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We analyze the spectrum of the two-dimensio8al1/2 frustrated Heisenberg model near the transition
from the spontaneously dimerized spin-liquid phase into thel Nielered phase. Two excitation branches, the
triplet magnon and the collective singlet mode, both become gapless at the transition point. However, we find
that the length scales associated with these modes are well separated at the quantum transition. While in the
quantum disordered phase the singlet excitation has finite spectral weight and reflects the existence of spon-
taneous dimer order, near the transition point the size of the singlet bound state grows exponentially with the
correlation length, and hence the quasiparticle residue is exponentially small. Therefore the critical dynamics
remains in the @) universality class in spite of the four gapless modes.

Quantum phase transitions between magnetically orderesion the Berry phase effects are known to be important,
and disordered phases can take placé=a0 by varying the essentially leading to the difference between the excitations
exchange interactions that can drive the spin-spin correladn the integer and half odd-integer spin chaif#n 2D Berry
tions from long-range behavior, characterized by an infinitephases are also present but their role is less clear. If one
correlation length, towards a short-range regime, typical fofneglects these purely quantum effects, the universality class
disordered phases. An example of a quantum model that ef the quantum transitions in the 2D HAFM should be the
hibits such transitions is the two-dimensioaD), S=1/2  same as that of the classical3 vector model in 30
Heisenberg antiferromagnéHAFM) on a square lattice, Quantum Ml(gnte Carlo simulations perforlrgwed on the two-
While for uniform nearest-neighbor interactions the HAFM l2yer HAFM™and the CayQ lattice HAFM™ confirm with
has long-range N order in the ground state with sublattice high accuracy that the quantum transitions in the above two
magnetizationM ~0.3? inclusion of additional interactions, modelsjtgr(; n tﬂe 23[)) lfjmver_s,allc:y;rlzs'\s;l. Thﬁ.rbe. alsodha§ b_een
such as dimerization and/or frustration, leads to increase report” that the 'menize exhibits a deviation

) . - ”» rom the Q3) behavior, which is presumably due to the
quantum fluctuatlons and uItlmat.e.Iy vanishing\bat a criti- small size lattices studied in the above work. Generally the
cal coupling. Examples of transitions caused by local alter-

. ¢ th h i h ; . ost accurate Monte Carlo results seem to indicate that the
nation of the exchange couplings are the d'mer'zec{?uantum Berry phase effects are not important, at least in the
HAFM,?? the two-layer HAFM*® and the CayOy lattice

. models where the quantum transitions are driven by explicit
(1/5th depleted square latticgIn these cases the local dimer (exchange drivendimerization.

or,plaquette correlations eventually win over the long-range on the other hand thé, —J, model, which exhibits a
Neel order, leading to a nonmagnetic ground state. Anotheguantum transition due to frustration, has a much better
route towards a magnetically disordered ground state is inchance for deviation from the () universality class. The
troduction of frustrating second-neighbor interactiods)(  reason is that the Berry phases were shown to be relevant
in addition to the nearest-neighbor onek)((see Fig. L and intimately related to the presencespbntaneouslimer

The Neel order disappears af£{/J;).~0.4 in this casé:°

An important issue concerning the quantum transitions 1 2 J 3 4
mentioned above is their universality class. It is generally o . 1 q
accepted that the effective low-energy theory for the 2D N )’v
Heisenberg systems with a colline@teel) order parameter AR \,'J hA
is the Q3) nonlinear ¢ model (NLSM) in 2+1 N N2
dimensions! This field theory contains a single effective <.m.}' \(.ﬁ'D
coupling constang and, atT=0, describes the ordered &le S~ L ‘\T—%’
phase fog<g.. Forg>g. the NLSM is in a quantum dis- Y N v
ordered phase with a finite correlation length. However, the RAEANE AR AR

determination ofg. and the nature of the disordered phase U, \U

are beyond the field theory formulation and depend on the
specific details of the model. In addition, Berry phases asso- FIG. 1. TheJ;—J, model on a square lattice. The circles rep-

ciated with instanton tunneling between topologically differ-resent spins paired in singlets in the columnar ladder dimerization
ent configuration are present in the NLSRIn one dimen-  pattern.
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(spin-Peierls order in the quantum disordered phase of this The Hamiltonian of the frustrated Heisenberg antiferro-
model*®1° Within the formalism of the largét expansion magnet is
for the SpN) theory N=1 being the physical limj{ Read

and Sachdé¥ found two divergent length scales at the tran-

sition from the quantum disordered into the eNerdered

phase. The first one is the usual correlation lergtiwvhich ) . )
governs the exponential decay of the spin-spin correlation&hereJ;>0 is the nearest-neighbor add>0 is the frus-

in the disordered phase and is inversely proportional to th&ating next-nearest-neighbor exchange coupling on a square
(triplet) magnon gapgo 1/A. The instanton effects, however, lattice (defined as shown in Fig,) 1Al the spinsS;=1/2. In

lead to the appearance of spontaneous spin-Peierls corref@der to find the excitation spectrum Hfwe follow closely

scale&sp (inverse singlet magsThe two scales are related Starting point is grouping the spins into dimegsnglets in
via the pattern, shown in Fig. 1. This configurationhich is

degenerate with three others, obtained by translation by one
Esp— &N, N>1, 1) lattice site, rotation byr/2, and rotation plus translatipwas

where C=C,+O(1/N), C,~1. SinceN is large, one ex- found to be stable in the parameter window,{J;)c1

pectsésp>£. The presence of two divergent length scales at=32/31<(J2/31) 2. ** Here (3,/J,)c1~0.38 is the transition

the transition point would naively suggest a change in thdCint into the Nel phase, the neighborhood of which is the
universality class. However, as argued in Ref. 20, the facf€9ion we want to analyze. The Hamiltonian can be ex-
that éspis a (large) power of ¢, causing the two scales to be Pressed in terms of bosonic operatq?_g,, a=X,y,z, creat-
well separated near the critical point, is a characteristic feal’d three degenerate triplet excitations from the singlets
ture of a dangerously irrelevant coupling. This means thaformed by each pair of spins, as shown in Fig. 1. The site
even though the Berry phases are relevant in the disorderd@dexi now numbers the sites on the dimerized lattice. The
phase, ultimately, near the critical point, their effect disap_effec'glve nggultoman describing the interactions between
pears. In particular the dimer order paramddeis expected the triplets ié
to behave aP~ ¢53~ACN and thus vanishes very fast as

the critical point A —0) is approachedf In this scenario the

quantum critical fluctuations of the korder parameter are B
decoupled from the singlet mode and consequently the tran- Ho=>, Aktlatka—’__k(tlattka_'— H.c)!, (4)
sition is still of O(3) type. Notice that the above analysis is k. 2

certainly valid provided the 1N expansion behaves well,

since only then th&l— < results are relevant to the physical

situationN=1. However, corrections beyond the=oo limit Ha= 122::3 R(K1K2) €apsti, ottt HC (5)
have not been systematically calculated in the literature, due

to the complex nature of the problem.

H=3,>, S-S+J,> S-S, )
NN NNN

H:H2+H3+H4, (3)

The purpose of the present work is to analyze the struc- Hy= E [T(K1—K3)( 80505y~ Oapdys)
ture of the excitation spectrum and the scales that appear 1r2=3+4
near the quantum critical point in order to test the I$p( +U5a55ﬁ7]tllatl2ﬁtk3ytk45' (6)

field theory predictions. We work directly with the physical

spin problem =1), and the approximation scheme that weThe following definitions are used in Eq$4)—(6): Ay
use is based on a perturbative expansion around the sponta-3, — (J3,/2)&, +(J;—J,) & —Jdoéx & Be=Ac—J;, and
X y L

neously dimerized ground state in the quantum disordereﬂle matrix elements in the quartic and cubic interaction

phase. First, let us mention that the numerical implementa: _ I T n
tion of this expansion via the dimer series expanglofi°as erms, 47(K) Jidi + 201+ o) i + 20a8i 6k AR(p,0)

well as the mean-fiefd and diagrammatic treatmerf&gon- = —J17p,~ 2J27p,&p, ~{P—0}, Where we have defineg|,

firm the stability of the spontaneously dimerized phase for=cosk), y=sink). TheT andR terms describe the intersite
intermediate values of frustration. This means that the largeinteractions arising from the exchange between the dimers.
N limit captures the essential physics of the problem, everf\n additional on-site(U) term is also introduced and one
though it cannot be trusted numerically in regard to the exadinust selU — . This term reflects the hard-core nature of the
location of the phase boundaries. However, both the seriggosons that follows from the kinematic constraint on the Hil-
expansions and the diagrammatic method are not accurakert spacafatfﬁzo. The constraint is necessary in order to
enough to calculate reliably the critical exponents near thensure that the bosonic Hamiltonian in terms of the triplet
the transition into the Nal phase, since the exponents are notoperators corresponds uniquely to the original spin Hamil-
expected to vary considerably. For example, the exponent tonian(2) and no unphysical states appear in the final result.
governing the vanishing of the triplet gapp,~(g—g.)”, is  The sums ovek extend over the Brillouin zone of the dimer-
v~0.71 for the @3) and »~0.75 for the @4) universality ized lattice, i.e.,— w<Kk, ,k,<m. In this notation the Ned
class** Such a small difference cannot be confidently re-ordering wave vectof(, ) of the original latticg is Qg
solved with the above method$This is why we will follow ~ =(0,7).

a different route, namely, we will analyze the possibility of  The spectrum of Eq3) was studied in Ref. 22 by sum-
having additional soft modes at the transitigm addition to  ming selected infinite series in the perturbative expansion.
the triplet modg The dilute Bose gas approximation was used and the dia-
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. . o FIG. 3. Triplet magnon excitation spectruisolid line) and the

'_:IG' 2. Gaps in the one- and _two_-partlcle excitation ?peCtrasinglet bound-state excitation bran@bng-dashed lingin the part
Solid squares, connected by a solid line, represent the triplet 9ags (o Brillouin zone near (0,0) anQ,r . The shaded area repre-

A=w(Qar), and open circles connected with a dashed line repregg s the two-magnon scattering continuum. All spectra are calcu-
sent the gap of the two-particle singlet bound stat&kat0,0). lated diagrammatically fod,/J,=0.40.

Open squares are the singlet binding energy, obtained by solving
Eqg. (8) numerically, while the solid line is the fit, based on the

asymptotic formula, Eq(11), with €;=2.85);, €;=1.20J,. [ES(Q)_“’Q/2+q_“’Q/2—q]‘P(q'Q)
d
grams classified in powers of the density of magnons. The =f P 1= 2[T(p—a) +T(p+a)]+U}¥(p,Q),
diagrammatic treatment was also compared with numerical (27)
results obtained by high-order dimer series expansions and (8)

the agreement was found to be very good. We will therefore
present only diagrammatic results from now on. In the quanwhich can be easily derived by noticing that it is equivalent
tum disordered phase{/J;) 1 <J,/J;<(J,/J;)., the trip- to the two-particle Schadinger equation: H|\PQ)
let excitation spectrumw(k) has a nonzero gapA =ES(Q)|\PQ). Here ES(Q) is the energy of the collective
= w(Qar), Which reflects the fact that the dimer configura- mode. The function Tq) is the two-particle scattering am-
tion is stable. As the critical pointJg/J;).;=0.38 is ap- plitude from Eq.(6):
proached,A—0, signaling an instability towards a phase
with nonzero Nel order parameter. The variation Afas a
function of frustration is shown in Fig. 2. Let us mention that
as we move close to the critical point from the disordered
side, the density of triplets increases and is approximatelyf his interaction leads to attraction between two triplets in the
0.3 atJ,/J;=0.38. This leads, in principle, to a 30% uncer- singlet channel. In Eq8) the (second-ordgrcontribution of
tainty in the results due to the omitted higher-order diagrams-s, Eq. (5), into binding has been neglected. We have
However, the accuracy in the position of the critical pointchecked that the perturbative inclusion of this term indeed
(0.38 is much better than 30% because of the steep depeieads only to a small change of the results presented below.
dence of the gap od, /J;. Nevertheless, within the accuracy Since we have to také)—«, the following replacement
of our calculation, the point wher&~0.05), (see Fig. 2is must be made on the right-hand side of E®):
practically indistinguishable from the critical point. USfdp¥(p,Q)—N\, where\ is a Lagrange multiplier, deter-
In Ref. 22 it was pointed out that an additional collective mined self-consistently from the conditigitq ¥ (q,Q) =0.
low-energy mode also exists neak,(J;).;. This excitation The bound state exists only if a solution of E&) can be
is a bound state of two triplets with total spB=0. We  found such thaES(Q)<EC(Q)=minq[w(Q/2+ q) +w(Q/2
proceed to investigate its properties in more detail. Introduc—q)], meaning that it must be below the two-particle scat-
ing the total Q) and the relative ) momenta of the two tering continuumE,. In Fig. 3 we present the numerical
triplets forming the bound state, the two-particle singlet is solution of Eq.(8) for a fixed value of frustrationJ,/J;
=0.4) above the critical value. We have also plotted the
one-particle spectrum (k) and the shaded region is the two-
(W)= W(q,Qt] oo gth -l 0)- (7)  particle scattering regiorE>E(k). The bound state is
9 stable (nonzero gap for all k throughout the disordered
phase, with a minimum of the dispersi&¥(k) atk=(0,0).
The bound-state wave functioh(q,Q) satisfies the integral As frustration decreases the singlet gap(0,0) decreases
equation and appears to vanish at the critical point, as shown in Fig. 2.

Jq (J113y) Js
T(k) = Z-cosk+——>——CoK,+—cosk,cosky . (9)
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We believe that the existence of a singlet bound state awvheree,, €;,~J; are two constants that depend weakly on
k=(0,0) reflects thespontaneousature of the dimer order. J, and are finite at the critical point. The result is similar to
Indeed, we have checked that in models where the dimerizahe formula for the exponentially small s-wave bound state in
tion is explicit, i.e., due to stronger exchange on certaira 2D potentiaf® However, there are two differences from
bonds, the singlet does not exist in the neighborhoott of the usual expressidfi:(1) the preexponential factor in Eq.
=(0,0), meaning that its binding energy is zero. The binding(11) does not depend on the “mas®’ because of the rela-
energy is defined as(k)=E.(k)—ES(k). We have found tivistic form of the dispersion near the transition point, and
that €(0,0)=0 both in the 2D dimer modelas defined in (2) because of the hard core constraidt-¢: ) the exponent
Ref. 3 and in the two-layer modéRef. 4. Unlike the above €; cannot be written alf2/dr| 1, wherel/ is the attractive
two models, the Hamiltonian equati¢®) does not break any potential[i.e., the expression in the curly brackets in E&)).
lattice symmetries, but the ground state of Fig. 1 certainly In Fig. 2 we present a fit of the formuld 1) to the nu-
does. It was argued in Ref. 22 that the vanishing of the spormerical solution of Eq(8). The major disagreement occurs
taneous dimer order at the critical point is intrinsically re-only close to the critical point fod,/J;<<0.41. The asymp-
lated to the low-energy singlet mode. Thus we believe thatotically exact solution predicts an exponentially fast vanish-
the singlet bound state reflects the presence of nonzero dimerg of € that cannot be captured reliably in the numerical
order parameter in thd;—J, model, i.e., the spontaneous solution.
breakdown of the discrete lattice symmetries in the quantum The sizeR of the bound statén units of the lattice spac-
disordered phase. ing) is determined by the spatial extent of the wave function:

Even though we have shown that the gaps for both th@2:2q|a\lf(q)/aq|2, whereV is assumed to be normalized.
triplet and singlet modes vanish at the critical point, this doe€valuating this expression f&k—0 leads to
not necessarily mean a departure from th@)Qiniversality
class that is related to the triplet only. In what follows we 12
will in fact demonstrate that the singlet mode is “irrelevant” 2 1 5
at the critical point. Let us start with the observation that the R €A fexpCel), =1, (12
relevancy(or otherwisg¢ of a soft excitation is directly re-
lated to its spectral weight. We find, as expected, that thgyhereg~A 1 is the correlation length, and,~1 is a con-
spectral weight of the tripletghe residue of the one-particle stant. Thus we find, as expected, that the size increases as the
Green’s function stays finite at the transition point. How- binding energy decreases. At the critical poRitdiverges
ever, the spectral weight of the collective singlet excitation isaxponentially with the correlation length. This in turn im-
proportional to the binding enerdwhich in turn is inversely pjies that the spectral weight of the collective singlet van-
proportional to the size of the bound-state wave fungtion ishes exponentially fast. Consequently the singlet bound
Observe that the lower edge of the two-particle continuum a§tate does not influence the triplet dynamics near the critical
k=(0,0), Ec(0,0)=2w(Qap)=24A, and since at the transi- point and hence cannot change theQuniversality class.
tion point A—0, the binding energy must vanish as well,  ynlike the theory of Read and Sachd@wur approach
€(0,0)—0. The variation of the binding energy as a function goes not relate directly the gap in the singlet spectrum and
of frustration, obtained by solving Ed8) numerically, is  the dimer order parameter. The latter quantity is defined as
shown in Fig. 2. Since we realize that fdr—0 the accuracy D=(S,-S;)—(S,-S,) (see Fig. 1L We have presented
of the calculation decreases, let us find the asymptotic behayrgument&’ that the low-energy singlet affects the dimer or-
lor of €(0,0) in this fimit analytically. The one-particle dis- der by increasing the quantum fluctuations. This effect be-
persion around its minimum has the form“(k)=A comes stronger and stronger as the critical point is ap-
+¢?|k—Qag|?, which is valid close to the critical point. The proached, and one could ultimately expect tBavanishes.
triplet velocity ¢ is known to remain finite at the High-order dimer series results support this concluéfdmt
transitiorf *° Ac~J;, whereA~1 (in units of the inverse cannot determine the critical behavior Bf Thus we cannot
lattice spacingis a characteristic momentum. Denoting the verify the prediction of the largdt theory [which follows
right-hand side of Eq(8) by ®(q,Q), the solution of Eq(8)  from Eq. (1)] that D should vanish with a large exponent.
at Q=(0,0) is¥(q,0)=®(q,0)[ES—2w(q)] " *. We define In summary, we have found that in the 2D—J, model
ES=E®(0,0) ande= €(0,0) from now on. The energy can be the critical behavior near the transition between the sponta-
found from the conditionfdqW¥(q,0)=0. This integral di- neously dimerized and the ‘Mlephase is characterized by
verges logarithmically aQar for small binding: two soft modes—the usual triplet magnon mode and a col-

lective singlet excitation. Even though the gap in the singlet
d%q A A [Ac spectrum vanishes at the transition, we argue that it does not
f S s ol —2In(? , €<A<J;. (100 influence the critical dynamics of triplet excitations. The rea-
20(q)—E ¢ son is that the spectral weight of the singlet vanishes expo-
nentially fast at the quantum critical point. We have to note
that our picture is different from that of Read and
Sachdev®!® based on the largh- expansion. In Refs. 18
and 19 the singlet gap was found to be much smaller than the
triplet one, which in turn leads to the second large length
scale. In our picture the singlet gap is approximately equal to
_ _ & _ two triplet gaps, and the large length scale comes from the
€ eoex;{ A ) A<y (1 size of the singlet bound state. Nevertheless the final conclu-

We remind ourselves that=2A — ES. When estimating the
integral,®(q,0) can be replaced b§ (Qar,0). This quantity
is finite at the critical point that follows from E@9). From
Eq. (10 we find the binding energy:
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sion concerning the triplet critical dynamics is the same: theealized in this case, the singlet mode should become a truly
O(3) universality class describes the transition between th&oldstone mode at the transition and therefore must have
Neel ordered and quantum disordered phase. very different properties from the ones found in the present
Finally let us mention that in cases where the orderedyork.
phase is characterized by incommensurate correla®gs, ) ) )
the triangular lattice Heisenberg moyléie critical behavior It iS our pleasure to thank Subir Sachdev, N. Read, Cris-
could be quite different. On the semiclassical level the ordefiano Biagini, and Sergei Obukhov for many stimulating dis-
parameter has S@) Symmetry and Consequent|y ar‘(@ cussions. V.N.K. aCknOWIedgeS the financial SuppOI’t of NSF
universality class is possibfé.If indeed the @4) class is Grant No. DMR9357474.
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