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Nature of the transition from the spontaneously dimerized to the Ne´el phase
in the two-dimensional J1ÀJ2 model

Valeri N. Kotov
Department of Physics, University of Florida, Gainesville, Florida 32611-8440

Oleg P. Sushkov
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 13 July 1999!

We analyze the spectrum of the two-dimensionalS51/2 frustrated Heisenberg model near the transition
from the spontaneously dimerized spin-liquid phase into the Ne´el ordered phase. Two excitation branches, the
triplet magnon and the collective singlet mode, both become gapless at the transition point. However, we find
that the length scales associated with these modes are well separated at the quantum transition. While in the
quantum disordered phase the singlet excitation has finite spectral weight and reflects the existence of spon-
taneous dimer order, near the transition point the size of the singlet bound state grows exponentially with the
correlation length, and hence the quasiparticle residue is exponentially small. Therefore the critical dynamics
remains in the O~3! universality class in spite of the four gapless modes.
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Quantum phase transitions between magnetically orde
and disordered phases can take place atT50 by varying the
exchange interactions that can drive the spin-spin corr
tions from long-range behavior, characterized by an infin
correlation length, towards a short-range regime, typical
disordered phases. An example of a quantum model tha
hibits such transitions is the two-dimensional~2D!, S51/2
Heisenberg antiferromagnet~HAFM! on a square lattice
While for uniform nearest-neighbor interactions the HAF
has long-range Ne´el order in the ground state with sublattic
magnetizationM'0.3,1 inclusion of additional interactions
such as dimerization and/or frustration, leads to increa
quantum fluctuations and ultimately vanishing ofM at a criti-
cal coupling. Examples of transitions caused by local al
nation of the exchange couplings are the dimeriz
HAFM,2,3 the two-layer HAFM,4,5 and the CaV4O9 lattice
~1/5th depleted square lattice!.6 In these cases the local dime
or plaquette correlations eventually win over the long-ran
Néel order, leading to a nonmagnetic ground state. Anot
route towards a magnetically disordered ground state is
troduction of frustrating second-neighbor interactions (J2),
in addition to the nearest-neighbor ones (J1) ~see Fig. 1!.
The Néel order disappears at (J2 /J1)c'0.4 in this case.7–10

An important issue concerning the quantum transitio
mentioned above is their universality class. It is genera
accepted that the effective low-energy theory for the
Heisenberg systems with a collinear~Néel! order parameter
is the O~3! nonlinear s model ~NLSM! in 211
dimensions.11 This field theory contains a single effectiv
coupling constantg and, atT50, describes the ordered Ne´el
phase forg,gc . For g.gc the NLSM is in a quantum dis
ordered phase with a finite correlation length. However,
determination ofgc and the nature of the disordered pha
are beyond the field theory formulation and depend on
specific details of the model. In addition, Berry phases as
ciated with instanton tunneling between topologically diffe
ent configuration are present in the NLSM.12 In one dimen-
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sion the Berry phase effects are known to be importa
essentially leading to the difference between the excitati
in the integer and half odd-integer spin chains.13 In 2D Berry
phases are also present but their role is less clear. If
neglects these purely quantum effects, the universality c
of the quantum transitions in the 2D HAFM should be t
same as that of the classical O~3! vector model in 3D.14

Quantum Monte Carlo simulations performed on the tw
layer HAFM15 and the CaV4O9 lattice HAFM16 confirm with
high accuracy that the quantum transitions in the above
models are in the O~3! universality class. There also has be
a report17 that the 2D dimerized HAFM exhibits a deviatio
from the O~3! behavior, which is presumably due to th
small size lattices studied in the above work. Generally
most accurate Monte Carlo results seem to indicate that
quantum Berry phase effects are not important, at least in
models where the quantum transitions are driven by exp
~exchange driven! dimerization.

On the other hand theJ12J2 model, which exhibits a
quantum transition due to frustration, has a much be
chance for deviation from the O~3! universality class. The
reason is that the Berry phases were shown to be rele
and intimately related to the presence ofspontaneousdimer

FIG. 1. TheJ12J2 model on a square lattice. The circles re
resent spins paired in singlets in the columnar ladder dimeriza
pattern.
11 820 ©2000 The American Physical Society
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~spin-Peierls! order in the quantum disordered phase of t
model.18,19 Within the formalism of the large-N expansion
for the Sp(N) theory (N51 being the physical limit!, Read
and Sachdev18 found two divergent length scales at the tra
sition from the quantum disordered into the Ne´el ordered
phase. The first one is the usual correlation lengthj, which
governs the exponential decay of the spin-spin correlati
in the disordered phase and is inversely proportional to
~triplet! magnon gap,j}1/D. The instanton effects, howeve
lead to the appearance of spontaneous spin-Peierls cor
tions and a second gapped singlet mode with a characte
scalejSP ~inverse singlet mass!. The two scales are relate
via

jSP;jCN, N@1, ~1!

where C5C11O(1/N), C1;1. SinceN is large, one ex-
pectsjSP@j. The presence of two divergent length scales
the transition point would naively suggest a change in
universality class. However, as argued in Ref. 20, the
thatjSP is a ~large! power ofj, causing the two scales to b
well separated near the critical point, is a characteristic f
ture of a dangerously irrelevant coupling. This means t
even though the Berry phases are relevant in the disord
phase, ultimately, near the critical point, their effect disa
pears. In particular the dimer order parameterD is expected
to behave asD;jSP

21;DCN and thus vanishes very fast a
the critical point (D→0) is approached.19 In this scenario the
quantum critical fluctuations of the Ne´el order parameter ar
decoupled from the singlet mode and consequently the t
sition is still of O~3! type. Notice that the above analysis
certainly valid provided the 1/N expansion behaves wel
since only then theN→` results are relevant to the physic
situationN51. However, corrections beyond theN5` limit
have not been systematically calculated in the literature,
to the complex nature of the problem.

The purpose of the present work is to analyze the str
ture of the excitation spectrum and the scales that ap
near the quantum critical point in order to test the Sp(N)
field theory predictions. We work directly with the physic
spin problem (N51), and the approximation scheme that w
use is based on a perturbative expansion around the sp
neously dimerized ground state in the quantum disorde
phase. First, let us mention that the numerical impleme
tion of this expansion via the dimer series expansion,21–23as
well as the mean-field24 and diagrammatic treatments,22 con-
firm the stability of the spontaneously dimerized phase
intermediate values of frustration. This means that the lar
N limit captures the essential physics of the problem, e
though it cannot be trusted numerically in regard to the ex
location of the phase boundaries. However, both the se
expansions and the diagrammatic method are not accu
enough to calculate reliably the critical exponents near
the transition into the Ne´el phase, since the exponents are n
expected to vary considerably. For example, the exponen
governing the vanishing of the triplet gap,D;(g2gc)

n, is
n'0.71 for the O~3! and n'0.75 for the O~4! universality
class.14 Such a small difference cannot be confidently
solved with the above methods.25 This is why we will follow
a different route, namely, we will analyze the possibility
having additional soft modes at the transition~in addition to
the triplet mode!.
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The Hamiltonian of the frustrated Heisenberg antifer
magnet is

H5J1(
NN

Si•Sj1J2 (
NNN

Si•Sj , ~2!

whereJ1.0 is the nearest-neighbor andJ2.0 is the frus-
trating next-nearest-neighbor exchange coupling on a sq
lattice ~defined as shown in Fig. 1!. All the spinsSi51/2. In
order to find the excitation spectrum ofH we follow closely
the treatment of Ref. 22, which is briefly outlined below. T
starting point is grouping the spins into dimers~singlets! in
the pattern, shown in Fig. 1. This configuration~which is
degenerate with three others, obtained by translation by
lattice site, rotation byp/2, and rotation plus translation! was
found to be stable in the parameter window (J2 /J1)c1
,J2 /J1,(J2 /J1)c2.22 Here (J2 /J1)c1'0.38 is the transition
point into the Ne´el phase, the neighborhood of which is th
region we want to analyze. The Hamiltonian can be e
pressed in terms of bosonic operatorst ia

† , a5x,y,z, creat-
ing three degenerate triplet excitations from the singl
formed by each pair of spins, as shown in Fig. 1. The s
index i now numbers the sites on the dimerized lattice. T
effective Hamiltonian describing the interactions betwe
the triplets is22

H5H21H31H4 , ~3!

H25(
k,a

H Aktka
† tka1

Bk

2
~ tka

† t2ka
† 1H.c.!J , ~4!

H35 (
11253

R~k1 ,k2!eabgtk1a
† tk2b

† tk3g1H.c., ~5!

H45 (
1125314

@T~k12k3!~daddbg2dabdgd!

1Udaddbg#tk1a
† tk2b

† tk3gtk4d . ~6!

The following definitions are used in Eqs.~4!–~6!: Ak
5J12(J1/2)jkx

1(J12J2)jky
2J2jkx

jky
, Bk5Ak2J1, and

the matrix elements in the quartic and cubic interact
terms, 4T(k)5J1jkx

12(J11J2)jky
12J2jkx

jky
, 4R(p,q)

52J1gpx
22J2gpx

jpy
2$p→q%, where we have definedjk

5cos(k), gk5sin(k). TheT andR terms describe the intersit
interactions arising from the exchange between the dim
An additional on-site~U! term is also introduced and on
must setU→`. This term reflects the hard-core nature of t
bosons that follows from the kinematic constraint on the H
bert spacet ia

† t ib
† 50. The constraint is necessary in order

ensure that the bosonic Hamiltonian in terms of the trip
operators corresponds uniquely to the original spin Ham
tonian~2! and no unphysical states appear in the final res
The sums overk extend over the Brillouin zone of the dime
ized lattice, i.e.,2p<kx ,ky<p. In this notation the Ne´el
ordering wave vector@(p,p) of the original lattice# is QAF
5(0,p).

The spectrum of Eq.~3! was studied in Ref. 22 by sum
ming selected infinite series in the perturbative expans
The dilute Bose gas approximation was used and the
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11 822 PRB 61VALERI N. KOTOV AND OLEG P. SUSHKOV
grams classified in powers of the density of magnons. T
diagrammatic treatment was also compared with numer
results obtained by high-order dimer series expansions
the agreement was found to be very good. We will theref
present only diagrammatic results from now on. In the qu
tum disordered phase (J2 /J1)c1,J2 /J1,(J2 /J1)c2 the trip-
let excitation spectrumv(k) has a nonzero gapD
5v(QAF), which reflects the fact that the dimer configur
tion is stable. As the critical point (J2 /J1)c150.38 is ap-
proached,D→0, signaling an instability towards a phas
with nonzero Ne´el order parameter. The variation ofD as a
function of frustration is shown in Fig. 2. Let us mention th
as we move close to the critical point from the disorde
side, the density of triplets increases and is approxima
0.3 atJ2 /J150.38. This leads, in principle, to a 30% unce
tainty in the results due to the omitted higher-order diagra
However, the accuracy in the position of the critical po
~0.38! is much better than 30% because of the steep de
dence of the gap onJ2 /J1. Nevertheless, within the accurac
of our calculation, the point whereD'0.05J1 ~see Fig. 2! is
practically indistinguishable from the critical point.

In Ref. 22 it was pointed out that an additional collecti
low-energy mode also exists near (J2 /J1)c1. This excitation
is a bound state of two triplets with total spinS50. We
proceed to investigate its properties in more detail. Introd
ing the total (Q) and the relative (q) momenta of the two
triplets forming the bound state, the two-particle singlet i

uCQ&5(
q,a

C~q,Q!ta,Q/21q
† ta,Q/22q

† u0&. ~7!

The bound-state wave functionC(q,Q) satisfies the integra
equation

FIG. 2. Gaps in the one- and two-particle excitation spec
Solid squares, connected by a solid line, represent the triplet
D5v(QAF), and open circles connected with a dashed line rep
sent the gap of the two-particle singlet bound state atk5(0,0).
Open squares are the singlet binding energy, obtained by sol
Eq. ~8! numerically, while the solid line is the fit, based on th
asymptotic formula, Eq.~11!, with e052.85J1 , e151.20J1.
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@ES~Q!2vQ/21q2vQ/22q#C~q,Q!

5E dp

~2p!2
$22@T~p2q!1T~p1q!#1U%C~p,Q!,

~8!

which can be easily derived by noticing that it is equivale
to the two-particle Schro¨dinger equation: HuCQ&
5ES(Q)uCQ&. Here ES(Q) is the energy of the collective
mode. The function T(q) is the two-particle scattering am
plitude from Eq.~6!:

T~k!5
J1

4
coskx1

~J11J2!

2
cosky1

J2

2
coskxcosky . ~9!

This interaction leads to attraction between two triplets in
singlet channel. In Eq.~8! the ~second-order! contribution of
H3, Eq. ~5!, into binding has been neglected. We ha
checked that the perturbative inclusion of this term inde
leads only to a small change of the results presented be
Since we have to takeU→`, the following replacement
must be made on the right-hand side of Eq.~8!:
U*dp C(p,Q)→l, wherel is a Lagrange multiplier, deter
mined self-consistently from the condition*dq C(q,Q)50.
The bound state exists only if a solution of Eq.~8! can be
found such thatES(Q),Ec(Q)5minq@v(Q/21q)1v(Q/2
2q)#, meaning that it must be below the two-particle sc
tering continuumEc . In Fig. 3 we present the numerica
solution of Eq.~8! for a fixed value of frustration (J2 /J1
50.4) above the critical value. We have also plotted
one-particle spectrumv(k) and the shaded region is the two
particle scattering regionE.Ec(k). The bound state is
stable ~nonzero gap! for all k throughout the disordered
phase, with a minimum of the dispersionES(k) at k5(0,0).
As frustration decreases the singlet gapES(0,0) decreases
and appears to vanish at the critical point, as shown in Fig

.
ap
-

ng

FIG. 3. Triplet magnon excitation spectrum~solid line! and the
singlet bound-state excitation branch~long-dashed line! in the part
of the Brillouin zone near (0,0) andQAF . The shaded area repre
sents the two-magnon scattering continuum. All spectra are ca
lated diagrammatically forJ2 /J150.40.
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We believe that the existence of a singlet bound stat
k5(0,0) reflects thespontaneousnature of the dimer order
Indeed, we have checked that in models where the dimer
tion is explicit, i.e., due to stronger exchange on cert
bonds, the singlet does not exist in the neighborhood ok
5(0,0), meaning that its binding energy is zero. The bind
energy is defined ase(k)5Ec(k)2ES(k). We have found
that e(0,0)50 both in the 2D dimer model~as defined in
Ref. 3! and in the two-layer model~Ref. 4!. Unlike the above
two models, the Hamiltonian equation~2! does not break any
lattice symmetries, but the ground state of Fig. 1 certai
does. It was argued in Ref. 22 that the vanishing of the sp
taneous dimer order at the critical point is intrinsically r
lated to the low-energy singlet mode. Thus we believe t
the singlet bound state reflects the presence of nonzero d
order parameter in theJ12J2 model, i.e., the spontaneou
breakdown of the discrete lattice symmetries in the quan
disordered phase.

Even though we have shown that the gaps for both
triplet and singlet modes vanish at the critical point, this do
not necessarily mean a departure from the O~3! universality
class that is related to the triplet only. In what follows w
will in fact demonstrate that the singlet mode is ‘‘irrelevan
at the critical point. Let us start with the observation that
relevancy~or otherwise! of a soft excitation is directly re-
lated to its spectral weight. We find, as expected, that
spectral weight of the triplets~the residue of the one-particl
Green’s function! stays finite at the transition point. How
ever, the spectral weight of the collective singlet excitation
proportional to the binding energy~which in turn is inversely
proportional to the size of the bound-state wave functio!.
Observe that the lower edge of the two-particle continuum
k5(0,0), Ec(0,0)52v(QAF)52D, and since at the transi
tion point D→0, the binding energy must vanish as we
e(0,0)→0. The variation of the binding energy as a functi
of frustration, obtained by solving Eq.~8! numerically, is
shown in Fig. 2. Since we realize that forD→0 the accuracy
of the calculation decreases, let us find the asymptotic be
ior of e(0,0) in this limit analytically. The one-particle dis
persion around its minimum has the formv2(k)5D2

1c2uk2QAFu2, which is valid close to the critical point. Th
triplet velocity c is known to remain finite at the
transition7–10 Lc;J1, whereL;1 ~in units of the inverse
lattice spacing! is a characteristic momentum. Denoting t
right-hand side of Eq.~8! by F(q,Q), the solution of Eq.~8!
at Q5(0,0) is C(q,0)5F(q,0)@ES22v(q)#21. We define
ES5ES(0,0) ande5e(0,0) from now on. The energy can b
found from the condition*dqC(q,0)50. This integral di-
verges logarithmically atQAF for small binding:

E d2q

2v~q!2ES
;

L

c
1

D

c2
lnS Lc

e D , e!D!J1 . ~10!

We remind ourselves thate52D2ES. When estimating the
integral,F(q,0) can be replaced byF(QAF,0). This quantity
is finite at the critical point that follows from Eq.~9!. From
Eq. ~10! we find the binding energy:

e5e0expS 2
e1

D D , D!J1 ~11!
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wheree0 , e1;J1 are two constants that depend weakly
J2 and are finite at the critical point. The result is similar
the formula for the exponentially small s-wave bound state
a 2D potential.26 However, there are two differences from
the usual expression:26 ~1! the preexponential factor in Eq
~11! does not depend on the ‘‘mass’’D because of the rela
tivistic form of the dispersion near the transition point, a
~2! because of the hard core constraint (U→`) the exponent
e1 cannot be written asu*U dru21, whereU is the attractive
potential@i.e., the expression in the curly brackets in Eq.~8!#.

In Fig. 2 we present a fit of the formula~11! to the nu-
merical solution of Eq.~8!. The major disagreement occu
only close to the critical point forJ2 /J1,0.41. The asymp-
totically exact solution predicts an exponentially fast vanis
ing of e that cannot be captured reliably in the numeric
solution.

The sizeR of the bound state~in units of the lattice spac-
ing! is determined by the spatial extent of the wave functio
R25(qu]C(q)/]qu2, whereC is assumed to be normalized
Evaluating this expression forD→0 leads to

R2;
J1

2

eD
;j exp~Cjj!, j@1, ~12!

wherej;D21 is the correlation length, andCj;1 is a con-
stant. Thus we find, as expected, that the size increases a
binding energy decreases. At the critical pointR diverges
exponentially with the correlation length. This in turn im
plies that the spectral weight of the collective singlet va
ishes exponentially fast. Consequently the singlet bou
state does not influence the triplet dynamics near the crit
point and hence cannot change the O~3! universality class.

Unlike the theory of Read and Sachdev,19 our approach
does not relate directly the gap in the singlet spectrum
the dimer order parameter. The latter quantity is defined
D5^S2•S3&2^S1•S2& ~see Fig. 1!. We have presented
arguments22 that the low-energy singlet affects the dimer o
der by increasing the quantum fluctuations. This effect
comes stronger and stronger as the critical point is
proached, and one could ultimately expect thatD vanishes.
High-order dimer series results support this conclusion,22 but
cannot determine the critical behavior ofD. Thus we cannot
verify the prediction of the large-N theory @which follows
from Eq. ~1!# that D should vanish with a large exponent.

In summary, we have found that in the 2DJ12J2 model
the critical behavior near the transition between the spo
neously dimerized and the Ne´el phase is characterized b
two soft modes—the usual triplet magnon mode and a c
lective singlet excitation. Even though the gap in the sing
spectrum vanishes at the transition, we argue that it does
influence the critical dynamics of triplet excitations. The re
son is that the spectral weight of the singlet vanishes ex
nentially fast at the quantum critical point. We have to no
that our picture is different from that of Read an
Sachdev,18,19 based on the large-N expansion. In Refs. 18
and 19 the singlet gap was found to be much smaller than
triplet one, which in turn leads to the second large len
scale. In our picture the singlet gap is approximately equa
two triplet gaps, and the large length scale comes from
size of the singlet bound state. Nevertheless the final con
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sion concerning the triplet critical dynamics is the same:
O~3! universality class describes the transition between
Néel ordered and quantum disordered phase.

Finally let us mention that in cases where the orde
phase is characterized by incommensurate correlations~e.g.,
the triangular lattice Heisenberg model! the critical behavior
could be quite different. On the semiclassical level the or
parameter has SO~3! symmetry and consequently an O~4!
universality class is possible.27 If indeed the O~4! class is
et

ys
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th
.
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e
e

d

r

realized in this case, the singlet mode should become a t
Goldstone mode at the transition and therefore must h
very different properties from the ones found in the pres
work.
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