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1. Introduction
Organic materials have provided theorists with an

extraordinary laboratory to study the effects of
interactions in solids. Indeed the physics of strongly
correlated electrons is one of the most difficult and
fascinating subjects of condensed matter. From the
theoretical point of view most of our understanding
of this problem is based on Landau’s Fermi liquid
theory.1-3 However, the great theoretical success of
Fermi liquids did not prevent some systems to
stubbornly refuse to follow this canonical theory.
Such systems, loosely referred to as strongly cor-
related systems are of course at the heart of today’s
researches in condensed matter. It was also soon
realized that the effects of interactions could be
greatly enhanced by reduced dimensionality. Thus,
understanding the physics of one and two-dimen-
sional electrons has been the focuss of much theoreti-
cal and experimental efforts. In two dimensions,
interactions lead to spectacular effects such as the
fractional quantum hall effect4,5 and perhaps to high-
temperature superconductivity.6 We however still
mostly lack the theoretical tools to cope with such a
two-dimensional situation. One dimension, however,

is both more radical and more easy to tackle for the
theorist. Here the effects of interactions are at their
maximum and the Fermi liquid is destroyed and
replaced by a new state of matter, the Luttinger
liquid with radically different properties.

Quite naturally, the effort to discover such a state
in nature has been intense. Progress in material
research and chemistry has provided us with won-
derful materials made of chains (see, e.g., ref 7) or
ladders (see, e.g., refs 8 and 9), that could be
candidates for such a one-dimensional physics.
Progress in nanotechnology has given us many
realizations of one-dimensional systems such as
nanotubes,10-12 quantum wires (see, e.g., refs 13-15),
and edge states in quantum Hall effect.16-18 Both in
the organic materials and in these nanoscopic sys-
tems, one could search for one-dimensional effects.
However, among all these systems, the organic
conductors remain a unique challenge. Indeed, be-
cause of their very three-dimensional nature, they
provide not a single one-dimensional electron gas but
a very large number of such one-dimensional systems
coupled together. This allows thus for a unique new
physique to emerge where the system is able to
crossover from a one-dimensional behavior to a more
conventional three-dimensional one.

The organic systems thus offer unique possibilities.
Their richness is also a drawback, since too many
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effects are taking place at the same time, making
more complex the interpretation of the results. I will
thus, in this brief review, make a presentation of the
main theoretical concepts for electrons in one dimen-
sion and briefly discuss how these concepts are
relevant to understanding the quasi-one-dimensional
organic conductors. Even with this limitation, the
material is enormous: effects of interactions in the
normal phase, effects of magnetic fields (field induced
spin density waves), ordered states such as the spin-
Peierls, charge and spin density waves, and the
superconducting phases, the effects of anions and
disorder, and it is of course impossible to cover all
these aspects in this relatively short review. I have
thus chosen to focuss on the properties of the “nor-
mal” phase and the effects of interactions in it. This
is where the organics, as quasi-one-dimensional
systems, are really unique. This is also where the
combined action of chemists, experimentalists, and
theorists is needed the most given the complexity of
the problem. Hopefully, the pursuit of those ideas
might stimulate the creation of new materials that
would be invaluable in helping to understand this
challenging physics. This review is thus written with
chemists or experimentalists, rather than theorists,
in mind and thus will focuss on concepts and skip
all technicalities. I will give references to more
technical reports on one-dimensional interacting fer-
mions where the reader can find all of the calcula-
tions made in detail.

The plan of this review is as follows. In section 2,
I expose the two main concepts for interacting
electrons: Fermi liquids in high dimension and
Luttinger liquids in one dimension. I discuss in detail
the main properties of a Luttinger liquid and the
experimental signatures of its existence. In section
3, I discuss the effects of the lattice on the electronic
properties, namely the physics of Mott insulators.
These three concepts are the essence of what is to be
expected in an interacting one-dimensional system
such as the organics. In section 4, I consider the
physics of many coupled one-dimensional chains and
the two main phenomena that it entails: the dimen-
sional crossover and the deconfinement transition.
In section 5, I discuss the application of the above
concepts to the quasi-one-dimensional organic con-
ductors. Conclusions can be found in section 6
together with a wish list of what new type of
compounds could be useful in helping to solve some
of the puzzles of these families.

2. Basic Interaction Effects

Let me first expose the main theories describing
the effects of interactions. It is of course impossible
to cover all of the aspects of the problem. So I will
just recall the salient points of the Fermi liquid
theory and the Luttinger liquid theory. The experi-
mental consequences specific to the organics will be
found in section 5.

2.1 Fermi Liquids
The effects of interactions in “high”-dimensional

systems have been masterfully explained by Landau’s

Fermi liquid theory.1-3 This theory has been the
cornerstone of our understanding of interacting Fer-
mi systems for the last 50 years and has been
explained in detail in many textbooks.19-22 I will thus
give here only a sketch of this theory and refer the
reader to the aforementioned textbooks for more
details.

The remarkable result of Fermi liquid theory is
that not much changes when interactions are present
and that the properties of the system remain es-
sentially similar to those of free fermionic particles.
The electrons themselves are strongly interacting;
thus, the elementary particles are not the individual
electrons anymore but electrons dressed by the
density fluctuations around them. Just as in electro-
dynamics, an electron dresses by surrounding itself
by a photon cloud, and here the electrons surround
themselves with particle-hole excitations (see Figure
1).

Since these excitations are made of an electron plus
density fluctuations, they behave as fermions. These
individual objects are called quasiparticles. Only a
residual interaction, described by the so-called Lan-
dau parameters, exists between the quasiparticles.
Thus, the occupation number nk of a state with
momentum k still has a discontinuity at the Fermi
surface. The amplitude of this discontinuity is not 1
anymore but a number Z that represents the “frac-
tion” of the electron that remains in this quasiparticle
state. The more interacting the system is, the more
scrambled it is and thus the smaller the discontinuity
(see Figure 1).

The quasiparticles have a “well-defined” relation
between frequency ω and momentum ω ) E(k), which
simply reflects the fact that the wave function of a

Figure 1. (a) For free electrons the occupation nk has a
discontinuity of amplitude 1 at the Fermi surface. The
spectral function A(k,ω) is a delta function peak (c),
showing excitations without damping and a well-defined
frequency-momentum relation ω ) ê(k). The excitations are
made of the individual electrons of a given momentum. (b)
In a Fermi liquid, the occupation nk still has a discontinuity
at the Fermi wavevector k ) kF, but with a reduced
amplitude Z < 1. The excitations are electrons dressed by
density fluctuations. These excitations become sharper (d)
when they get closer to the Fermi surface. The total weight
in these excitations (quasiparticles) is Z.
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quasiparticle has a time dependence e-iE(k)t. Of course,
E(k) is not the bare energy of an electron. The
linearization of this new dispersion close to the Fermi
level E(k) = E(kF) + kF/m* (k - kF) defines the
effective mass m* of the quasiparticle. Because they
are not completely free the quasiparticle excitations
also have a lifetime τ. Thus, the Fourier transform
of the time dependence of the wave function of the
excitation (t > 0)

is not just a delta function but a Lorentzian of width
1/τ centered around ω ) E(k) (see Figure 1). Since
the lifetime is due to the scattering between quasi-
particles close to the Fermi energy, quasiparticles
have less and less phase space to scatter and the
lifetime diverges when one goes closer to the Fermi
level. Landau remarkably has shown from simple
phase space arguments that the lifetime diverges in
d ) 3 as 1/E(k)2. Thus, the lifetime is always larger
than the period close the Fermi level, and thus, the
quasiparticle concept is well defined. In fact, the
excitations become better and better defined when
one approaches the Fermi level. For most properties,
one can simply ignore the lifetime, that is mostly
important when dealing with properties such as
transport. Because it varies as 1/E(k)2, it naturally
gives a resistivity proportional to T2. Note that T2

holds for dimensions greater or equal to two. In one
dimension the same calculation would give F(T) ∼ T
because of phase space restriction. As we will see in
section 3, this result is incorrect in one dimension
and is strongly modified by the presence of interac-
tions.

The natural separation of energy scales in solids
is what makes the concept of quasiparticles so useful.
For practical purposes, one is practically always
“close” to the Fermi level, since the ratio temperature/
Fermi energy is usually about 10-2 in a standard
metal. At these energies, the quasiparticles are the
correct well-defined and “free” excitations, whereas
the individual electrons themselves are strongly
coupled. The spectral function A(k,ω), which gives the
probability of finding an electron with a momentum
k and an energy ω, thus contains (Lorentzian) peaks
centered at ω ) E(k) that becomes sharper and
sharper when k goes to kF. The total weight of these
peaks is Z and comes from the part of the excitations
that is in the quasiparticle state. The rest 1 - Z is
in a continuous background that has no well-defined
structure but can be safely ignored, close to the Fermi
surface compared to the well-defined peaks. Since
only the sharp excitations have a reason to give a
discontinuity in n(k) at kF (in a similar way than for
free electrons), the jump in n(k) at k ) kF has an
amplitude Z and not unity any more as for free
electrons.

Self-consistent3 and renormalization23 proofs of
Fermi liquid theory have been given. However, the
great strength of Landau’s theory resides in the fact
that it is not restricted to weak coupling. The exist-
ence of quasiparticles, which have fermionic nature
and the above properties, is extremely robust and
relies only on phase space arguments linked to the

very existence of the discontinuity at the Fermi
surface. It can work even for extremely strong
interactions. This is fortunate since for typical sys-
tems Coulomb interaction is neither dominant nor
negligible compared to the kinetic energy. This is
what makes interactions so difficult to treat: strictly
speaking one cannot really use any perturbation
theory. Fermi liquid theory allows us to circumvent
this difficulty. To prevent the theory from applying,
one thus needs either exceedingly strong interactions
or special conditions such that some other instability
occurs (see, e.g., ref 24).

To complete our brief tour of Fermi liquid, let us
note two additional facts. First, in addition to these
individual quasiparticle excitations, other types of
excitations exist in an interacting system. One can
define collective excitations that describe the re-
sponse of the system to a disturbance of the density
or the spin density. For example, for the charge, if
only short-range interactions are present (as is the
case, e.g., in helium) this collective excitation is the
zero sound and represents the way a density wave
can propagate (with or without damping) in the
electron gas. When long-range (Coulomb) interactions
are present, this is the plasmon excitation.20,21 Thus,
three main classes of excitations exist: the charge
and spin collective modes, bosonic in nature since
they are simple fluctuations of density or spin density
and the individual collective excitations, fermionic
in nature.

2.2. Luttinger Liquids
Fermi liquids are thus the paradigm to describe

interacting electrons in three-dimensional systems.
If the motion of the electrons is one-dimensional,
drastically new effects occur. In one dimension, as
shown in Figure 2, an electron that tries to propagate
has to push its neighbors because of electron-
electron interactions. So no individual motion is
possible. Any individual excitation has to become a
collective one. Thus, no single particle excitations can
exist. This “collectivization” of excitations is obviously
a major difference between the one-dimensional
world and higher dimensions and invalidates any
possibility to have a Fermi liquid theory work. For
fermions with spin, this is even worse. Because only
collective excitations exist, it implies that a single
fermionic excitation has to split into a collective
excitation carrying charge (like a sound wave) and a
collective excitation carrying spin (like a spin wave).
These excitations have in general different velocities,

e-iE(k)te-t/τ (1)

Figure 2. (a) In high dimensions, nearly free quasiparticle
excitations, that look nearly as individual fermionic objects
exist since a particle can move “between” the others. (b)
In a one-dimensional interacting system, an individual
electron cannot move without pushing all of the electrons.
Thus, only collective excitations can exist.
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so the electron has to “break” into two elementary
excitations. These properties, quite different from the
ones of a Fermi liquid, are the essence of the
Luttinger liquid, which I now discuss.

I will not give here a full derivation of the Luttinger
liquid properties since many good reviews25-31 and
textbooks32,33 exist in the literature but will recall
only the salient points.

2.2.1. Basic Concepts
The collective excitations forming the basis of the

Luttinger liquid are the particle-hole excitations
where an electron is taken from below the Fermi level
and promoted above. Since one destroys a particle
with momentum k and creates some particle with
momentum k + q, the momentum of the excitation
is well fixed and equal to q. The energy of such an
excitation, on the contrary, depends in general on
both k and q. If we look at excitations at small q, the
energy of a particle-hole excitation is

where ê(k) should be occupied and ê(k + q) empty.
For a standard quadratic dispersion

It is easy to check that for k∈ [kF - q, kF] the average
value E(q) of Ek(q) and the dispersion δE(q) ) max-
(Ek(q)) - min(Ek(q)) are

The behavior of the particle-hole spectrum in one
dimension is shown in Figure 3. Note the difference
with the one in d g 2. Regardless of the dispersion
relation ê(k) provided it has a finite slope at the

Fermi level: (i) the average energy of a particle-hole
excitation is only dependent on its momentum q thus
the particle-hole excitations are excitations with
well-defined momentum q and energy E(q); (ii) the
dispersion in energy δE(q) goes to zero much faster
than the average energy. This is the same situation
as the one we discussed for the Fermi liquid quasi-
particles. It means that in one dimension the particle-
hole excitations are well-defined “particles” (that is,
objects with well-defined momentum and energy),
which become longer and longer lived when the
energy tends to zero. Because these excitations are
made of the destruction and creation of a fermion,
they are bosonic in nature. These bosonic “quasipar-
ticles” that represent density (or spin density) fluc-
tuations are thus the good excitations in one dimen-
sion. These collective excitations are at the heart of
the properties of the Luttinger liquid.

All excitations of the system are thus sound waves
of density and spin density. Their energy is given by
a standard elastic-like Hamiltonian. The Hamilto-
nian of the system is the sum of a part containing
only charge excitations and one containing only spin
excitations

where Hν (ν ) F,σ) is of the form

where φν and Πν are conjugate variables [Πν(x), φν(x′)]
) ipδ(x - x′). The form (5) immediately shows that
an excitation that is looking like a free electron (i.e.,
that carries both charge and spin) cannot exist. This
charge-spin separation is one important property of
the Luttinger liquids. uF,σ are the velocities of these
collective excitations. In the absence of interactions
uF ) uσ ) vF. Interactions of course renormalize the
velocities of charge and spin excitations, as in higher
dimensions. KF,σ are dimensionless parameters de-
pending on the interactions. For systems with spin
rotation symmetry, Kσ ) 1 (for repulsive interac-
tions), whereas the spin excitations are gapped for
attractive interactions. KF ) 1 in the absence of
interactions and quite generally KF < 1 for repulsive
ones.

The three parameters uF, uσ, and KF completely
characterize the low energy properties of a one-
dimensional system. They can of course be computed
for a given microscopic model as a function of the
interactions,34-39 but as was shown by Haldane,40-42

the form (5) is the generic low energy form. This
means that (5) and the parameters uF, uσ, and KF play
a role similar to the one of the Landau Fermi liquid
Hamiltonian (and Landau parameters) in higher
dimensions. The fact that one has again in one
dimension a concept equivalent to the Fermi liquid,
i.e., a generic description of the low energy physics
of the interacting problem, is of course an extremely
important point. This removes part of the caricatural
aspects of any modelization of a true experimental
system. This use of the Luttinger liquid is reminis-
cent of the one made of Fermi liquid theory. Very

Figure 3. Particle-hole spectrum for two- or three-
dimensional systems (a) and for one-dimensional ones (b).
In one dimension, contrary to higher dimensions, particle-
hole excitations have asymptotically for small q both a well-
defined momentum and energy. Low energy modes exists
around q ∼ 0 and q ∼ 2kF.

Ek(q) ) ê(k + q) - ê(k) (2)

ê(k) )
k2 - kF

2

2m
(3)

E(q) )
kFq
m

) vFq

δE(q) )
q2

m
)

E(q)2

mvF
2

(4)

H ) HF + Hσ (5)

H ) 1
2π ∫ dx [uνKν(πΠν(x))2 +

uν

Kν
(∇φν(x))2] (6)
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often calculations are performed in solids starting
from “free” electrons and adding important perturba-
tions (such as the BCS attractive interaction to obtain
superconductivity). The justification of such a pro-
cedure is rooted in the Fermi liquid theory, where
one does not deal with “real” electrons but with the
quasiparticles, which are intrinsically fermionic in
nature. The mass m* and the Fermi velocity vF are
then some parameters. The calculations in d ) 1
proceed in the same spirit with the Luttinger liquid
replacing the Fermi liquid. The Luttinger liquid
theory is thus an invaluable tool to tackle the effect
of perturbations on an interacting one-dimensional
electron gas (such as the effect of lattice, impurities,
coupling between chains, etc.) as we will see in the
following sections.

Let me now turn to a summary of the properties
of the excitations in the Luttinger liquid. The field
φF (respectively φσ) is related to the density (respec-
tively spin density) of particles. Since the low energy
modes are for q ∼ 0 and q ∼ 2kF (see Figure 3), the
important density modes will be around these two
wavevectors. The long wavelength part (q ∼ 0) of the
density is simply

whereas the 2kF part is given by

Thus, if φ was a constant, one would have density
waves of wavevector 2kF for the up and down spins.
φF gives the phase of the charge density whereas φσ
is the dephasing between the v and V density waves.
As shown in Figure 4, if φσ ) 0, the two waves are in
phase. The spin density then is zero and the charge
is modulated. On the contrary, if φσ ) π/x8, the two

densities are in opposite phase, and thus, the total
charge is constant whereas the spin is modulated.

Of course, this perfect wave exists only if the field
φ orders. For the Hamiltonian (6), the field φ fluctu-
ates, which means that the precise phase of the wave
changes with space and time and thus the correlation
between different points of the wave are lost. As we
will see in the next section, this gives rise to a power
law decay of the various density correlations.

Excitations corresponding to the addition or ex-
traction of a single fermion (single particle excita-
tions) have quite special properties in a Luttinger
liquid since they cannot exist as nearly free excita-
tions. Because of (7), adding a charge (or a spin) at
point x0 (i.e., F(x) ) δ(x - x0)) corresponds to creating
a kink in φF (φσ) as shown in Figure 5.

Indeed, since

one sees that the step in φ is quantized and is a
measure of the total charge added in the system. The
converse is of course true: kink-like excitations for
φ can be interpreted as some charge carrying excita-
tions whose charge (not necessarily integer) is given
by (9). This will be specially important to describe
Mott insulators in section 3.

As is physically obvious, for repulsive interactions,
the system tends to a state with antiferromagnetic
(also called spin density wave SDW) correlations. Let
me again caricature such a state by considering that
the φ are constants. If now one removes a fermion, it
means that at a single site one creates a kink both
in φF and φσ. These two excitations are free to
propagate completely independently. In the fermion
language, let us see what happens if we let the hole
propagate as shown in Figure 6a.

In that case, one reaches the state of Figure 6b. At
one point, there is a site where a charge is lacking,
but the spin environment is purely antiferromag-
netic. This corresponds to an excitation that is a kink
in φF but no disturbance in φσ. This excitation is
known as a holon. In another part of the system,
there is a place where no charge is missing but we
have two neighboring spin up. This is a spin excita-
tion with a spin 1/2 compared to the ground state.
This excitation is known as a spinon, and corresponds
to a kink in φσ. In one dimension, we see that the
spinon and holon are free to separate, and thus, any

Figure 4. Semiclassical representation of the density. (a)
For a spinless system, the field φ gives the position of the
maxima of a wave of density. (b) For systems with spins,
φF gives the maxima of charge, whereas φσ is the offset
between the spin v and V density waves. Of course, the fields
φ usually fluctuate in space and time so the perfect order
in the density waves is destroyed (usually algebraically).

Figure 5. A kink in φ at point x0 corresponds to the
creation of a particle at this point. The amplitude of the
kink gives the charge (or the spin for φσ) of the particle.

∫-∞
x>x0 dx′ F(x′) ) 1 ) -1

π
[φ(x) - φ(-∞)] (9)

Fq∼0(x) ) -x2∇φF(x)/π

σq∼0(x) ) -∇φσ(x)/(πx2)
(7)

Fv(x) ∝ cos (2kFx - x2φF - x2φσ)

FV(x) ∝ cos (2kFx - x2φF + x2φσ)
(8)
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single-particle excitation dissociates into these el-
ementary excitations. In higher dimension, our car-
toon shows that because of the presence of other
chains the spinon and the holon would be separated
by a string of frustrated bonds. Indeed, all of the
spins between the spinon and the holon are parallel
to the ones of the neighboring chains. This costs the
antiferromagnetic exchange, and thus, the spinon
and holon are held together by a string whose energy
grows linearly with the distance. They are thus
confined and their bound state is the single-particle
fermionic excitation, showing that in dimension
greater than one single particle like excitations are
good excitations.

2.2.2. Physical Properties
Let us now examine the physical properties of a

Luttinger liquid. I refer the reader to the above-
mentioned reviews for derivations of the results and
a complete description. The compressibility of the
system is constant and given by

where κF
0 is the compressibility of the free electron

gas. As can be expected it depends only on the charge
sector. The uniform magnetic susceptibility is also
constant and given by

For spin isotropic systems, the Luttinger parameter
Kσ is equal to one. Non analytic corrections to the
magnetic susceptibility are present at finite magnetic
field.43-45 The results of the thermodynamics quanti-
ties are very similar to the Fermi liquid ones, where
the constant compressibility and susceptibility are
simply renormalized independently by the interac-
tions.

The difference between Fermi liquids and Lut-
tinger liquids shows in its full glory when one looks
at correlation functions. Indeed in that case, the fact
that the free excitations of the system are the
collective charge and spin bosonic modes and not the
individual fermion-like excitations shows clearly.
First, as we already discussed, these excitations have
in general two different velocities so one can expect
singularities in the correlation functions both for ω
) vFk and ω ) vσk. Second, because the system is
fighting between particle-particle correlations and
particle-holes ones, it is on the brink of an instability
without really being able to order and thus exhibits
power-law correlations. Different regimes exist de-
pending on the interactions. From now on, I focuss
on repulsive interactions that are invariant by spin
rotation (for the effects of spin anisotropy in the
interactions see, e.g., ref 46). In that case, the spin
sector is not gapped and Kσ ) 1. For example, the
total density (δF ) F - F0) or spin correlation
functions in a Luttinger liquid with spins are given
by (for simplicity I take here uF ) uσ ) u)

where x and τ are the space and (imaginary) time
coordinates. R is a short distance cutoff of the
order of the lattice spacing, yR ) u|τ| + R and R )
[x2 + yR

2]1/2. F0 is the average density of electrons, and
the A are non universal amplitudes. The logarithmic
corrections come from the presence of a marginal
operator at the spin isotropic point.45-50 Since KF <
1, we see from eq 12 that charge/spin fluctuations
lead to divergent susceptibilities at 2kF. The domi-
nant correlation is thus a 2kF spin density wave. This
is physically very satisfying since antiferromagnetism
is the physics that one would expect for electrons with
repulsion. Other phases are of course possible for
more complex interactions. Note that the modulation
of the spin density wave is 2kF, which is an incom-
mensurate modulation. This is the wavevector that
one would get by simply assuming an antiferromag-
netic order between the holes.51

Each harmonic (q ∼ 2kF, q ∼ 4kF) decays with a
different power-law. The amplitudes Ai are nonuni-
versal objects.52 They depend on the precise micro-
scopic model and even on the parameters of the
model. For example, for the so-called Tomonaga-
Luttinger model with a strictly linear dispersion
relation, all amplitudes except A2 are strictly zero,
since only q ) 0 and q ) 2kF terms exist. Contrary
to the amplitudes An, which depend on the precise
microscopic model, the power-law decay of the vari-

Figure 6. In a one-dimensional system, a single-particle
excitation (a) is converted into an excitation that contains
only charge degrees of freedom (holon) and spin degrees of
freedom (spinon). This is represented schematically in (b).
In (c) one sees that in a higher-dimensional system the
spinon and holon would be held together by a string whose
energy cost grows with distance, because of the strings of
ferromagnetic links. These two excitations thus form a
bound that is the single-particle fermionic excitation.

κF /κF
0 )

KF vF

uF
(10)

κσ /κσ
0 )

Kσ vF

uσ
(11)

〈δF (x,τ) δF (0)〉 )
KF

π2

yR
2 - x2

(x2 + yR
2)2

+

F0
2 A2 cos (2kF x)( R

R )KF+1
log-3/2 (R/R ) +

F0
2 A4 cos (4kF x) ( R

R )4KF
+ ‚ ‚ ‚

〈Sµ(x,τ)Sµ(0)〉 )
Kσ

4π2

yR
2 - x2

(x2 + yR
2)2

+

A′2 cos (2kF x) ( R
R )KF+1

log1/2 (R/R ) + ‚ ‚ ‚ (12)

5042 Chemical Reviews, 2004, Vol. 104, No. 11 Giamarchi



ous terms are universal. They all depend on the
unique Luttinger coefficient KF.

These powerlaw singularities, that are character-
istic of the Luttinger liquid behavior, can be directly
probed in experiments. The divergence of the spin
correlations at Q ) 2kF is given by

where W is the bandwidth. Note that the charge
susceptibility at 2kF has in fact the same power law
divergence and is only suppressed by logarithmic
factors compared to the spin susceptibility. This
divergence in the spin correlations can be probed for
example in an NMR experiment. Indeed, the relax-
ation time T1 in an NMR experiment is sensitive to
the local spin correlation function

where I ø is the imaginary part of the spin suscep-
tibility and Ah is the hyperfine coupling constant. The
local spin-spin correlation function has two contri-
butions (one from the q ∼ 0 modes the other from
the q ∼ 2kF ones) that give53

The first term is nothing but the Korringa law that
holds in Fermi liquids, for a susceptibility that
becomes a constant at low temperatures. This is
indeed the case even in d ) 1 for the q ∼ 0 modes. In
a Fermi liquid, this is all there is. In a Luttinger
liquid, the 2kF contribution dominates (KF < 1) at low
temperatures and one expects strong deviations
compared to the Korringa law. Neutrons experiments
can also be used to probe the powerlaw divergence,
but they are not yet a useful probe for organic
compounds. Such neutron scattering experiments
have probed with success the power-law correlations
in spin chains.54

The retarded single-particle Green’s function, whose
imaginary part gives the spectral function, is a direct
measure of single particle excitations. In a Luttinger
liquid, it shows also a powerlaw decay at Fourier
components around (kF, (3kF, (5kF.51,55-58 Its ex-
pression is (only the dominant (kF singularity is
shown here)

where [ ]+ is the anticommutator, Y(t) is the Heaviside-

function, r ) (1 denotes particles with momentum
close to (kF, and s is the spin. ψrs

† (x, t) is the
creation operator of a particle at point x and time t.
The exponent is

For a spin rotation invariant system, K σ
/ ) 1 and

γσ ) 0. The imaginary part of the retarded correlation
function can be directly measured in a photoemission
experiment. I discussed the spectral function of a
Fermi liquid in section 2.1, which is essentially a
Lorentzian. The spectral function of a Luttinger
liquid (e.g., for right movers r ) 1) is quite different
and given by

The Fourier transform gives the structure

where ú ) ∑νγν. Complete expressions can be found
in refs 55 and 56. The spectral function is shown in
Figure 7.

There are two important things to note in this
figure. First, there is not a single peak but two, at
frequencies ω ) uFk and ω ) uσk. There are only
peaks for the holon and the spinon. This clearly
shows that no individual excitation exists in the LL
but that the individual fermion decomposes in these
elementary objects as discussed in section 2.2.1. More
importantly, since by accident the two velocities uF
and uσ could be equal, the shape of the peak is not
Lorentzian. It corresponds to the usual power law
divergence with an exponent controlled by the LL
parameter KF.

The integrated (over k) intensity can also be
computed and measured. For a Fermi liquid, it
coincides with the density of states of single particle
excitations at the Fermi level and has a discontinuity

ø(Q ) 2kF, ω ) 0, T) ∼ TKF-1 log1/2 (W/T) (13)

1/T1 ) Ah
2T∑

q

I ø(q,ω)

ω
(14)

1/T1 ∝ T + TKF (15)

Gr,s
ret(x, t) ) -iY(t) 〈[ψrs(x, t),ψrs

† (0, 0)]+〉

) -i
Y(t)

2π
eirkFx lim

εf0 {R + i(vFt - rx)

ε + i(vFt - rx)
×

∏
ν)F,σ

1

xR + i(uνt - rx)
( R2

(R + iuνt)2 + x2)γν

+

( x f -x
t f -t )} (16)

Figure 7. Spectral function (denoted F+(q,ω) in this figure)
of right movers in a LL. In this figure, VF (respectively Vσ)
denotes the charge (respectively spin) velocity (denoted uF
and uσ in this review). Instead of a Lorentzian peak, one has
power law divergences with an exponent that depends on
the Luttinger liquid parameter. There are two peaks: one
corresponding to the holons (ω ∼ uFq) and one to the
spinons (ω ∼ uσq). Each peak has a power law structure.
This is markedly different from the spectral function in a
Fermi liquid. (From ref 56; Copyright 1993 by the American
Physical Society.)

γν ) (Kν + K ν
-1 - 2)/8 > 0 (17)

AR,s(q,ω) ) - 1
π

Im GR,s
ret (kF + q,ω) (18)

AR,s(q,ω) ∼ (ω - uσq)ú-1/2|ω - uFq|(ú-1)/2(ω + uFq)ú/2

(19)

Framework for Quasi-One Dimensional Systems Chemical Reviews, 2004, Vol. 104, No. 11 5043



of amplitude Z at the Fermi level. For a Luttinger
liquid, one finds

The integrated intensity goes to zero at the Fermi
level, which signals again that no single-particle
excitations do survive in the LL. Note that this does
not mean that the system is an insulator since charge
carrying excitations do exist as we will see in the next
section. Besides photoemission experiments, this
quantity can be probed by scanning tunneling mi-
croscope. Transport through highly resistive contacts
is also a direct measure of the single particle density
of states. Such probes have been used for nano-
tubes11,12 and quantum wires.14,15 For the organics,
a way to probe this quantity is to look at the
transport along the least conducting axis (see, e.g.,
ref 7). I will come back to the experimental conse-
quences for the organic compounds in section 5.

3. Mott Insulators
So far I have dealt with Luttinger liquids. However,

in the case when the density of carriers is com-
mensurate with the lattice, another interaction-
induced phenomenon occurs. Indeed, in that case, the
system can become an insulator. This is the mecha-
nism known as Mott transition59,60 and is a metal-
insulator transition induced by the interactions since
a free electron gas would remain metallic with a
partly filled band. The physics of a Mott insulator is
well-known and illustrated in Figure 8.

If the repulsion U among the particles is much
larger than the kinetic energy t, then the plane wave
state is not very favorable since it leads to a uniform
density where particles experience the maximum
repulsion. It is more favorable to localize the particles
on the lattice sites to minimize the repulsion and the
system is an insulator for one particle per site. If the
system is weakly doped compared to a state with one
particle per site the holes can propagate without
experiencing repulsion, the system is thus a metal
again but with a number of carriers proportional to
the doping. The above argument shows that, in high
dimensions, one usually needs a finite (and in general

of the order of the bandwidth) repulsion to reach that
state. For further details on the Mott transition in
higher dimension see refs 61 and 62.

It is important to note that one particle per site is
not the only commensurate filling where one can in
principle get a Mott insulator but that every com-
mensurate filling can do in principle depending on
the interactions. This is illustrated in Figure 9.

It is indeed easy to see that for large enough onsite
(U) and nearest neighbor (V) repulsion a quarter-
filled system is an ordered Mott insulator.

3.1. Basic Ideas
Although one can of course work out the Mott

transition from microscopic models such as the Hub-
bard model,63 the Luttinger liquid theory provides a
remarkable framework to take into account the
effects of a lattice and describe the Mott transition.
To incorporate the Mott transition in Luttinger liquid
description, we just need to remember that in the
presence of a lattice the wavevector is in fact defined
modulo a vector of the reciprocal lattice (that is, in
one dimension a multiple of 2π/a with a the lattice
spacing). It means that in an interaction process the
momentum should now only be conserved modulo a
vector of the reciprocal lattice. Thus, in addition to
the interaction processes that truly conserve momen-
tum k1 + k2 ) k3 + k4, one can now have processes
such that k1 + k2 - k3 - k4 ) Q where Q is a vector
of the reciprocal lattice. The electronic system can
transfer momentum to the lattice and get it back.
These processes are well-known and called umklapp
processes.43 Since umklapps do not conserve momen-
tum, they are the only ones that can lead to a finite
resistivity and are responsible for the T2 law in a
Fermi liquid64 (or T in one dimension in a simple (and
incorrect) Boltzmann approximation). For these pro-
cesses to contribute at low-energy, one should of
course look whether they occur for electrons on the
Fermi surface. As shown in Figure 10, in high
dimension, it is relatively easy to get such processes.

The situation is quite different in d ) 1. Since the
Fermi surface is reduced to two points, conserving
both momentum and interactions is not easy. If one
wants the particles at the Fermi surface, imposing
k1 + k2 - k3 - k4 ) 2π/a can only be realized for 4kF

Figure 8. (a) If there is one particle per lattice site and
the repulsion among particles is strong, a plane wave state
for the particles is energetically unfavorable since the
density is uniform. It is better to localize the particles on
each site. Such a state is a Mott insulator since hopping
would cost an energy of the order of the interaction U
among particles. All of these effects concern the charge.
For the spin degrees of freedom, virtual hopping leads to
superexchange and favors antiferromagnetic order. (b) If
the system is doped the extra electrons or holes can
propagate without any energy cost from the interactions
and gain some kinetic energy ∼2t. The system is then
metallic.

n(ε) ∝ |ε|1/4[KF+K F
-1]-1/2 (20)

Figure 9. In a model with onsite interactions (U), a Mott
insulator only exists for one particle per site (half filling).
Nearest neighbor interactions V can stabilize the insulating
state for up to one particle every two sites (quarter filling).
And so on with longer ranger interactions (e.g., next
nearest neighbor interactions V2). The longer the range of
the interaction, the higher the commensurability for which
one can have a Mott insulator.
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) 2π/a, that is, at half-filling. Physically these terms
do correspond to the scattering of two fermions that
have a momentum -kF on the other side of the Fermi
surface with a momentum transfer of 4kF from the
lattice. This process is shown in Figure 10b. For one
fermion per site the charge part of the Hamiltonian
becomes65,66 because of the umklapp process, instead
of eq 6

whereas the spin part is unchanged. The coefficient
g3 is the strength of the umklapp process and of
course depends on the microscopic model used.
Although the coefficient g3 depends on the precise
microscopic model, the form of the Hamiltonian (sine-
Gordon) is universal.

In fact, umklapps are not restricted to one particle
per site67,68 but occur for any commensurate fillings.
The umklapp terms can be viewed as the action of
the periodic potential due to the Lattice on the
density of electrons. For one particle per site the
lattice has a periodicity of 4kF

which, keeping only the nonoscillating terms, gives
back the umklapp term (21). In addition to recovering
the umklapp for one particle per site, the full formula
for the density52,67 shows us that we can get an
umklapp term for any commensurate density. Indeed,
if 2pkF ) 2πq/a (where p and q are integers) then
the corresponding term stays in the Hamiltonian. For
even commensurabilities (p ) 2n) this gives a term

Doping causes a slight deviation from this com-
mensurate value of kF so in the presence of doping
one can thus write quite generally the umklapp as

where n is the order of the commensurability (n ) 1
for half-filling, one particle per site; n ) 2 for quarter-
filling, one particle every two sites and so on). The
coupling constant g1/2n is the umklapp process cor-
responding to the commensurability n and δ the

deviation (doping) from the commensurate filling.
Odd commensurabilities can be treated in the same
way. In that case, the spin part cannot be elimi-
nated.68 I concentrate here on even commensurabili-
ties for simplicity and since it is the case correspond-
ing to the Bechgaard salts.

The derivation using the LL expression for the
density cannot give access to the amplitudes and thus
to the coefficients g1/2n. The amplitude of the umklapp
depends on the precise microscopic interaction. For
the half-filled case, g1/2 is of the order of the interac-
tion U. The higher commensurabilities can also be
understood physically. Let us consider a quarter-
filled band such that 8kF ) 2π/a (this corresponds to
n ) 2 in the above notations). To produce an
umklapp, one needs to transfer four particles from
one side of the Fermi surface to the other to get the
proper 8kF momentum transfer. This can be done in
higher-order perturbation terms by doing three scat-
terings as shown in Figure 11.

For weak interactions the amplitude of such a
process would thus be of order U(U/W)2, where W is
the bandwidth. In addition to the above two simple
processes, there is a additional one that is quite
important for the Bechgaard salt family. Indeed, in
these systems, the stack is slightly dimerized.7 This
dimerization opens a gap in the middle of the band
as indicated in Figure 12.

Thus, although the system is originally quarter
filled, the dimerization turns the system into a half-
filled band. This means that, even if the system is
quarter filled, a nonzero g1/2 exists in addition to g1/4.
If ∆d is the dimerization gap, the strength of such
umklapp is g1/2

d ) U(∆d/W). Note that contrary to
what happens in a true half filled system, the
umklapp coefficient is now much smaller than the
typical interaction U. This allows us to get a small

Figure 10. (a) In high dimensions, one can adjust angles
and easily get umklapp processes, practically regardless
of the filling (provided |kF| is large enough). (b) In one
dimension, since there is no angle to play with, one gets
an umklapp process where two particles are scattered from
one side of the Fermi surface to the other only if 4kF )
2π/a, that is, for half-filling. Higher order umklapps for
other commensurate fillings are also possible.

Figure 11. A quarter-filled umklapp can be constructed
from a third-order perturbation theory in the interaction
U. The processus needs two intermediate states of high-
energy W of the order of the bandwidth. Thus, the ampli-
tude for such a process is of order U(U/W)2.H ) H0 +

2g3

(2πR)2∫dx cos (x8φF(x)) (21)

H ) ∫ dx V(x)F(x) ) V0∫ cos (4kF x)F(x) (22)

H1/2n ) g1/2n∫dx cos (nx8φF(x)) (23)

H1/2n ) g1/2n∫dx cos (nx8φF(x) - δx) (24)
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Mott gap even if the interactions are large. In the
presence of dimerization, a quarter filled system can
thus be a Mott insulator either because of the half-
filling umklapp (that exists now because of the
dimerization) or because of the quarter-filled one.
Which process is dominant depends of course of the
strength of the dimerization and of the interactions
and has important consequences on the physics of
the system.69

The Hamiltonian (24) thus provides a complete
description of the Mott transition and the Mott
insulating state in one dimension. To change the
physical properties of a commensurate system, one
has thus two control parameters. One can vary the
strength of the interactions while staying at com-
mensurate filling or vary the chemical potential (or
filling) while keeping the interactions constant. One
can thus expect two different classes of transition to
occur.

3.2. Physical Properties

Let us first deal with the transition where the
filling is kept commensurate and interaction strength
is varied (Mott-U transition). In that case, δ ) 0 and
eq 24 is just a sine-Gordon Hamiltonian. As is well-
known, this Hamiltonian has a quantum phase
transition at T ) 0 as a function of the Luttinger
parameter KF and thus as a function of the strength
(and range) of the interactions. This transition is a
Berezinskii-Kosterlitz-Thouless (BKT) transition.47

The critical value is KF
/ ) 1/n2 where n is the order of

the commensurability. For larger values of KF, the
cosine is irrelevant and the system is massless. For
KF < KF

/, the cosine is relevant and the system is
massive. This opening of a gap corresponds to the
Mott transition and the system becomes an insulator.
The larger the commensurability the smaller KF
needs to be for the system to become insulating. For
a commensurability n ) 1, that is, half-filling, the
critical value is KF ) 1. This means that, contrary to
the higher dimensional case, any repulsive interac-
tions turn the system into an insulator. For a
quarter-filled band (n ) 2), the critical value is KF )
1/4. To get the insulator, one needs both pretty strong
interactions and interactions of a finite range, since
the minimum value of KF for a local interaction is KF
) 1/2.70 This is physically obvious: in order to
stabilize a structure in which there is a particle every

two sites, one cannot do it with purely local interac-
tions (see Figure 9). The range of the interactions in
addition of their strength and thus the precise
chemistry of the compound controls the range of
values of KF that one is able to explore.

The critical properties of the transitions are the
ones of the BKT transition: K jumps discontinuously
from the universal value Kc

/ at the transition in the
metallic (nongapped) regime to zero in the Mott
phase (since there is a gap). Since the velocity is not
renormalized, it means, using eq 10, that the charge
compressibility goes to a constant at the transition
and then drops discontinuously to zero inside the
Mott phase. Note that the Mott transition involves
only the charge degrees of freedom in one dimension,
and thus, all spin properties (susceptibility, etc.) are
totally unaffected by the transition. This means that
the transport properties can vary wildly while at the
same time the spin susceptibility is practically unaf-
fected, a behavior indeed observed.7 Spectral func-
tions in the Mott insulator can be worked out.71,72 A
summary of the critical properties of the Mott transi-
tion is given in Figure 13.

Since the Bechgaard salts are commensurate sys-
tems I will not comment in details on the physics of
the doped system. A possible way to tackle this
problem is provided by the Luther-Emery solu-
tion.66,73-76 Other methods can also be used with
success.77,78 To study the transition as a function of
doping (Mott-δ transition),79 it is useful to map the
sine-Gordon Hamiltonian H0 + H1/2n to a spinless
fermion model (known as massive Thiring model25,26),
describing the charge excitations (solitons) of the
sine-gordon model. The remarkable fact is that close
to the Mott-δ transition the solitons become nonin-
teracting, and one is simply led to a simple semicon-
ductor picture of two bands separated by a gap (see
Figure 14). The Mott-δ transition is of the com-
mensurate-incommensurate type.75,76,80,81

This image has to be used with caution since the
solitons are only noninteracting for infinitesimal
doping (or for a very special value of the initial

Figure 12. Dimerization opens a gap in the band (a).
Because of this gap, the quarter-filled band becomes
effectively half filled. The dimerization gap ∆d thus creates
even for a quarter-filled system an half filling umklapp (b). Figure 13. Phase diagram close to a commensurability

of order n (n ) 1 for half-filling and n ) 2 for quarter-
filling). Int denotes a general (that is, not necessarily local)
repulsive interaction. µ is the chemical potential, δ is the
doping, and ∆ is the Mott gap. MI and LL are respectively
the Mott insulator the Luttinger liquid (metallic) phases.
The critical exponent Kc and velocity vc at the transition
depend on whether it is a Mott-U or Mott-δ transition.
(After ref 69.)
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interaction) and has to be supplemented by other
techniques.79 Nevertheless, it provides a very appeal-
ing description of the excitations and a good guide
to understand the phase diagram and transport
properties. The universal (independent of the inter-
actions) value of the exponents Kc

δ ) 1/(2n2) is half of
the one of the Mott-U transition. Since at the Mott-δ
transition the chemical potential is at the bottom of
a band, the velocity goes to zero with doping. This
leads to a continuous vanishing of the Drude weight
and a divergent compressibility. The dynamical
exponent is now z ) 2. For more details see refs 67,
68, 79, and 82.

Of course, the Mott transition has drastic conse-
quences on the transport properties. In a Luttinger
liquid, one can thus expect quite drastically different
properties than in Fermi liquid and thus to use the
transport as a probe of the Luttinger proper-
ties.67,79,83-86 The ac conductivity (at T ) 0) for δ ) 0
is shown in Figure 15. In the Mott insulator, σ is zero
until ω can make transitions between the lower
Hubbard band (LHB) and the upper Hubbard band

(UHB). For frequencies larger than the Mott gap,
interactions dress the umklapps and give a nonuni-
versal (i.e., interaction-dependent) power-law-like
decay. Such a power law can be described by renor-
malization group calculations79 or by form factors
calculations.84 If one ignores the renormalization of
KF by the umklapp (for the effect of the renormaliza-
tion of KF see ref 79) one gets for the ac conductivity,
for frequencies larger than the Mott gap

where n is the order of commensurability.
Away from commensurate filling (δ * 0), features

above the Mott gap are unchanged (the system has
no way to know it is or not at half filling at high
frequencies). The two new features are a Drude peak
with a weight proportional to δ/∆, and an ω3 absorp-
tion67 at small frequency (see, e.g., Figure 35 in ref
7). Features above the Mott gap come from inter
(hubbard)-band transitions, whereas they come from
intra-band processes below the Mott gap (see Figure
14). The dc conductivity can be computed by the same
methods69,86 and is shown in Figure 16.

Here again the dressing of umklapps by the other
interactions results in a nonuniversal power law
dependence. For temperatures larger than the Mott
gap and for the same approximations than for eq 25,
one obtains

Note that close to the transition itself one recovers
universal exponents: at the Mott-U transition, one
has F(T) ∼ T/ln(1/T)2 and σ(ω) ∼ 1/(ω ln(ω)2), whereas
at the Mott-δ transition, due to the different Kc, one
expects F(T) ∼ 1/T.

All of this results are completely general and apply
to any one-dimensional systems for which ∆ is
smaller than the scale above which all interactions
can be treated perturbatively (typically U), a situa-
tion that covers most of the experimentally relevant
cases for the organics (see Section 5). These nonuni-
versal power law temperature and frequency depen-
dence are quite different from what happens in a
Fermi liquid and can thus be used to directly show
the existence of the Luttinger liquid/one-dimensional

Figure 14. The repulsion splits the band into two “bands”
known as lower Hubbard band (LHB) and upper Hubbard
band (UHB). This concept can be made rigorous in one
dimension by mapping the full interacting system to a
massive Thiring model. The excitations in these bands are
solitons (kinks) of charge along the chains. For a com-
mensurate system, the chemical potential is between the
two bands µ ) 0 and the system is a Mott insulator. A finite
doping, the chemical potential is on one of the bands are
charge carrying excitations exist. Optical transitions can
be made either within or between the two “bands”.

Figure 15. ac conductivity for δ ) 0 for a commensurabil-
ity of order n. ∆ is the Mott gap. The full line is the
conductivity in the Mott insulator. Above the optical gap
(twice the thermodynamic one ∆), the conductivity decays
as a power law with an exponent characteristic of the
Luttinger liquid behavior. A simple band insulator would
give ω-3. For a Luttinger liquid µ ) 4n2KF - 5 where n is
the order of commensurability.

Figure 16. dc conductivity as a function of T. ∆ is the
Mott gap. Above the Mott gap, the dc transport shows an
exponent characteristic of the Luttinger liquid and simply
relate to the one in the optical conductivity. Below the Mott
gap, the number of carriers is exponentially small, and any
scattering will give an exponentially small conductivity (see
text). This is the Mott insulating regime.

σ(ω) ∼ ω4n2KF-5 (25)

F(T) ∼ T4n2KF-3 (26)
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Mott insulator nature of the system. The transport
also allows a direct access to the Luttinger liquid
parameter KF.

4. Interchain Coupling
Now that we have a good understanding of the

properties of a single electronic chain, we can inves-
tigate how the one-dimensional physics is changed
when one goes from a purely one-dimensional system
to a two- or three-dimensional situation. This is of
course very relevant to the physics of quasi-one-
dimensional systems such as the organics, which
contrary to the nanoscopic realizations of one-
dimensional systems are made of a large number of
such coupled chains.

The most important term describing the coupling
between the chains is the interchain tunneling
traducing, the fact that single electrons are able to
hop from one chain to the next

where 〈µ,ν〉 denotes a pair of chains, and t⊥,µ,ν is the
hopping integral between these two chains. These
hopping integrals are of course directly determined
by the overlap of the orbitals of the various chains.
In addition to the single particle hopping, there are
of course also direct interaction terms between the
chains. Such terms can be density-density or spin-
spin exchange. However, they are easy to treat using
mean field approximation. For example a spin-spin
term SµSν can be viewed, in a mean field approxima-
tion, as an effective “classical” field acting on chain
ν: SµSνf〈Sµ〉Sν. Thus, at least for an infinite number
of chains for which one could expect a mean field
approach to be qualitatively correct, the physics of
such a term is transparent: it pushes the system to
an ordered state. For the fermionic single-particle
hopping (27), no such mean field description is
possible since a single fermion operator has no
classical limit. It is thus impossible to approximate
ψµ

†(x)ψν(x) as 〈ψµ
†(x)〉ψν(x), which makes the solution

of the problem of coupled chains quite complicated.
This extremely difficult problem is relevant to a

large variety of experimental systems, for which
there is a strong anisotropy in the hopping integrals.
This includes for example high-Tc superconductors
(see, e.g., ref 87). Of course, for more isotropic systems
such that t⊥ ∼ t| (where t| is the intrachain hopping),
one is in a high-dimensional situation to start with,
and one should consider the effect of the interactions
in this high dimensional situation (weak interactions
will most likely lead back to a Fermi liquid state). I
consider here the other limit where t⊥ is much
smaller than the intrachain characteristic energy
scales (e.g., the kinetic energy or the interactions).
In that case, the chains have a well-defined Luttinger
liquid regime before the processes due to interchain
hopping can spoil the pure one-dimensional physics.
This is summarized in Figure 17.

4.1. Dimensional Crossover
The first effect of the single particle hopping is thus

to induce a dimensional crossover between a one-

dimensional situation and a higher dimensional one.
Understanding this dimensional crossover is of
course one of the key questions of the physics of
quasi-one-dimensional systems. In the absence of
interactions, such dimensional crossover is easy to
understand. In Fourier space, the kinetic energy
becomes

where b denotes a perpendicular direction. If the
perpendicular hopping t⊥ is much smaller than the
parallel one t|, then eq 28 leads to the open Fermi
surface of Figure 18.

We can see already on this simple example the
effect of the interchain hopping. If one is at an energy
scale (let us say, e.g., at a given temperature T) larger
than the warping of the Fermi surface, then the
warping is washed out. In that case the system is
indistinguishable from one with a flat Fermi surface.
It can thus be considered as a one-dimensional
system. There is no coherent hopping between the
chains. On the other hand, if the temperature is
much smaller than the warping of the Fermi surface,
all correlation functions are sensitive to the presence
of the warping, and the system is two- or three-
dimensional. Since we considered free electrons in the
above example, this crossover occurs at an energy

H⊥ ) -∫ dx∑
〈µ,ν〉

t⊥, µ,ν[ψµ
†(x)ψν(x) + hc] (27)

Figure 17. Separation of energy scales if the interchain
hopping t⊥ is much smaller than the intrachain one t|. At
energies larger than the intrachain hopping (or equiva-
lently the Fermi energy EF) and interactions (denoted
generically U), simple perturbation theory is valid. Below
this scale, the system is in a one-dimensional regime. The
interchain hopping couples the chains at an energy Ecr and
destroys the one-dimensional physics. For noninteracting
particles Ecr ∼ t⊥ but this scale is renormalized by interac-
tions into t⊥

ν in a LL. In the coupled chains (two- or three-
dimensional) regime, the system can have a transition to
an ordered state at an energy E0. If the one-dimensional
crossover takes place before this transition should be
described from the two- or three- dimensional interacting
theory.

Figure 18. (a) If the temperature (or any other external
energy scale) is larger than the warping of the Fermi
surface due to interchain hopping, the system cannot feel
the warping. It is thus behaving as a one-dimensional
system. (b) At a lower temperature/energy, the system feels
the two (or three) dimensional nature of the dispersion and
thus behaves as a full two (or three) dimensional system.
There is thus a dimensional crossover as the temperature/
energy is lowered.

ε(k| , k⊥) ) -t| cos(k|a) - t⊥ cos (k⊥b) (28)
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scale of the order of the interchain hopping. This is
summarized in Figure 18.

An important question is how the interactions
change this dimensional crossover. This can be
determined by looking at the renormalization of the
interchain hopping.88-94 If one neglects the renor-
malization of ú, the single particle exponent (19), by
the interchain hopping, then one has89

For the noninteracting case ú ) 0 and one recovers
E* ∼ t⊥. Since ú for an interacting system is always
positive (see section 2.2.1), we see that the scale at
which the dimensional crossover takes place is al-
ways smaller than for free fermions. Interactions
thus tend to make the system more one-dimensional.
This reduction of the crossover scale comes of course
from the fact that in a Luttinger liquid single particle
excitations are strongly suppressed. Since the objects
hopping are fermions and not the excitations leaving
in the one-dimensional chains (spinons and holons,
see section 2.2) one has to “recombine” the elemen-
tary excitations to create a particle able to hop. Such
processes can easily be visualized if the interactions
are attractive, in that case, an electron that tries to
hop leaves behind a particle to which it was attracted.
This makes the hopping more difficult. With repul-
sive interactions, it is the same mechanism, the
attraction being between an electron and a hole
rather than between two electrons. This is shown in
Figure 19.

One could naively conclude from the previous
analysis that if the LL parameter KF is such that one
can reach ú > 1 then eq 29 shows that t⊥ is an
irrelevant perturbation and the system would remain
one-dimensional as the temperature is lowered. This
is perfectly true as far as single-particle hopping is
concerned, but it is not the end of the story. Indeed
among the terms that are generated at second order
in the hopping between chains, one find pair hopping
(Josephson coupling) and spin-spin and density-
density couplings (particle-hole hopping). These
terms are shown in Figure 19. Since they scale

differently than single particle hopping, they can be
relevant even if the single particle hopping itself is
not. Let me illustrate it with the case of attractive
interactions. In that case, it is perfectly possible and
now much better for the particles to jump in pairs.
Although this process is much smaller to start with
since it is second order in t⊥, it is relevant. This would
remain perfectly true even if there is a gap in the
proper sector, for example, a spin gap caused by
attractive interactions since it will not prevent (in
fact it helps) the Josephson term from becoming
relevant. For repulsive interactions, one has an
identical mechanism. It corresponds to particle-hole
hopping. It can easily be recognized as either a
density-density coupling or a spin-spin exchange
(superexchange) term of the form

These processes would lead to an ordered state. For
example for a Josephson coupling J, the transition
temperature to the ordered state (here a supercon-
ducting phase) is95-97

We thus have two different phenomena taking
place.88-94 On one hand, the single-particle hopping
induces a dimensional crossover at an energy scale
determined by eq 29, which I call from now on Tx1.
On the other hand, the interchain hopping generates
couplings that want to induce an order state at a
temperature Tx2. We only know how to compute Tx2
by the above method if the chains stay in the one-
dimensional limit, that is, if Tx2 > Tx1. Otherwise, if
the dimensional crossover happens first, the transi-
tion to an ordered state should be computed from the
proper two- or three-dimensional limit and the above
result for Tx2 has no meaning any more. Usually,
these two-particle processes being of order t⊥

2 are
much smaller than the single-particle hopping and
thus one is dominated by the single-particle hopping.
The system has a dimensional crossover way before
these processes can play a role (Tx1 > Tx2). However,
this depends on the strength of interactions as shown
in Figure 20.

This is the difficult case since we now flow to a two-
or three-dimensional system that is still in the
“normal state”. Since in such a system the interac-
tions can still be strong, the resulting low-dimen-
sional phase is a complicated problem. Even if it is a
Fermi liquid, since this Fermi liquid stems from the
high temperature non-Fermi liquid phase, its fea-
tures are certainly quite special. In particular, the
quasiparticle residue Z and lifetime of the quasipar-
ticles could in principle retain the memory of the
strong correlations that existed in the one-dimen-
sional phase. More importantly, since the strength
of the hopping depends on the transverse momentum
k⊥, these quantities could be varying on the Fermi
surface and lead to the presence of hot spots.98

Determining the characteristics of the resulting low
energy phase is thus a major challenge. Note that

Figure 19. (a) The single-particle hopping is renormalized
by interactions since a particle that hops leaves behind
particles (or holes) with which it interacts. The single-
particle hopping generates at second-order particle-
particle (pair) hopping (Josephson coupling) shown in (b)
and particle-hole (density-density interaction and super-
exchange) shown in (c). These couplings can become
relevant even if the single-particle hopping itself is ir-
relevant.

E* ∼ W (t⊥

W)1/1-ú

(29)

∑
〈µ,ν〉

∫ dx [SBµ(x)‚SBν(x) + Fµ(x)Fν(x)] (30)

Tx2 = W ( J
W)1/(2-1/KF)

(31)
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the RG analysis is quite useless in this respect since
the flow goes to strong coupling so one needs other
techniques below Tx1. Various methods have been
used such as RPA,99 and more recently a mean field
approach (ch-DMFT) treating the chains as an effec-
tive bath.100-104 Note that I mostly talked here about
temperature, but any energy scale will do. In par-
ticular, if one studies optical conductivity, the fre-
quency also allows to scan through the dimensional
crossover.

4.2. Deconfinement Transition
The effects of interactions that lead to the reduction

of the dimensional crossover scale in a Luttinger
liquid are in fact much more drastic in the case where
the isolated chains are commensurate and in a Mott
insulating state. Indeed, if each chain develops a gap,
either, for example, by having a spin gap (e.g., for
attractive interactions) or in the charge part (e.g., for
commensurate filling by being a Mott insulator), it
means that the single-particle Green’s function de-
cays exponentially. The single-particle hopping is now
an irrelevant variable. Physically this means that a
single particle cannot hop from one chain to the other
without breaking a pair. The formation of a gap is
thus in direct competition with the interchain hop-
ping. Of course, by increasing the interchain hopping
to a critical value, one can break the one-dimensional
Mott gap and drive the system to a gapless higher
dimensional state (in general a metallic one). Thus,
the simple dimensional crossover is now replaced by
a quantum phase transition for a critical value of the
interchain hopping, where the system goes from a
one-dimensional Mott insulator to a (in general)
three-dimensional metal. Such a transition, known
as a deconfinement transition since the electrons are
able at the same time to leave the chains and to
conduct, is of course more complex to study. Quite
interestingly such a situation is the generic situation
for the organic conductors such as the Bechgaard
salts due to their commensurate nature.

A schematic phase diagram of this transition is
shown in Figure 21. Compared to the case of the
dimensional crossover, much less is known about
such a deconfinement transition. It has been studied
by simple scaling arguments,69 study of two chain
systems105,106,107,108 or using approximations such as
RPA99 or ch-DMFT methods.103 A rule of thumb to
get the position of this deconfinement transition is
to compare the two scales Tx1 and ∆. Thus, roughly
if Tx1 > ∆, one is deconfined, whereas for Tx1 < ∆,
the gap wins and the chains are confined, only
allowing for two particles hopping. Of course, this is
only a rule of thumb and one should, in principle,
solve the full coupled problem to obtain the critical
value t⊥

/ at which deconfinement occurs. For sys-
tems with t⊥ < t⊥

/ , the single particle hopping is
irrelevant and as a function of temperature one
observes a crossover between a LL at high temper-
ature and a Mott insulator at low temperatures
(trajectory (1) in Figure 21). For systems with t⊥ >
t⊥
/ , the single particle hopping is relevant and the

system is deconfined. As a function of the tempera-
ture (trajectory (2) in Figure 21), one now observes a
dimensional crossover between a one-dimensional LL
and a high dimensional metallic phase.

Besides the phase diagram, it is difficult to extract
the physical properties in the deconfined phase. The
transverse conductivity can be computed in the high-
temperature high-frequency regime by an expansion
in the perpendicular hopping.101 One finds a power-
law either in frequency of temperature, controlled by
the single particle Green’s function exponent. At
finite temperatures Rσ⊥(T . ω) ∝ T2ú-1 for kT . E*,
whereas at high-frequency (pω . E*), one gets

E* is the scale at which this expansion breaks down
(roughly the dotted and dashed lines in Figure 21).
The Hall effect is much more difficult to obtain and

Figure 20. Crossover temperatures. For small t⊥ and not
too strong interactions the crossover due to single-particle
hopping (full line) occurs first. The system thus stops to
be one-dimensional before being able to order. If the
interactions are strong enough, the single particle hopping
is weakened and can even become irrelevant both for
attractive (K > K+) or repulsive enough (K < K-) interac-
tions. However, single particle hopping always generates
a two particle (or particle-hole) hopping that drives the
system to an ordered state. For repulsive interactions, the
system becomes antiferromagnetic at the temperature Taf
and for attractive ones, superconducting at the temperature
Tsc. (After ref 94.)

Figure 21. Schematic representation of the deconfine-
ment. This is a quantum phase transition that takes place
at T ) 0 as a function of the interchain hopping. Note that,
although the gap ∆ corresponding to activation in the dc
conductivity decreases, the gap observed in the ac conduc-
tivity remains finite even for t⊥ > t⊥

/ , so the precise critical
behavior is still to be understood. At finite temperature,
the presence of this quantum critical point leads to various
crossovers between a Mott insulator (MI), Luttinger liquid
(LL), and high dimensional metallic (HDM) phase. These
two crossovers can be observed in different materials by
changing the temperature as indicated by the two arrows
(1) and (2) (see text). Whether the HDM phase is a Fermi
liquid and what are its properties is one of the main
questions.

σ⊥(ω . T) ∝ ω2ú-1 (32)
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so far could only be obtained either at very high fields
or in the absence of scattering along the chains109,110

or for phenomenological models.111,112

The shape of the Fermi surface and quasiparticle
properties in the deconfined phase still cannot be
determined unambiguously. The RPA approxima-
tion99 shows pockets close to the deconfinement
transition, whereas the more sophisticated ch-DMFT
approach103 gives an open Fermi surface quite similar
to the naive tight binding one, although the presence
of hot spots at the transition is possible.113 This
important question is thus still largely left open.

5. Application to Bechgaard and Fabre Salts

Let us now look how these concepts can be applied
and help to understand the physics of real quasi-one-
dimensional compounds. I will focuss here on the
physics of the Bechgaard (TMTSF) and Fabre (TMT-
TF) salts. It is of course not my goal to make in this
chapter an experimental review of this family nor to
touch the whole cornucopia of physics that they
brought. I refer the reader to refs 114-116 and the
other papers of this volume, in particular ref 7 for a
complete description of these systems and in par-
ticular for their structure and basic properties. I will
mostly concentrate here on the properties of the
“normal” phase, without touching the various ordered
phase that occur in these systems.

These one-dimensional systems share many com-
mon features. In particular, they are very good
realization of quasi-one-dimensional systems with
hopping integrals of the order of ta ) 3000K, tb )
300K, tc ) 20K, leading to relatively well separated
energy scales in which one is indeed dominated by
the intrachain hopping. Experimentally, at ambient
pressure, the (TMTTF)2PF6 compound displays an
insulating behavior (MI). A transition to a metallic
phase is found, with increasing pressure and the
properties of the TMTTF compounds evolve toward
those of the compounds of the TMTSF family, which
are good conductors. This evolution is clear117 from
the a-axis resistivity measurements (see e.g., Figure
23 of ref 7). Such an insulating behavior is well
consistent with what one would expect for a one-
dimensional Mott insulator (see section 3). The
minimum of the resistivity (followed by an activated
law as temperature is lowered) defines the onset of
the MI regime on Figure 21. Since the chains are
dimerized, with a small dimerization of the order of
∆d ∼ 100K, such a Mott insulating behavior could
come either from the half-filled nature of the band
(because of the dimerization) or if the interactions
are large enough from the quarter-filled nature of the
band (see section 3).

It is thus clear that the interactions play a crucial
role in the TMTTF family even at relatively high
energies. For the TMTSF, the question is more subtle
in view of the metallic behavior at ambient pressure
and it was even suggested that such compounds could
be described by a FL behavior with weak interac-
tions.118 The TMTTF and TMTSF family thus prompts
for very fundamental questions in connection with
one-dimensional physics:

1. Are interactions also important in the TMTSF
family or can the compounds of this family simply
be regarded as a Fermi liquid with an anisotropic
Fermi surface?

2. If indeed interactions are important, what is
their strength and can one identify Luttinger liquid
or Mott insulating behavior? What are the Luttinger
parameters?

3. If the system is a Mott insulator, is this mostly
due to the dimerization of the band or is the quarter
filling commensurability sufficient?

4. What are the reason for such a difference
between the very close families TMTTF and TMTSF,
for which the various characteristics (bandwidth,
dimerization, and interactions) vary relatively little?

5. What is the dimensional crossover scale at which
the system stops to be essentially a one-dimensional
system? What are the properties of the phase below
this crossover scale? Of course many other questions
are open, such as the mechanism and nature of
superconductivity in these materials, on which I will
not touch here.

5.1. Interactions and LL/MI Physics
A clear proof of the importance of interactions for

both the TF and SF compounds is provided by the
optical conductivity,119,120 as shown in Figure 22. The
optical conductivity clearly shows a decreasing gap
(of the order of 2000 cm-1 for the TMTTF2(PF6) to
200 cm-1 for TMTSF2(PF6). Nearly (99%) of the
spectral weight is in this high-energy structure. In

Figure 22. Optical conductivity along the three axis for
TMTSF2(ClO4), at various temperatures. Although such
compound seems to have a rather “standard” dc conductiv-
ity, all of the dc transport is in fact due to a very narrow
Drude peak containing only 1% of the spectral weight,
whereas 99% of the spectral weight is above an energy gap
(of the order of 200 cm-1). This is reminiscent of a Mott
insulating structure. (From ref 121; Copyright 1999 by
Springer.)
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the metallic compounds, there is in addition a very
narrow Drude peak. This clearly indicates that these
compounds are very far from simple Fermi liquids.
The data of optical conductivity can be compared with
the expectations for a one-dimensional Mott insulator
(see Figure 15) as shown in Figure 23.

The data above the gap fits the power law LL
behavior very well and thus shows quite convincingly
that these compounds are indeed well described by
a LL theory down to a scale of a few hundred Kelvin
(temperature or frequency). This was the first direct
proof of a Luttinger liquid behavior in an electronic
system. The a-axis optical measurements described
above even allow for a quantitative determination120

of the LL parameter KF. A fit of the frequency
dependence of the longitudinal conductivity (see
Figure 23) can be performed using eq 25. A com-
mensurability of order one (n ) 1) does not allow for
a consistent fit of both the exponent and the gap.120

This indicates that the dominant umklapp comes
from the quarter filled nature of the band. Formula
25 with n ) 2 thus yields KF = 0.23, indicating quite
strong electron-electron interactions. Moreover, this
indicates that the finite range nature of the interac-
tions should be taken into account, with interactions
extending at least to nearest neighbors. A modeliza-
tion of the organics thus should not be done with a
purely local Hubbard model, with an interaction U,
but also take into account at least the nearest
neighbor interaction V. This estimate of the LL
parameter agrees reasonably well with measure-
ments of the longitudinal resistivity in the range
100-300 K.115 The optical data is thus consistent
with an interpretation of the insulating state as a
quarter-filled Mott insulator, suggesting that the
dimerization plays a little role at least in the TMTSF
family. In the TMTTF family, dimerization is larger,
and it is unclear there which process is dominant.
Note that because of the anions other transitions can
exist such as a ferroelectric transition.122,123

These results are in good agreement with other
measurements. The measured values of KF are con-

sistent with the photoemission data.117,124,125 How-
ever, photoemission in these system should be looked
at with a grain of salt because of possible surface
problems due to the ionic nature of the system (for
other systems see, e.g., refs 126 and 127). The optical
data along the c axis121 is consistent with the predic-
tions of LL. These measurements directly probe the
density of excited states in the a-b plane. However,
clearly the data along the c axis is of poor quality
compared to the two other axes, so new measure-
ments along this axis would clearly be needed. Note
also that along the b axis the big bump in mid-spectra
is yet unexplained.

5.2. Deconfinement
These compounds are of course excellent systems

to study the deconfinement transition, as well as the
associated dimensional crossovers discussed in the
previous section (see Figure 21). Since the isolated
chains would be insulators, the system will thus
crossover from a regime where one has essentially
uncoupled (insulating) chains to one of metallic
planes. A direct evidence that the change of behavior
between the insulating and metallic regimes is due
to such deconfinement transition69 is provided by the
optical data (see Figure 24). A measure of the gap
extracted from the optical conductivity shows that
the change of nature occurs when the observed gap
is roughly of the order of the magnitude of the
interchain hopping.128

For systems that are deconfined, a change in
temperature leads to a dimensional crossover be-
tween a high-temperature one-dimensional phase, in
which hopping between the chains is incoherent, to
a low-temperature two-dimensional metallic phase,
where the chains are coupled along the b axis
(intermediate axis perpendicular to the chains; see
Figure 21). This dimensional crossover can be seen
by the appearance of a Drude peak in the b axis
conductivity, when temperature is lowered, signaling

Figure 23. Optical conductivity along the chain axis in
the TMTSF family. The conductivity is rescaled by the gap
in various samples. A fit of the ω dependence of the
conductivity above the gap is well consistent with Luttinger
liquid behavior. (From ref 120; Copyright 1998 by the
American Physical Society.)

Figure 24. Comparison of the measured gap in the optical
conductivity with the interchain hopping. The change of
behavior from insulator to metallic occurs when the two
quantities are of the same order of magnitude showing that
the difference between the various members of the TM
families is indeed linked to a deconfinement transition.
(From ref 117; Copyright 2000 by Springer.)
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coherent transport along the b axis. Such a behavior
would be consistent with the observed optical con-
ductivity along the b direction as shown in Figure
22, but obviously, more data and data on other
materials would be needed to clarify this complex
phenomenon. Transport along the c-axis would be
also be consistent with eq 32. Note however that,
although clearly revealing that electrons are confined
in the chains above ∼100 K, the measurements of dc
transport along the c axis129 are not yet fully under-
stood theoretically from a LL picture and most likely
need to take into account the Mott nature of the
system (see ref 101 for a discussion). From these
experiments, we see that the crossover takes place
around 100 K in (TMTSF)2PF6. This also is in agree-
ment with the change of behavior from T (LL behav-
ior) to T2 observed in dc transport along the a axis.115,7

The physics below the dimensional crossover scale
is still a mystery. Indeed, although the system is not
one-dimensional any more, the NMR is quite anoma-
lous.53,130 Whether this is simply due to antiferro-
magnetic fluctuations or whether this is a more
profound sign of a nonfermi liquid behavior is still
an open issue.

6. Conclusions, Theoretical Dreams, and
Chemical Realities

I have presented in this review the main concepts
and questions relevant to tackle the normal phase
physics of quasi-one-dimensional systems. The most
important ones for isolated chains are the Luttinger
liquid theory and the Mott insulating physics which
is quite special in one dimension. For quasi-one-
dimensional systems, an extremely rich physics
stems from the coupling between the chains. Its most
spectacular expression is the presence of a decon-
finement transition between a one-dimensional in-
sulator and a high dimensional metal.

The organic conductors, such as the Bechgaard and
Fabre salts, provide wonderful systems to investigate
these phenomena. Some agreement between the
theoretical studies and the experimental observations
can be reached even if many open questions remain.
In particular the role of the quarter filling of the band
seems crucial in these systems, and determines the
physics of the whole metallic phase. However, the
Bechgaard salts are in some sense too interesting
materials, with too many different phenomena oc-
curring at once. To better understand these phenom-
ena, it would be good to have other compounds in
which some degree of simplification or new physics
occurs. This is where the interplay between chemis-
try and the theoretical concepts explained here can
play a major role. Now that we understand better
the main points and questions in the physics of the
Bechgaard salts, we can examine three main direc-
tions in which having new compounds would drasti-
cally help the theoretical understanding of these
materials. So I would like to conclude this review
with a plea for new materials.

6.1. Non-Dimerized Systems
One complication of the Bechgaard salts is the

presence of the dimerization. As we saw in section

3, this introduces two umklapps corresponding to the
half- and quarter-filling of the band and makes it
hard to separate the two effects. Having a compound
without dimerization is thus of the utmost impor-
tance. In such a compound the band is purely quarter
filled. It is thus clear in that case that if the
compound becomes a Mott insulator the underlying
mechanism can only come from the quarter-filling
umklapp and thus be caused by taking into account
at least nearest neighbor interactions as explained
in section 3.

In fact some of such compounds have been synthe-
sized131-134 and turn out to be (Mott) insulators. The
fact that these compounds are indeed insulators and
with a structure similar to the Bechgaard salts
strongly confirms the interpretation that the domi-
nant mechanism is also in these systems the quarter
filling of the band. It would be of course very
interesting to investigate the phase diagram and the
physical properties under pressure of these com-
pounds. Since they share the same basis microscopic
features, it is crucial to assert whether these quarter
filled systems also exhibit superconductivity under
pressure as in the Bechgaard salts.

6.2. Interchain Coupling

As we saw in section 4, the interchain coupling
plays a crucial role in regard to the deconfinement
transition. In the Bechgaard salts, given the hier-
archy of the interchain couplings 3000K, 300K, 30K,
a complication occurs. When the system stops to be
one-dimensional at about 100 K it enters a two-
dimensional regime. As we discussed in section 5, it
is unclear whether such a state is a canonical Fermi
liquid or not. On the other hand, at temperatures of
about 20 K, a more conventional three-dimensional
ordering is observed. To disentangle these effects, it
would be very interesting to have a family of com-
pounds with one or both of the following proper-
ties:

1. Smaller interchain hopping: This would allow
us to have a broader range where a one-dimensional
behavior could be observed. Some compounds have
been synthesized with a very small interchain hop-
ping, but because of the commensurate filling, they
are just one-dimensional Mott insulators. There
should thus be the proper balance between the
interchain hopping and smaller intramolecular in-
teractions, to weaken also the Mott mechanism. This
most certainly means using other building blocks
than the TMTTF or TMTSF molecules.

2. More isotropic interchain hopping (even more
interesting): Having such a compound would make
a direct transition between a one-dimensional system
and a three-dimensional one. This would allow us to
decide whether some of the low temperature proper-
ties such as the anomalous NMR and even the
superconductivity are related to the existence of the
two-dimensional structure or not. With the Bech-
gaard salts, it is of course difficult because of the
presence of the anions, so a different and more
isotropic construction of the crystal would probably
be needed.

Framework for Quasi-One Dimensional Systems Chemical Reviews, 2004, Vol. 104, No. 11 5053



6.3. Mott Gap and Doping
Of course it would be interesting to play with the

Mott gap. As we saw in section 3, the Mott gap is
mostly controlled by the on-site and nearest neighbor
interactions. Thus, changing the local repulsion prob-
ably means changing the building block of the one-
dimensional salts, a difficult feat. If this could be
achieved, this would be extremely interesting since
it would allow us to observe the Luttinger liquid
behavior on a broader energy scale. One could thus
probe the dimensional crossover rather than the
deconfinement transition.

Even more interesting would, of course, be the
ability to dope the compound. This is a difficult feat
chemically and has been attempted several times,
with no success so far. This is a Holy Grail. Note that,
because the charge transfer between the cations an
the chains is total, the full phase diagram so far
corresponds only to the commensurate filling. Since
the advent of high Tc superconductors, that are doped
Mott insulators, there has been a considerable inter-
est in understanding such problems. Indeed one of
the important question is whether the doping of a
Mott insulator could be good for superconductivity,
as some theoretical studies indicate. Being able to
reach a similar situation in a one-dimensional ge-
ometry (rather than a two-dimensional one) would
of course be of considerable importance. This would
allow us to better understand the similarities and the
differences of the two systems. Would the supercon-
ductivity that appears under pressure be also present
under doping?

Of course many other directions are possible. The
ball in this field is clearly now in the chemist’s camp.
Physical measurements and theories have made
enormous progress. Most of the simple questions
have been explored, and the remaining ones are
extremely difficult and central to many domains of
strongly correlated systems. Only new materials can
help unlocking further the richness of these quasi-
one-dimensional materials. Of course many of the
proposals above are most likely theoretical dreams.
Some of them have already been partly explored,
some will probably be quite tough to do, but all of
them are definitely worthwhile trying. Who knows,
in this quest for new materials, another unexpected
piece of physics might emerge.
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