which reversible diffusive electron transport can be achieved in nano-
structured thermoelectric materials. We provide a fundamental thermodynamic explanation for why the
optimum density of states in a thermoelectric material is a delta function and for why inhomogeneous
doping and segmentation improve the thermoelectric figure of merit.
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The textbook examples for heat engines are cyclic en-
gines, such as the well-known Carnot, Otto, and Brayton
cycles, which may be used to model steam turbines or
gasoline engines [1]. Cyclic heat engines transfer heat
between at least two reservoirs via a working gas that
moves through a number of quasiequilibrium states.
Reversibility may be achieved when the cycle progresses
infinitely slowly and heat transfer is isothermal [1].

Less well known is a distinct type, which we here denote
as particle exchange (PE) heat engines [2]. These transfer
heat between at least two reservoirs via the continuous
exchange of particles in a finite energy range in the pres-
ence of a field against which work is done. Reversibility is
achieved when particles are transmitted only at the energy
where the occupation of states in the reservoirs is equal [3—
5]; heat transfer is then isentropic but nonisothermal [2].
Most PE heat engines studied previously have been dis-
crete, with particles moving elastically between two reser-
voirs only, and include the three-level amplifier [2,3], solar
cells and light emitting diodes [2,4], and ballistic electron
heat engines [2,5,6].

Nanostructured thermoelectric materials can have dra-
matically higher efficiencies than their bulk counterparts
[7-11]. While the precise physical effects responsible for
this improvement in certain materials are not well under-
stood, theoretically it has been shown that the higher inter-
face density in thermoelectric nanomaterials can reduce
losses due to phonon heat conductivity [12] and also that a
sharply peaked electronic density of states (DOS) (as may,
in principle, be achieved in low-dimensional materials
[11,13,14]) is optimal for high efficiency [15].

Here we model thermoelectric nanomaterials from a
thermodynamic point of view as continuous PE heat en-
gines in which electrons in a relatively narrow energy band
move diffusively through a material with a continuous
spatial variation in temperature and electrochemical poten-
tial. We derive conditions under which thermoelectric
nanomaterials can operate reversibly, so challenging a
long held view that thermoelectric devices are inherently
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irreversible heat engines [16]. Our results have significant
potential for practical application in the design and opti-
mization of new thermoelectric nanomaterials with very
high limiting efficiencies.

The efficiency of any heat engine is bounded above by
the Carnot limit, which can be achieved only in systems
infinitesimally close to an equilibrium state. An electronic
system in equilibrium is characterized by a spatially in-
variant occupation of states given by the Fermi-Dirac (FD)
distribution function,

fep = [exp(s ™1 (r)/k) + 1]71, (D

where st1(E, r) = [E — u(r)]/T(r) corresponds to the en-
tropy change in the system if one electron with energy E is
added to the system at the spatial coordinate r. A spatially
invariant probability of occupation of available electronic
states can be achieved in three ways, two of which are well
known, while the third, a continuous form of the result for
discrete PE heat engines, is pointed out here.

First, a state of global equilibrium is attained when the
electrochemical potential w(r) and the temperature 7'(r)
are both constant as a function of r. This corresponds to the
textbook definition of an equilibrated electronic system.
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FIG. 1 (color online). Band structure of a thermoelectric quan-
tum dot superlattice (QDSL) or a superlattice nanowire (SLNW)
as used in our numerical model. Narrow minibands with width
AE for electrons (holes) are located at energy E, (—E,). The
doping level varies across the material to ensure that wu(x)
satisfies Eq. (3). Note that for simplicity, band bending near
the metallic contacts has not been considered.
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Second, equilibrium can be approached when the only
available electronic states in the system are at very high
energies (for instance, in an intrinsic semiconductor with
band gap, E, — 00) where occupation tends to a spatially
constant value of zero, irrespective of finite gradients in
u(r) and T(r).

Here, we identify a third way in which equilibrium can
be approached in continuous electronic systems, which we
denote “‘energy-specific equilibrium’ [17]. We consider a
material in which (i) the DOS for electrons is a delta
function at E, and in which (ii) u(r) and T'(r) vary across
the system in such a way that s *!(E,, r) is spatially invari-
ant. This means that the population of electron states at the
specific energy E| is the same throughout the material [see
Figs. 1 and 2(c)]. Under these conditions the entire elec-
tronic system is in equilibrium, in spite of the thermal and
potential gradients.

In the following we show how energy-specific equilib-
rium can be implemented in order to achieve reversible
electron transport. We note that the rate of entropy pro-
duction per unit volume, §, in the material due to the
movement of electrons in response to temperature and
electrochemical potential gradients is [1]

§= vG)(Jq + wl,) — v(%)h 2)
where J,, is the number flux of electrons in the direction of
decreasing temperature and J, the heat flux due to elec-
trons, and where u, T, and J,, depend on r. In the limit that
only electrons with energy E, are transmitted, the heat
current in the material is given by J,(r) = J,[E, —
u(r)]. To find the conditions under which electrons move
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FIG. 2 (color online). (a) ZT at T = 300 K as a function of
ko for different AE as indicated. Experimental values are
marked [7] and [8] for «,, obtained at 300 K in the nano-
materials described in the corresponding references.
(b) Schematic of the variation of the magnitude of B with
decreasing AFE resulting from the scaling operation described
in the caption to Fig. 3. (c) Fermi occupation function at several
places along the x axis in the material shown in Fig. 1.

through the material without increasing the entropy of the
system (reversible transport) we set $(E,) = 0 to obtain a
differential equation which may be solved by integration
with respect to r to find Ey = u(r) + QT (r). Here () is an
integration constant, evaluated using the boundary condi-
tion ue — OTc = puy — QTy, where the subscripts C and
H refer to the cold and hot extremes of the system, re-
spectively. At open circuit, this yields ) = —eVc/AT,
where eVoc = e — pg, AT = (Ty — T¢), and where
AT and p( (or alternatively up) are freely chosen pa-
rameters. We then arrive at our main result, namely, an
expression for a spatially varying chemical potential that
ensures that electron transport at E is reversible at open
circuit:

po(r) = Eg — eVoclT(r)/AT] 3)

(The subscript O refers to the state of energy-specific
equilibrium.) To clarify the physics involved in Eq. (3)
we note that

So = Voc/AT = [Ey — po(r)]/eT(r) 4

is the thermopower (Seebeck coefficient) corresponding to
energy-specific equilibrium, which can be physically in-
terpreted as the entropy carried by 1 A of current [1] [that
is, Sy = sT1(E,)]. As S, is spatially invariant, there is no
entropy increase when an electron with energy E, moves
through the material and, therefore, no thermodynamically
spontaneous direction for current to flow, despite the finite
thermal and electrical potential gradients, confirming that
the electronic system is in equilibrium.

In practice, reversible electron transport can be ap-
proached by (i) creating a nanostructured material, such
as a QDSL or a SLNW [9,18] with a DOS for mobile
electrons that is sharply peaked at one energy E, [which
could, in principle, depend on r so that E, = Ey(r) [19]]
and that is (ii) inhomogeneously doped such that Eq. (3) is
fulfilled (Fig. 1) [19]. Note that a given material can be
optimized only for one specific temperature gradient.

A material with a delta function DOS doped according
to Eq. (3) will have an “‘electronic” efficiency (efficiency
in the absence of phonon heat leaks and other nonideal-
ities) approaching the Carnot limit. To show this, we note
that the heat flux withdrawn from the hot end of the system
by electrons is |J,(Ty)| = (Ey — uy)|J,| [Eq. (3)]. At open
circuit the power is P = eVoclJ,| = eSo(Ty — To)lJ,|,
giving an electronic efficiency npg = P/J,(Ty) =
(1 — T¢/Ty), which is the Carnot limit for power genera-
tion. Similarly, if the system is operated in reverse (J,, —
—J,,) as a refrigerator, then the coefficient of performance
can be shown to be equal to the Carnot limit, nz =
Jy(Te)/P =[Tc/(Ty = T¢c)].

So is, in fact, the theoretical upper bound upon the
Seebeck coefficient S(r) for a particular value of [Ej —
w(r)]and T(r). To show this, we set u(r) = wy and T(r) =
Ty and assume that a distance or from r the potential in-
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crease is 6 and the temperature decrease is 67. Then
using Eq. (4) we find that eSy8T = (Ey — uy)8T/Ty.
This means that § =S, when the Carnot fraction,
8T /Ty, of heat removed by each electron with energy E
from the hot end of the small section of material, (Ey —
M), is converted to useful work eSy6T = du. S, there-
fore represents a theoretical maximum, as S > S, would
imply an efficiency greater than the Carnot limit.

It is important to note that the presence of inelastic
scattering in thermoelectric materials does not affect these
results. Inelastic scattering processes produce heating via
the relaxation of carriers from a nonequilibrium occupation
of states to an occupation given by a FD distribution with
the appropriate local value of w(r) and T(r). Since in our
system states at E are occupied with the same probability
throughout the material [see Fig. 2(c)], inelastic processes
that scatter individual electrons into these states are just as
likely as processes that scatter electrons out of these states,
so there is no net exchange of energy between free elec-
trons and the lattice due to the movement of electrons with
energy Ej.

If the DOS is finite in some range around E,, electrons
occupying states at energies above (below) E, are, on
average, scattered to lower (higher) energy states, depend-
ing upon the difference between the local probability of
occupation and that of the arriving electrons. This process
results in local heating (cooling) of the lattice. Crucially,
however, the nearer these electrons are in energy to E, the
smaller the heating (cooling) effect, due to the small varia-
tion in the occupation of states between adjacent regions of
the material.

To quantify the advantage of using a deltalike DOS and
inhomogeneous doping according to Eq. (3), we now nu-
merically characterize a nanomaterial in which we vary the
DOS from deltalike to bulklike. We assume a finite lattice
thermal conductivity (k,, # 0) and a single miniband of
width AE as shown in Fig. 1. We use the Boltzmann
transport equation under the relaxation-time approxima-
tion [20]. Electrical conductivity, o, thermal conductivity
due to electrons, k., and S can all be expressed as a
function of the integral [20]

_ _ el 4f

K= [BEE=w(-50)E©
where B(E) = D(E)1(E)v(E)?, 7(E) is the electron relaxa-
tion time, v(E) is the electron group velocity, D(E) is the
DOS, and where @ =0, 1, or 2. Then o = ¢*K,,, S =
—K,/(eTKy), kg = (K, — K3/K,)/T, and the dimension-
less figure of merit ZT = To'S?/(ke + k). We use kp, =
0.33 Wm ™ 'K™!, the value measured by Harman et al. for
PbSeTe/PbTe QDSL [8]. For simplicity and transparency
in the numerical results, we assume that B(E) = B is
constant over the energy range AFE, a reasonable assump-
tion for the small values of AE in which we are primarily
interested. To isolate the effect upon ZT of changing AE

from effects due to changing the overall number of states,
we scale the magnitude of 8 with AE such that for all
values of AE, 0 =5X10° Q 'm™' at u, = E; [see
Fig. 2(b) and the Fig. 3 caption for details]. This choice
means that at the values of w . for which ZT is optimized at
T- = 300 K, we obtain o = 6 X 10* Q" 'm™! for AE =
200 meV, the same conductivity as measured in [8] (note
that the energy spectrum of the DOS in [8] is not known).
In addition, we obtain o = 1 X 10> Q 'm™! for an opti-
mized ZT at AE = 60 meV, which is similar to the value
obtained by numerical modeling in [9] for a PbSe/PbS
SLNW with a 60 meV wide miniband.

Figure 3(a) shows S as a function of (E; — uc) at the
position x = L for different AE. As AE decreases the
system approaches energy-specific equilibrium and § ap-
proaches S, the theoretical maximum Seebeck coefficient
given by Eq. (4).

Figures 3(b) and 3(c) show o and k., respectively, as a
function of (Ey, — ). Note that although o at o = E; is
kept constant with decreasing AE, k. at uc = E; de-
creases; that is, K,2/K, — K, [15]. The physical reason
for this is that as the heat carried by an electron is propor-
tional to the difference between its energy and the Fermi
energy, materials with narrow DOS (AE/2 less than sev-
eral kT), which “cut off” the high energy end of the Fermi
distribution, have low k.. An important implication of this
result is that the Wiedemann-Franz law, which expresses
that k. /0T = (km)?/3e* [20], and which is often used by
experimentalists to calculate x, from the electrical con-
ductivity [7,8], loses validity in nanomaterials with narrow
DOS. Crucially, this result also means that thermoelectric
nanomaterials are not subject to the conundrum that limits
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FIG. 3 (color online). Numerically calculated thermoelectric
parameters as a function of (Ey — u¢) for AE = 500, 250, 100,
and 60 meV (arrows indicate decreasing AFE), for T(L) =
300 K, and for Kph = 0.33 Wm~! K~L. For each AE we used
the value 8 = 5 X 10°/e?Ky(AE, u, = E,) to calculate K;, K,
and K, for u, # E;. See the text for further model details.
(a) Seebeck coefficient. (b) Electrical conductivity. (c) Elec-
tronic thermal conductivity. (d) Contour map of ZT. (a) is anti-
symmetric and (b)—(d) mirror symmetric with respect to (E, —
Me) = 0 (not shown).
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ZT of bulk thermoelectrics: the interrelationship of S, o,
and k.

To emphasize this point, we show in Fig. 3(d) that
for small AE the figure of merit is optimal at values of
(Ey — m¢) [21] where S [Fig. 3(a)] and ., [Fig. 3(c)] are
both relatively small. In other words, the best strategy to
maximize ZT in nanomaterials is to minimize k. leaving
ZT limited only by finite ;. The fact that this is possible
without at the same time decreasing o illustrates a funda-
mental difference between the thermodynamics of nano-
structured and bulk thermoelectric materials.

Using the technique outlined in [22], the difference
between keeping [Ey — w(x)]/T(x) constant across a
thermoelectric nanomaterial [i.e., u(x) = uo(x)] via
inhomogeneous doping or segmentation and allowing
[Ey — u(x)]/T(x) to vary [i.e., u(x) = uo(L/2)] can be
quantified. We find [23] that keeping [Ey — u(x)]/T(x)
constant can increase the maximum efficiency by 10%
(corresponding to a doubling of ZT at 300 K for
AE =10 meV, Ty =800 K, T, = 300K, and Kph =
0.5 Wm™'K™!) and increase the maximum power by up
to 60%. The physics behind this improvement is now clear;
inhomogeneous doping and segmentation increase Z7 as
they bring thermoelectric materials closer to a state of
energy-specific equilibrium.

Figure 2(a) shows ZT at 300 K as a function of &y,
demonstrating that while a decrease in &y, is always bene-
ficial to the figure of merit, a decrease in Kph combined with
a decrease in AE results in spectacular increases in ZT.
The development of nanomaterials with a k, that is 20%
lower than in current state-of-the-art materials and opti-
mized, deltalike DOS could result in Z7T = 10 at T =
300 K, well within the range of ZT > 5 required for eco-
nomical adoption of thermoelectric technology for main-
stream refrigeration and power generation.

Finally, we note the finite coherence length of electrons,
which places a lower limit on the width of DOS peaks
resulting from quantum confinement, will also, in princi-
ple, limit the efficiency of thermoelectric nanomaterials.
However, as all heat engines are in reality operated at finite
power, away from maximum efficiency, quantum effi-
ciency limits are not expected to be a practical design issue.
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