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Abstract. We study quantum wires and point contacts with a fixed-node path integral
Monte Carlo technique. The fixed-node technique uses a variational principle to map fermionic
problems into effective bosonic problems, which are then evaluated with standard quantum
Monte Carlo techniques. While fixed-node is an approximation, it has the useful properties of
being variational and being able to recover the exact answer when the exact nodes or phases
of the density matrix are known. In these finite-temperature simulations we use the free-
particle density matrix as a fixed-node constraint to efficiently simulate hundreds of interacting
electrons. We have calculated charge densities, pair correlation functions, and the current-
current Matsubura Green’s functions for quantum wires and quantum point contacts.

1. Introduction
Nanostructures provide unique opportunities to engineer the properties of interacting electrons.
Transport in such systems is sensitive to the dimensionality, shape, and size of the electron-
confining regions. Temperature can also play a significant role, since quantum mechanics
establishes energy scales that are often similar to the device operating temperatures. In
this paper we describe a new method for simulating interacting electrons in semiconductor
nanostructures at finite temperature.

Our approach is suitable for electrons in thermal equilibrium. While thermal equilibrium may
seem uninteresting for devices, in fact, the thermal and quantum fluctuations in the equilibrium
ensemble provide insight into transport through linear response theory. We focus on low-bias
direct-current (DC) conductivity, for which sufficient numbers of interesting problems exist to
justify development of new nanoscale simulation techniques.

We start from the Feynman path integral expression for the N -electron thermal density
matrix [1],

ρ(R, R′;β) =
1

N !

′∑
P

(−1)P

∫
DR(τ) exp ( − S[R(τ)]) (1)

1 Based on a talk presented at the conference “Progress in Nonequilibrium Green Functions III, Kiel, Germany,
22. – 25. August 2005”
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where R = (r1, . . . rN ) are the particle coordinates, and the paths begin at R(0) = R′ and end
at R(β) = PR. The “imaginary time,” τ , runs over an interval β = 1/kBT and encodes the
simulation temperature (we take � = 1). To handle spin, we work in a fixed SZ ensemble, and
restrict our permutation sum

∑′
P to only include permutations among the first N↑ electrons and

among the last N↓. Permutations that swap particles with differing spin states are not allowed
in the ensemble. This fixed-Sz ensemble is unphysical, but is a reasonable approximation if the
number of electrons is large. For example, an unpolarized system has Sz = 0, and by fixing
N↑ = N↓ = N/2 we are just neglecting fluctuations in Sz, which become unimportant for large
N (we have N � 100).

The action occuring in Eq. (1) is the imaginary time, or Euclidean, action, which resembles
the classical energy,

S[R(τ)] =
∫ β

0

(
1
2
m∗

∣∣∣∣dR(τ)
dt

∣∣∣∣
2

+ V
(
R(τ)

))
dτ. (2)

The potential energy includes pairwise coulomb interactions between electrons and the
interaction of the electrons with an external confining potential,

V (R) =
∑
i<j

e2

εrij
+

N∑
i=1

Vext(ri). (3)

In this paper we report on results for two-dimensional models in quantum dots, but we can also
use more complicated three-dimensional potentials for Vext(r), including strained band offsets
and the full Poisson solution for electrostatic gates.

One can discretize the paths and use Metropolis Monte Carlo integration to directly sample
the density matrix of Eq. (1). Unlike classical statisical mechanics, for which Boltzman factors,
exp(−βε), are always positive, the expression for the Fermion density matrix has negative terms.
Taken literally, Eq. (1) tells us to simulate a system of bosons, then use the negative signs to
project out the properties of fermions from the antisymmetric fluctuations. As the number
of particles gets large and the temperature gets low, this algorithm becomes exponentially
inefficient, since a Bose condensate and a degenerate Fermi gas have very different physical
properties. In a model of a quantum point contact, for example, bosonic electrons would
condensed outside the channel with essentially no quantum fluctuations into the channel, while
Fermi pressure would force fermionic electrons into the channel. We must therefore make an
approximation to have an efficient and practical algorithm for nanoscale electronics.

In this paper we give an overview of this new technique for path integral device simulations. In
Sec. 2 we describe the fixed-node approximation for efficient path integral Monte Carlo (PIMC)
simulations of fermions. In Sec. 3 we briefly discuss how to sample the fixed-node path integral
using Monte Carlo integration. In Secs. 4 and 5 we explain how we estimate charge densities,
correlation functions, and conductivity in PIMC. We present a demonstration calculation of
two-hundred electrons around a quantum point contact in Sec. 6. Finally, in Sec. 7 we conclude
with a summary and outlook for future PIMC simulations.

2. Fixed-node approximation for path integrals
Details of the fixed-node approximation are given in Ref. [2]. In this section we give an overview
of the important features of the approximation. To make a fixed-node approximation, we first
guess a form for the fermionic density matrix ρT (R,R′;β/2) corresponding to a temperature
that is twice the simulation temperature. The fixed node approximation will sample the best
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density matrix of the form [2],

ρf (R, R′; β) =
∫

f(R, R′′)ρT (R, R′′) (4)

f(R′′, R′)ρT (R′′, R′)dR′′, (5)

where f is a positive-real envelope function with Bose symmetry. We demand that the envelope
f maximizes the entropy of the density matrix, equivalent to minimizing the free energy. That
is,

δ

δf
{S[ρf ] + βE[ρf ] + αN [ρf ]) = 0, (6)

where the entropy is S[ρf ] = − tr ρf log ρf , the energy is E[ρf ] = tr Ĥρf , the normalization is
N [ρf ] = tr ρf , and there are two Lagrange multipliers, α and β.

Evaluating Eq. (6) for the density matrix in Eq. (4) leads to an effective bosonic path integral
with fixed-node action,[2]

SFN =
{

0; if ρT (R(t), R(t + β/2)) �= 0 | ∀ t ∈ [0, β/2).
+∞; otherwise. (7)

That is, we eliminate paths configurations that cross the nodes of ρT from the path integral. If
the nodes of ρT exactly match the nodes of the the true density matrix of the interacting system,
then the fixed node solution is exact, otherwise we get a density matrix with larger free energy.
This fixed-node constraint is an approximate alternative to the explicit anti-symmeterization in
Eq. (1). In a sense, the fixed-node path integral method is a sequence of two mappings. First we
map the interacting fermions onto an effective interacting bosonic system with the fixed-node
approximation. Then we use the path integral formalism to map the effective bosonic system
to a classical statistical ensemble of paths which we can simulate with Metropolis Monte Carlo.
This formulation of the fixed-node approximation, Eq. (7), has several useful features, especially
relative to the fixed-node method of Ceperley [3]: (i) it keeps imaginary time symmetry in the
paths, (ii) requires ρT only at t = β/2, (iii) can easily reach low temperature limit, (iv) has been
proven to minimize the free energy, and (v) is easy to program and parallelize.

3. Path integral Monte Carlo
We use established techniques for the numerical evaluation of the path integral. An in-depth
introduction to PIMC can be found in a review by by Ceperley [4], and a review of our recent
applications to semiconductors can be found in Ref. [5]. We work at a temperature of 3K, and
discretize our path into M = 1000 slices with a timestep of Δτ = β/M . The interaction of the
electrons with the external potential is treated with the primative approximation [4],

Sext =
M∑

j=1

N∑
i=1

Vext(ri,j)Δτ, (8)

where τ = β/M and ri,j refers to position of particle i on discretized slice j. The kinetic
contribution to the action is

Skin =
M∑

j=1

N∑
i=1

1
2
m∗ |ri,j − ri,j−1|2

(Δτ)2
Δτ. (9)

For the coulomb interactions, we must be more careful and use the pair-approximation, described
in Ref. [4]. We have also partially screened the Coulomb interactions by including a metallic
screening layer 100 nm below the device, using image charges.
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Figure 1. Schematic illustration of the collection of charge density information from a path
integral simulation. We set up discrete real space bins (typical size 10 nm × 10 nm for a 100×50
array), then histogram the location of discretized beads over many slices and path configurations.

To evaluate the path integral, we use multilevel Metropolis Monte Carlo to sample the
path positions and permutations [4]. We use up to eight-levels of sampling, meaning that
we reconstruct 28 − 1 = 255 slices of the path in one extended Monte Carlo step, moving one,
two, or three particles at a time [4]. We sometimes run in parallel, in which case we make
smaller moves but have multiple processors working on different segments of imaginary time.
The simulations take a couple days on a 3GHz Intel processor, and for analysis of current-current
correlation functions we have combined data collected from 8 parallel Monte Carlo simulations
with different random number seeds (simulation cloning).

4. Charge densities and correlation functions
Because we work in a real space basis, the collection of charge density data is very straight
forward. As in classical simulations, we divide space into discrete cells (typically 10 nm square),
then histogram the positions of the paths at many different time slices (Fig. 1). This quantity
is the diagonal of the single particle density matrix, or the charge density.

For correlation functions, we follow exactly the same procedure, but only collect density
data conditional on some criteria. For example, we may want to know the charge density of
up and down electrons when there is a spin-up electron in the center of the channel. For each
measurement and at each slice, we check to see if there is a spin-up electron within, say, 10 nm
of the center of the channel. If such electron is present, we histogram the densities of the other
electrons. If no up electron is in the center of the channel, we record zeros in all the bins. The
collected quantity is then the two-particle reduced density matrix, ρ(r, r2) with r2 integrated
over the area of the criteria region in the center of the channel, i.e. a circle of radius 10 nm.

5. Estimating conductivity with PIMC
We collect the current-current correlation function,

Π(x, x′; inΔτ) = 〈jx(x; 0)jx(x′; inΔτ)〉β. (10)
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Figure 2. Schematic illustration of the collection of current charge density information from
the path integral simulation. We set up discrete real space bins (typical size 10 nm × 10 nm
for a 100×50 array), then histogram the location and velocities of discretized beads at each
slice over one path configuration. We then use an FFT to convolute the data for relative time
separations, and collect Π(x, x′; iτ) over many path configurations.

The Fourier transform is a set of real amplitudes at the bosonic Matsubura frequencies,
ωn = 2nπ/β,

Π(x, x′; iωn) =
M−1∑
m=0

ΔτeiωnmΔτΠ(x, x′; imΔτ). (11)

Note that the highest Matsubura frequency we can collect is ωM = π/Δτ , our discretization of
the path integral with timestep τ . Of course, any physically relevant observable should have
negligible contributions from large frequencies, ωn � π/τ , otherwise we need a smaller Δτ .

The conductivity is given by the Kubo formula [6],

σ(x, x′;ω) =
i

ω

[
Π(x, x′; ω) +

ne2

m

]
. (12)

To obtain Π(x, x′; ω) requires analytic continuation from the Matusubara frequencies, formally
denoted iωn → ω + iδ. Of course, our simulations just collect real valued data, so this formal
notation is not too helpful. The iδ perscription means that for retarded Green’s functions, the
real frequency axis must be approached from upper half plane. In our simulations, the ω = 0
we have collected is the principle value, which is not the correct ω → 0+i value for the Kubo
formula. Instead, we must take the data collected for the Matsubara frequencies in the upper
half plane and analytically continue them to small, real-valued frequencies.

6. Example: Two Hundred Interacting Electrons around a Quantum Point
Contact
As an example, we describe preliminary calculations of 200 interacting electrons around a
quantum point contact. A detailed study of quantum point contacts will require many
calculations and careful tests, and is on-going. The results presented here only serve as an
early demonstration of the techniques we have described.
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Figure 3. The conductivity at the first Matsubara frequency, as calculated by sampling the
current-current correlation function for 200 interacting electrons in a PIMC simulation.

For our device model, we have taken a empirical expression for a double-gate barrier [7].
The device has a channel between the double-gates that is 200 nm long and 50 nm wide.
The simulation is performed in a supercell that is 1.0μm long and 0.5 μm wide. We place
200 electrons in the simulation, set the temperature to 3 K (1000 discretized slices), and run
multilevel Metopolis sampling on the paths [4].

We have sampled the current-current correlation function, Π(x, x′; iωn), as described in Sec. 5.
In Fig. 3 we show the conductivity at the first Matsubara frequency. We note that it is essentially
diagonal, and the conductivity is supressed within the channel. To calculate conductance, we
must solve for the steady-state current in the ω → 0+i limit. This requires analytic continuation
of the conductivity from the upper half plane. At this time, we have attempted several different
analytic contination procedures, include N-point Padé expansions. We have found that the
results have varied depending on our procedure, especially the number of Matsubara frequencies
we include in our extrapolation. Since we do not have a clear estimate of our errors, and do not
have enough simulations to show trends in the conductance versus gate voltages, we will not
report our values here. We hope to present a clear analysis of the analytic continuation of our
results to DC conductance in the very near future.

7. Outlook and future directions
This is a very new project, with initial test calculations on much smaller quantum wires first
conducted less than six months ago. At this point, the technique appears quite promissing. The
simulations of two hundred electrons at T = 3K indicate that the method is practical for many
current problems in nanoscale device modeling. While we do not have reliable conductance
estimates yet, we think that the DC conductivity should be quite tractable. Of particular
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interest would be the calculation of quantized conduction steps as a function of gate voltage [8],
which is usually obtained more directly through the Landauer-Büttiker formalism [9, 10] .

One current problem this method may be able to approach is the so-called “0.7 structure,”
which is a small bump in the conductance right before the first conductance plateau [12, 13].
Since PIMC can simulate interacting electrons at finite temperature, in a many-body formalism
that correctly models exchange and correlation effects, it seems that we have the right ingredients
for a quantitative simulation of this effect in a realistic device model.

Another area we would like to develop is the application of this technique to molecular
conductors. Since path integrals have been useful in the determination of the polaron mass
[14], PIMC might be a good framework for studying the effects of thermal vibrations and other
distortions of molecules on their electrical conductivity. Such simulations would be analogous to
the semiconductor simulations presented here, only the two-dimensional electron gas would be
replaced by jellium, and the channel would be a molecule. Some preliminary results for PIMC
calculations on small molecules and atoms are presented in Refs. [15] and [16].
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