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Critical Exponents of the Quantum Phase Transition
in a Planar Antiferromagnet
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We have performed a large scale quantum Monte Carlo study of the quantum phase transition
in a planar spin-1/2 Heisenberg antiferromagnet with CaV4Og structure. We obtain a dynamical
exponent z = 1.018 £ 0.02, consistent with Lorentz invariance. The critical exponents 3, v and
7 agree within our errors with the classical 3D O(3) exponents, expected from mapping to the

nonlinear sigma model.
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Instead of classical transitions controlled by tempera-
ture T, a quantum phase transition between a symmetry
broken phase with long-range Néel order and a quantum
disordered state with a finite spin excitation gap, may
be realized at T' = 0 by controlling a parameter g to
increase quantum fluctuations. Criticalities around such
quantum phase transitions at g = g. may reflect inherent
quantum dynamics of the system and yield unusual uni-
versality classes with rich physical phenomena.l) In this
letter we discuss a two-dimensional quantum Heisenberg
antiferromagnet (2D QAFM) that exhibits such a quan-
tum phase transition.

The critical behavior of classical spin systems near a
finite temperature phase transition and the critical ex-
ponents have been calculated with high accuracy using
cluster Monte Carlo methods.” For quantum phase tran-
sitions in quantum spin systems, however, only a few
preliminary calculations on small lattices have been pos-
sible. The recent development of cluster algorithms for
quantum Monte Carlo (QMC) simulations®®) has made
it feasible to perform high precision simulations also for
quantum phase transitions. Combining quantum Monte
Carlo results on lattices of up to 20 000 spins with the
exact finite size scaling results of Hasenfratz and Nie-
dermayer? we can, for the first time, calculate all the
critical exponents of the quantum phase transition in a
planar antiferromagnet with good accuracy.

Approaching the quantum critical point from the dis-
ordered side, the spatial correlation length diverges with
the correlation length exponent v. The space and time
dimensions are not necessarily equivalent, and the corre-
lation length in the time direction diverges, in general,
with a different exponent zv, where z is the dynamical
exponent. Related to the divergence of the correlation
length is a vanishing of the spin excitation gap with the
same exponent zv. When passing through the critical
point long-range order is established. The order param-
eter in the case of a Néel ordered antiferromagnet is the
staggered magnetization ms. Near the critical point, m;

vanishes with the order parameter exponent 3. At the
critical point itself the real space staggered spin correla-
tion shows a power-law falloff with power 2 —d — z — 7,
where 77 is the correlation exponent. These four expo-
nents are related by the usual scaling law

286=(d+z-2+n), (1)

where the effective dimension is d + z in a quantum sys-
tem.

Quantum critical behavior of a planar antiferromag-
net has been intensively studied by a number of groups.
Most analytic calculations are based on the O(3) nonlin-
ear sigma model (QNLoM), which exhibits a quantum
phase transition as the coupling strength g is varied. For
g < g, the ground state shows long range O(3) order,
while for g > g. it is quantum disordered.

The critical exponents of the QNLoM can be deter-
mined from simple symmetry, universality and scaling
arguments.’ % As the QNLoM is Lorentz invariant the
correlation length is, up to scale factors, the same in the
space and time directions. Consequently the correlation
length exponent in the spatial directions v and in the
time direction zv are the same, hence z = 1.

Furthermore, the 2D O(3) QNLoM is equivalent to
the 3D classical O(3) sigma model. This, in turn, is
in the universality class of the classical 3D Heisenberg
ferromagnet. The exponents 8, v and 7 should thus be
the same as the well-known classical exponents of this
model (see Table I).

Chakravarty, Halperin and Nelson® discussed the
phase diagram of a planar Heisenberg antiferromagnet
using the QNLoM. They concentrated on the ordered
phase and described it as a classical 2D antiferromagnet
with renormalized parameters.

Chubukov, Sachdev and Ye® investigated in detail the
quantum critical regime of the QNLoM. They made fur-
ther predictions based on scaling arguments. The spin
stiffness ps is the coeflicient of the quadratic dependence
of the ground state energy on a twist in the spatial
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Table I.
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Critical exponents 3, v, n and z. Listed are the estimates of the exponents without making any assumption for z, and the

best estimate if Lorentz invariance (z = 1) is assumed. For comparison the exponents of the 3D classical Heisenberg (O(3)) model, the
3D Ising model and the 2D quantum mean field exponents are listed. The errors given include the uncertainties in the critical point.

model v 5] 7 z

2D QAFM 0.685 £ 0.035 0.345 £ 0.025 0.015 £ 0.020 1.018 £ 0.02
Lorentz invariant 2D QAFM 0.695 + 0.030 0.345 + 0.025 0.033 £ 0.005 1 (assumption)
bilayer QAFM13) 0.0340.01 1.08 +0.05

3D 0(3)7 0.7048 + 0.0030 0.3639 + 0.0035 0.034 = 0.005 —

3D Ising® 0.6294 + 0.0002 0.326 £+ 0.004 0.0327 £ 0.003 —

mean field 1 1/2 0 1
boundary conditions (similar to the Drude weight in itin-  Table II. Universal prefactor {1(co) in the linear temperature

erant fermionic models). On the ordered side it vanishes
as

(d+z-2)v _ (gc _ g)u, (2)

where the second equivalence comes from the prediction
that z = 1. The spin wave velocity c scales as

coc (g — geo)' = (3)

and is thus regular at the critical point if z = 1. The
zero temperature uniform susceptibility can be expressed
through the spin stiffness as x.(T = 0) = 2ps/3(hc)?.
At the critical point the temperature dependence of the
uniform susceptibility is universal:

gpB 2
Xu = Ql(oo) ( ke ) T7 (4)
where §2;(c0) is a universal constant.
Q1 (00) are listed in Table II.

The equivalence of the 2D QAFM to the 2D QNLoM
is still in question, because of the existence of the Berry
phase terms in the QAFM that are not present in the
QNLoM.? These Berry phase terms are non-local phase
terms and play a decisive role as the topological term in
one-dimensional spin chains. Because of this topologi-
cal term spin chains with half integer spin have gapless
ground states while integer spin chains exhibit a spin

10)
gap.

The role of the Berry phase terms in two dimensions
however is unclear. It has been argued that these terms
cancel in special cases, such as in the bilayer model.'1>12)
In this case it is plausible that the quantum phase tran-
sition is in the same universality class as the QNLoM.
This was confirmed by quantum Monte Carlo calcula-
tions by Sandvik et al.'!-13:14) They investigated the bi-
layer QAFM on lattices with up to 10 x 10 x 2 spins.
Although these lattices are quite small they still found
an agreement of the exponents z and 7 with the QNLoM
predictions.!:13) (see Table I). In the absence of Berry
phase terms the proposed equivalence of the QAFM and
the QNLoM is supported by these simulation results.

In general these Berry phase terms exist however.
Chakravarty et al. argue, that they can change the
critical behavior, leading to different exponents.>: 15)
Chubukov et al., on the other hand, argued that the
Berry phase terms are dangerously irrelevant, that is,
irrelevant at the critical fixed point separating the

Ps X (gc_g)

Estimates for

dependence of the uniform susceptibility at criticality. Listed
are the results for the quantum nonlinear sigma model in a 1/N
expansion, the results by classical Monte Carlo simulation on a
3D classical rotor model and the result of this study.

method Ref. Q1(0)
1/N expansion ref. 2 0.2718
classical Monte Carlo ref. 2 0.25 £ 0.04
quantum Monte Carlo this study 0.26 £0.01

two phases, but relevant in the quantum disordered
phase.6:17)

Previous numerical simulations on dimerized square
lattices'® '8) were not consistent with the QNLoM pre-
dictions. This could be an effect of the Berry phase terms
that are present in this model. The reliability of the re-
sults, however, is questionable because of the restriction
to very small lattices of 12 x 12 spins and because of com-
plications with scaling arising from inequivalent spatial
directions.

We performed large-scale quantum Monte Carlo simu-
lations to investigate this question. Using the new quan-
tum cluster algorithms® 3) we could simulate lattices two
orders of magnitude larger and at one order of magnitude
lower temperatures and got more accurate and new re-
sults.

The universality class of a phase transition does not
depend on the microscopic details of the lattice struc-
ture, therefore, we are free to choose the best lattice for
our purposes. We chose the CaV40q lattice, a 1/5-th
depleted square lattice depicted in Fig. 1, for our calcu-
lations. In contrast to the bilayer model, Berry phase
terms are present on this lattice.!”) Its advantage over
the dimerized square lattice is that both space directions
are equivalent. We performed our simulations on square
lattices with N = 8n? spins, where n is an integer. Our
largest lattice contained 20 000 spins. For the following
discussion it is helpful to introduce the linear system size
L in units of the bond lengths a of the original square
lattice: L = a+/5N/4.

The phase diagram of this lattice has been discussed
in detail.’®) By removing every fifth spin we obtain a lat-
tice consisting of four-spin plaquettes linked with dimer
bonds. We label the couplings in a plaquette Jp and the
inter-plaquette couplings J;. By controlling the ratio of
J1 and Jy, we can tune from Néel order at J; = Jp to a
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Fig. 1. Lattice structure of the 1/5-th depleted square lattice of
CaV409. The dashed square indicates the eight spin unit cell
used in our calculations.

quantum disordered “plaquette RVB” ground state with
a spin gap A = Jp at J; = 0. The control parameter
g of the quantum phase transition is the coupling ratio
Jo/J1 in this model.

At an intermediate coupling ratio (Ji/Jo). the sys-
tem exhibits a quantum phase transition. The first step
in the determination of the critical behavior is a high
precision estimate of the critical point g.. We have cal-
culated the second moment correlation length £, on sys-
tems of various sizes L. The temperature was chosen to
be kgT = Joa/L, keeping the finite 241 dimensional sys-
tem in the cubic regime. From standard finite size scaling
arguments it follows that this correlation length £, scales
proportional to the system size L at criticality. We calcu-
lated the ratio £1,/L, shown in Fig. 2, for a variety of cou-
plings and system sizes up to N = 9600, and determined
the critical coupling to be (J1/Jp)e = 0.939 & 0.001.

Next, we calculated the finite size scaling of both the
staggered structure factor S(Q) = L?m; and of the cor-
responding staggered susceptibility. At criticality they
scale as

5(Q) oc L>7*77 (5)
Xs X L?, (6)

The temperature was chosen to be kgT = Jpa/(4L).
This was low enough to see the ground state properties
on the finite lattice. By fitting our results, shown in
Fig. 3, we obtained the estimates z = 1.018 & 0.02 and
n = 0.015 £ 0.020. This is consistent with the Lorentz
invariance (2 = 1) expected from the mapping to the
QNLoM. We will discuss 1 below with the other expo-
nents. From these fits it is noted that at least N = 800
spins are necessary to obtain good scaling.

The remaining exponents § and v are best calculated
from the magnetization ms and the spin stiffness p; on
the ordered side. Good estimates for ms and ps can
be obtained from equations by Hasenfratz and Nieder-
mayer.?) They calculated the ezact finite-size and finite-
temperature values of the low-temperature uniform and
staggered susceptibilities ,, and x; for the ordered phase
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Fig. 2. Plot of the ratio of correlation length divided by system

size £, /L. At the critical point the correlation length calculated
in a finite system is proportional to the system size. This is the
case for g = J1/Jp = 0.939 &+ 0.001.

1000 T
2-n =1.985 +/- 0.025
100 | E
<)
[77] -
- O staggered susceptibility xJ,
ﬁo‘ O staggered structure factor S(Q)
]
X 1o}
2-z-1 = 0.967 +/- 0.005
1 .
10 100
L/a
Fig. 3. Finite size scaling of the staggered structure factor and

susceptibility at the critical point. The straight lines are fits to
the finite size scaling forms egs. (5) and (6).

of a 2D QAFM on a lattice with the symmetries of a
square lattice. Their equations, determined by chiral
perturbation theory, are correct for the low temperature
regime kpT < 2mps with cubic geometry kgTL/hc ~ 1.
Up to second order in T (or 1/L respectively) the suscep-
tibilities are universal, determined by only three param-
eters: the staggered magnetization mg, the spin stiffness
ps and the spin wave velocity c. T'wo high precision quan-
tum Monte Carlo studies have confirmed these equations
for the square lattice QAFM.3:20)

We have calculated the susceptibilities for a wide range
of couplings 0.95 < J;/Jp < 1.1, lattice sizes 800 < N <
16200 and temperatures 0.006 < T'/Jy < 0.1. The fits to
the Hasenfratz-Niedermayer equations are all excellent,
with x2/d.o.f. & 1.5. This also confirms the universality
of the Hasenfratz-Niedermayer equations. From the fits
we obtained the staggered magnetization m,, the spin
stiffness ps and the spin wave velocity c. The exponents
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Fig. 4. Staggered magnetization ms and spin stiffness ps calcu-
lated by a fit of low temperature susceptibilities on finite lattices
to the Hasenfratz-Niedermayer equations.4) The straight lines
are fits used to obtain the exponents § and v.

[ and v could then be obtained in a straightforward man-
ner (Fig. 4) and are listed in Table I.

Let us now discuss the results. First, we note that the
exponents satisfy the scaling relation eq. (1), confirm-
ing the validity of the scaling ansatz for this quantum
phase transition. The exponents 3, v and 7 are in good
agreement with the exponents of the 3D classical O(3)
or Heisenberg model. They are, however, incompatible
with the mean field exponents suggested by Katoh and
Imada from their calculations on small lattices.®)

Assuming Lorentz invariance (z = 1) we can improve
our estimates for the other exponents. The agreement
of the improved estimates with the 3D O(3) exponents
becomes even better. We can rule out the mean field
universality class.'® Furtermore we can also reject the
Ising universality class with more than 97% confidence
(Table I).

This agreement suggests that the Berry phase terms
in the 2D QAFM are indeed dangerously irrelevant, as
proposed by Chubukov et al.®) To further test their pre-
dictions, we calculated the uniform susceptibility close to
criticality down to T' = 0.02, more than an order of mag-
nitude lower than that in ref. 11. We extrapolated the
finite size results on lattices with up to N = 20000 spins
to the thermodynamic limit. Looking for the coupling
at which a linear behavior occurs gives an independent
estimate of the critical point: (J1/Jp). = 0.939 & 0.002,
in agreement with the above estimate. The linear slope
is 21 (00)(Jo/hc)? = 0.238 4 0.003. By extrapolating the
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spin wave velocity determined in the ordered phase by
the Hasenfratz-Niedermayer fit to the critical point we
obtain fic/Jp = 1.0440.02 and thus Q4 (c0) = 0.26+0.01,
again in agreement with Chubukov et al.?) (Table II).

To summarize, we have, for the first time, calculated
all the critical exponents 3, v, 2z and n of the quan-
tum critical point in a planar antiferromagnet by a large
scale quantum Monte Carlo study. Our exponents agree
with predictions made by a mapping to the 2D quan-
tum nonlinear sigma model. The dynamical exponent
is z = 1.018 £ 0.02, consistent with Lorentz invariance.
The other exponents agree with the 3D classical O(3)
exponents.
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