VOLUME 93, NUMBER 17

PHYSICAL REVIEW

week ending

LETTERS 22 OCTOBER 2004

Spin-Liquid versus Dimerized Ground States in a Frustrated Heisenberg Antiferromagnet

Luca Capriotti,l’4 Douglas J. Scalapino,2 and Steven R. White®

YKavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA
*Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
3Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
“Credit Suisse First Boston (Europe) Ltd., One Cabot Square, London E14 4QJ, United Kingdom

(Received 4 April 2004; published 20 October 2004)

We present a density matrix renormalization group study of the ground-state properties of spin-1/2
frustrated J, — J; Heisenberg n;-leg ladders (with n; up to 8). For strong frustration (J3/J; = 0.5), both
even-leg and odd-leg ladders display a finite gap to spin excitations, which we argue remains finite in the
two-dimensional limit. In this regime, on odd-leg ladders the ground state is spontaneously dimerized,
in agreement with the Lieb-Schultz-Mattis prediction, while on even-leg ladders the dimer correlations
decay exponentially. The magnitude of the dimer order parameter decreases as the number of legs
increases, consistent with a two-dimensional spin-liquid ground state.
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Despite many years of intense investigations, the ex-
istence of a homogeneous spin-liquid ground state for a
spin-1/2 system on a two-dimensional square lattice re-
mains controversial. This is mainly because there has
been no definite evidence so far that a microscopic model
could stabilize a homogeneous nonmagnetic phase with
one electron per unit cell. In fact, the known phases of
spin-1/2 quantum antiferromagnets in one or two dimen-
sions display exponentially decaying spin correlations
only in the presence of a broken translation symmetry
related to a spin-Peierls dimerization, as in the frustrated
Heisenberg chain [1,2] and ring exchange models [3], or
in the presence of a ground state with an even number of
electrons in the unit cell, as in the Heisenberg two-leg
ladder [4,5].

For one-dimensional systems a rigorous result, the
Lieb-Schultz-Mattis (LSM) theorem [6], implies that a
gapped nonmagnetic phase is in general associated with a
broken translation symmetry. This result can be also
extended to spin-1/2 Heisenberg models defined on odd-
leg ladder geometries[7]. There have been several recent
attempts to generalize the LSM result to two dimensions
[8—10]. Here it has been argued that the gapped phase is
associated with a ground-state degeneracy. However,
there are different opinions on whether this degeneracy
necessarily implies a spontaneously broken translation
symmetry (and thus the nonexistence of a two-
dimensional spin liquid) or whether it is associated with
a topological degeneracy of fractionalized spin-liquid
phases [8,11-13]. Recently, on the basis of a variational
approach, Sorella et al., [14] have proposed that a spin-
liquid ground state can be stabilized in two dimensions
and yet satisfy the constraint imposed by the LSM theo-
rem. In fact, within the formalism of projected BCS wave
functions it is possible to construct a gapped state which
displays spontaneous dimerization on any odd-leg ladder
thus satisfying the LSM theorem, but with no dimeriza-
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tion for even-leg ladders. The two-dimensional thermo-
dynamic limit is consistently reached for a large number
of legs since the dimer order parameter on odd-leg lad-
ders vanishes in this limit, thus leading to a homogeneous
spin liquid. In this case, therefore, the ground-state de-
generacy predicted by the generalizations of the LSM
theorem [10] is not connected to a spontaneously broken
translation symmetry but rather to a topological degen-
eracy of fractionalized resonating valence bond states
[13,14].

In this Letter, we examine n;-leg frustrated Heisenberg
ladders with Hamiltonian

A=758-8+1> 88, (1)
%) )

Here S; are spin-1/2 operators on a square lattice, and
J1,J3 = 0 are the nearest-neighbor and third-nearest-
neighbor antiferromagnetic couplings along the two co-
ordinate axes. In the following, we use the numerical
density matrix renormalization group (DMRG) [15] to
study the ground state of this Hamiltonian on ladder
systems with n; legs of length L with open boundary
conditions. In our calculations, we typically performed
15-20 sweeps of the lattice, keeping a maximum of m =
2000 states and obtaining discarded weights smaller than
~5 X 1077, Our plan is to carry out DMRG calculations
for ladders with different number n; of legs. Then, by
extrapolating in the length L of the ladders and looking at
the behavior of the odd-leg and even-leg systems for
modest value of n; we seek to gain insight into the
behavior of the two-dimensional system.

The classical ground state of the J; — J; Hamiltonian
in two dimensions displays conventional Néel order for
J3/J, = 0.25. For J3/J; > 0.25 the ground state has in-
commensurate antiferromagnetic order with a pitch vec-
tor depending on the frustration ratio, assuming the
value Q = (27/3,27/3) at J3/J; = 0.5, and approaching
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Q = (m/2, w/2), corresponding to four decoupled Neel
lattices, for J3/J; — . For the case of quantum
spin-1/2, in two dimensions, the ground state is expected
to display long-range Néel order for J5/J; — 0. However,
in the regime of strong frustration J;/J; ~ 0.5, early
numerical investigations [16] and more recent exact diag-
onalization calculations on lattices up to 32 sites [17]
suggest that a nonmagnetic ground state can be stabilized.
The latter work also found signatures of dimerization for
values of J3/J, = 0.7 in agreement with the predictions of
series expansions [18].

The effects of frustration on the antiferromagnetic
correlations of the ground state can be investigated by
studying the behavior of the spin-triplet gap A as a
function of J3/J;. As shown in Fig. 1, for n; = 3 and 4
the spin gap increases as the frustration ratio J3/J, in-
creases. This is seen for both the even-leg and the odd-leg
ladder case. In particular, in the odd-leg case, which is
gapless with power-law spin correlations in the pure
Heisenberg limit [19], the spin gap due to the finite length
of the ladder remains almost constant for small values of
J3/J, but increases sharply for J3/J; = 0.4, suggesting a
transition to a gapped nonmagnetic phase. Alternatively,
in the even-leg ladder case, a finite correlation length is
expected for small J;/J, and the spin gap increases
smoothly with J3/J; as no magnetic transition is ex-
pected. In both cases, the spin gap reaches a maximum
for intermediate values of J3/J; where the effects of
frustration are expected to be the strongest, then it de-
creases again for large J;/J, when the limit of four
decoupled Heisenberg lattices is eventually recovered.

The size scaling of the spin gap is shown in Fig. 2. For
weak frustration, the spin gap extrapolates to zero for the
odd-leg ladders, and to a constant, which decreases with
n;, for the even-leg ladders [20]. This is consistent with
the gapless Neel ordered phase expected in the two-
dimensional limit. Instead, for J5/J; = 0.5 the spin gap
extrapolates to a constant as L. — oo for both the even and
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FIG. 1. Spin gap as a function of the ratio J3/J;. Left: 3-leg

ladder for L = 12 (empty triangles), 16 (full triangles), and 20
(stars). Right: 4-leg ladder for L = 10 (empty squares), 12 (full
squares), and 16 (stars).
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the odd ladders we have studied. The difference between
the regime of low and high frustration is also seen from
the dependence of the spin gap on the number of legs for a
fixed chain length L [see also Fig. 2(b) and 2(d)]. For low
frustration the spin gap decreases with the number of legs
both for even (full symbols) and odd (empty symbols) n;.
However, in the regime of high frustration it decreases
with n; only for even-leg samples while it increases with
the number of legs on odd-leg samples. This behavior is
consistent with a two-dimensional phase which has ex-
ponentially decaying spin correlations.

The presence of a finite gap in the excitation spectrum
of the n;-leg ladders has consequences in view of the LSM
theorem. In fact, on odd-leg ladder systems it is possible
to construct an excitation in the singlet sector with mo-
mentum (77, 0) which becomes degenerate with the ground
state in the thermodynamic limit [6]. This implies either a
gapless spectrum or, in the presence of a finite gap, a two-
fold degenerate ground state with a doubling of the unit
cell and a spontaneously broken translation symmetry. In
the one-dimensional model this is known to be realized
through spin-Peierls dimerization [1]. Instead, the LSM
result does not apply to even-leg ladders so that, in these
geometries, both translationally invariant and dimerized
ground states are in principle compatible with a finite
triplet gap.

The occurrence of spin-Peierls dimerization can be
studied by calculating the response of the system to a
nearest-neighbor spin-spin operator which breaks the
translation symmetry along the chains with momentum

Q = (m,0) [21]
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FIG. 2. Size scaling of the spin gap for J3/J; = 0.1 [(a) and
(b)], and J3/J; = 0.5 [(c) and (d)]. (a), (c) Spin gap as a
function of the length of the ladders, L, for different number
of legs, n;. (b), (d) Spin gap as a function of n;, for L = 10.
Empty (full) symbols correspond to odd- (even-) leg ladders.
Lines are guides for the eye.
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Here x = (1, 0) is a unit vector along the chain direction.
This can be done in general by adding to the Hamiltonian
aterm 80O where 8 is a (small) generalized field. The order
parameter can be calculated as the limit for & — 0 of the
ground-state expectation value of O in presence of the
field, D = lims_(O)s/N, where N = L X n, is the total
number of sites. On periodic finite-size systems D van-
ishes in general by symmetry as it breaks the translational
invariance and the symmetry under site-centered lattice
reflections along the chain direction of the unperturbed
Hamiltonian (1). However, on samples with an even
length L and open boundary conditions, the dimer order
parameter (2) will be in general nonzero and can be
calculated using the Hellmann-Feynman theorem as D =
de(8)/db|s—y. Here e(8) is the ground-state energy per
site (in unit of J;) in the presence of the perturbation. As a
result, within the DMRG technique the dimer order pa-
rameter can be calculated with simple energy measure-
ments by computing e(8) for a few values of & and then
estimating numerically the limit D = limg_g[e(5) —
ep]/6. This is illustrated in the upper panels of Fig. 3
for a single chain and a two-leg ladder at J;/J; = 0.5.
Here, as a consistency check, the dimer order parameter
is estimated by calculating the limit for § — 0 of D(8) =
[e(8) — ep]/ 8 both for negative (filled symbols) and posi-
tive (empty symbols) 6’s. The two limits are converging
to the same value. In particular, for the one-dimensional
chain at the exactly solvable point J;/J; = 0.5
(Majumdar-Gosh model) the known size-independent
result, D = 0.375, is recovered [1].

The size scaling of the dimer order parameter obtained
with this procedure is shown in the same figure for ladders
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FIG. 3. Upper panels: D(5) for J3/J; = 0.5. Left: One-
dimensional (Majumdar-Gosh) chain for L = 12 (triangles)
and 24 (squares). Right: 2-leg ladder for L = 12 (triangles)
and 30 (squares). Full (empty) symbols correspond to § <0
(6 > 0). Lower panel: size scaling of the dimer order parameter
D(8 — 0), as a function of the length of the ladders L for
different numbers of legs n;.
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with different numbers of legs. This analysis reveals close
similarities with the variational scenario of Ref. [14]. In
fact, in the odd-leg ladder case the dimer order parameter
extrapolates to a constant for infinite chain length, as
required by the LSM theorem. Instead, in the even-leg
cases, where the system is not constrained by the LSM
theorem to dimerize, the dimer order parameter extrapo-
lates to zero.

This conclusion is supported also by the calculation
of dimer susceptibilities. These can be calculated within
our numerical approach by considering ladders with
odd length L where the order parameter D vanishes by
symmetry for any finite-size cluster, and the ground-
state energy has corrections proportional to 8. In this
case, e(8) = ey — x6%/2 , with y the generalized sus-
ceptibility associated with the operator 0, namely, y =
2ihy|O(Ey — H)"'Olipy)/N. If true long-range order in
the dimer correlations exists in the thermodynamic
ground state, the finite-size susceptibility will diverge
as the system size increases as y ~ N2 [22]. In analogy
with the calculation of the order parameter, the suscepti-
bility y = —d?e(8)/d8?|s—y can be calculated numeri-
cally from y = limgs_ox(8) = —2[e(5) — ey1/8>, as
illustrated in the bottom panels of Fig. 4 for 2-leg and
3-leg ladders.

The behavior of the susceptibilities for the even-leg and
odd-leg ladders is remarkably different (Fig. 4). In par-
ticular, y/N decreases with the linear size L in the even-
leg ladder case, and it increases with L in the odd-leg
ladder case. The susceptibilities for the odd-leg ladders
appear to diverge as N2, as required for true long-range
dimer order. In contrast, for the even-leg ladders the
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FIG. 4. Dimer susceptibilities for the 2-leg (left panels) and
3-leg (right-panels) ladders. The lower panels show y(8)/N vs
6 for various lengths; the top panels the size scaling of the
extrapolated values y = limgs_x(8) (see text). Note the differ-
ent normalizations for the 2-leg and 3-leg cases in the upper
panels. Lines are guides for the eye.
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FIG. 5. Left: Size scaling of y/N? for the 3-leg and 5-leg
ladders as a function of the chain length L. Right bottom: Size
scaling of y for the 2-leg, 4-leg, and 6-leg ladders as a function
of the chain length L (bottom). Right top: Size scaling of the
L — oo extrapolated values of the even-leg ladder susceptibil-
ities Y as a function of the numbers of legs n;.

susceptibilities are bounded, indicating short-range
dimer correlations with a finite correlation length.

In order for the two-dimensional limit to exist, the
ground-state correlations for even-leg and odd-leg ladders
must converge in the limit of a large number of legs. This
is the case, for instance, in the limit of small frustration
of this model, where the spin correlations decay exponen-
tially for even n; and with a power law for odd n;. Here the
two-dimensional limit is reached as the correlation
length for the even-leg ladders diverges exponentially
with n; leading to long-range antiferromagnetic order in
two dimensions [19,20]. As we have shown, in the regime
of strong frustration, the dimer correlations are short-
ranged on even-leg ladders while a finite-dimer order
parameter is observed on odd-length ladders. However,
as the number of chains n; is increased, the odd-leg ladder
dimer order parameter decreases (Fig. 3), and the diver-
gence of the dimer susceptibility becomes weaker (see
left panel of Fig. 5). On the other hand, the infinite-L
dimer susceptibility y, on even-leg ladders does not
appear to diverge as the square of the number of chains
n?, (see right-panels of Fig. 5) as one would expect in the
presence of long-range dimer order in two dimensions.
Thus, a ground state with no spontaneous broken trans-
lation symmetry in the two-dimensional limit appears as
a plausible interpretation of our results. This is in agree-
ment with the large-N predictions of Read and Sachdev
[23] for the quantum disordered regime of the J; — J3
model in the spiral phase.

In conclusion, we have shown that a spin-gapped
ground state with short-range antiferromagnetic correla-
tions is stabilized by frustration on the spin-1/2 J, — J3
model at J3/J; = 0.5 on ladders with n; = 1 to 8 legs. The
behavior of the spin gap by increasing the number of legs
is consistent with a nonmagnetic ground state in the two-
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recently proposed scenario [14] where the odd-leg dimer
order vanishes for an infinite number of legs leading to a
homogeneous spin liquid in two dimensions.
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