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Single and Paired Point Defects in a 2D Wigner Crystal
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Using the path-integral Monte Carlo method, we calculate the energy to form single and pair vacancies
and interstitials in a two-dimensional Wigner crystal of electrons. We confirm that the lowest energy
point defects of a 2D electron Wigner crystal are interstitials, with a creation energy roughly 2/3 that of
a vacancy. The formation energy of the defects goes to zero at melting, suggesting that point defects may
be the melting mechanism and that the melting could be a continuous transition. In addition, we find
that the interaction between defects is strongly attractive, so that most defects will exist as bound pairs.
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At sufficiently low densities, the ground state of a 2D
electron gas is expected to be a Wigner crystal [1]. Quan-
tum Monte Carlo calculations [2] predict Wigner crystal
formation for rg = 37 at zero temperature where ry =
aw/ao is the dimensionless parameter characterizing the
ratio of potential to kinetic energy. QMC calculations
also predict that disorder stabilizes the localized phase
relative to that of the liquid [3], thereby shifting the melt-
ing boundary to higher densities, r; = 10. In light of
recent experimental observations [4-9,14—17] of a new
conducting phase in 2D in the density range 10 < ry; <
37, there is renewed interest in the properties of a dilute
electron gas close to the Wigner crystal melting bound-
ary. Yoon et al. [15] have observed a transition at r; = 40
which they attribute to the melting of a Wigner crystal.

In this work, we calculate the energies of pointlike de-
fects in a clean 2D electron Wigner crystal. The motivation
for the study of defects is twofold. First, localized defects
are present in a finite concentration at any nonzero tem-
perature (they have even been speculated to exist at zero
temperature as a super solid). Second, the melting process
in 2D can be influenced or even determined by defect for-
mation [18,19]. We investigate the energy of two kinds
of point defects: a vacancy at one of the lattice sites or
an interstitial centered in one of the triangular unit cells.
We define Nger (the defect index) as the number of elec-
trons minus the number of lattice sites. Using path-integral
Monte Carlo (PIMC), we compute the energy to introduce
defects into an N-electron crystal with —2 = Ny = 2.
We find that the lowest lying defect excitations are cen-
tered interstitials. Similar results have been obtained by
Jain and Nelson [20] in hexagonal columnar crystals and
by Cockayne and Elser [21] in the 2D Wigner crystal. This
defect energy appears to vanish near melting, suggesting
that the quantum melting could be continuous rather than
first order. We then show that for N4 = *2, the defect
creation energy increases as the defects are pulled apart.
This indicates that the ground state for two defects is a
bound pair.
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The system being simulated is composed of electrons
confined to two dimensions (2D) and interacting through
a repulsive 1/r potential and immersed in a positive back-
ground with the same density. The Hamiltonian is

H—1§V2+2i L1y, (1
= s i<j Irj — r;l o )
where energy is in units of the Rydberg h*/ 2mag, ay is
the effective Bohr radius, and lengths are in units of the
Wigner-Seitz radius ay = (7p)~ /2 and V; a constant.

At large values of rg, the exchange contributions to the
energy are small [2,22]. For sufficiently large rs, vy > 75,
we consider distinguishable electrons and neglect antisym-
metry but include it for r; = 75. However, to keep the sys-
tem stable, we forbid particle exchange by enforcing the
condition |r; — s;| < 1.1a where a is the nearest neigh-
bor distance and s; is the ith lattice site. Such a “tether” is
realistic because in a quantum crystal exchanges are rare
and the wave function is peaked around the lattice sites.
We have verified the independence of our results by vary-
ing and removing this constraint. In these calculations we
assumed a hexagonal lattice, shown to be the stable struc-
ture [22].

In the PIMC method [23], the density matrix

P(ROsRM,B): ]deldRZdRM—l

X p(Ro,Ry;T)
X p(Ri,R2;7) - p(Ry—1,RM;7)  (2)

for the quantum system is evaluated by sampling paths:
{RQ,RI---RMfl,RM}, and Rk = {rl,k,...,rn,k} and
rix, a bead, is the position of ith electron in the kth
time slice and 7 = 8/M with 8 = 1/kgT. The action
—In[p(Rpy—1,Ru; 7)] is evaluated by first splitting the
potential into a long-ranged part and a short-ranged part.
The long-ranged part (which is slowly varying) is handled
in the primitive approximation, while the short-ranged
action is the exact pair action of two electrons. To evaluate
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the 2NM-dimensional integrals in Eq. (2), we employ
the Metropolis bisection sampling technique [27]. Ewald
[25] sums are used to calculate the long-ranged potential
energy and pair action [26].

For lower densities where exchange is important (ry =
75) we used restricted path integrals [10] to account for
Fermi statistics. Only paths entirely in the positive region
of the Slater determinant are allowed. Such a restriction
is exact if the nodal surfaces of the trial density matrix
are correct. For the nodes we used a Slater determinant
of Gaussian orbitals exp[ —c(r; — s;)?] with's; the lattice
sites and ¢ taken from [11] with a ferromagnetic spin ar-
rangement. Calculation of the tunneling frequencies to de-
termine the ground state magnetic ordering indicates that
the magnetic energies are always much less than the defect
energies [12], and that the system is nearly ferromagnetic
in near melting. We find that the restriction also serves to
stabilize the crystal against melting.

The energy to create Nger defects in a system with N; =
N lattice sites is

AEger = [e(N + Nger) — e(N)I(N + Nger), (3)

where e(n) is the energy per electron for a system contain-
ing n electrons with area A = n/p. The densities and tem-
peratures studied were ry = 40, 50, 75, 100, and 200 and
T =5.0,2.5and 1.25 X 107> Ry. We used 120 and 340
lattice sites. We performed independent PIMC calculations
with a different number of particles rather than more effi-
cient procedures where particles are inserted or removed
[13]. Such differential procedures are difficult because of
the combination of large relaxation of the lattice, the very
large zero point motion, and the antisymmetry. Our calcu-
lations are very time consuming as the system gets larger
because one needs high accuracy to obtain the energy dif-
ference, but the direct method allows better control over
the systematic error.

To illustrate the types of defects of interest, we depict
in Fig. 1 vacancy and centered-interstitial (CI) defects in
a 2D hexagonal lattice. The initial configuration of the
vacancy and CI defects have sixfold and threefold coordi-
nation, respectively. In PIMC all particles are dynamical
variables, so that the surrounding lattice relaxes and may
change the overall symmetry of the defect. However, the
constraint makes such relaxation local. We find that the de-
fect energy depends weakly on temperature. The following
discussion concerns the defect energies for the temperature
1.25 X 1073 Ry. This is significantly less than the melting
temperature and the Debye temperature, but much greater
than the magnetic energies [12].

Figure 2 demonstrates that the formation energy for an
interstitial is consistently lower than creation energy for
vacancies in 2D Wigner crystals at all densities. At ry =
75 we find that AEc; = 0.65AE,,.. Simulations with 340
sites give agreement with the results for the smaller lattice.
Jain and Nelson [20] and Cockayne and Elser [21] have
obtained a similar result.
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FIG. 1. a) Hexagonal 2D Wigner crystal with a single 6-
coordinated vacancy and a threefold coordinated centered
interstitial (CI) defect. (b) Pair vacancy and CI defects.

For a Coulomb system without fermion exchange, the
energy of a defect can be expanded as

Ep = Clr;1 + 03/2r;3/2 + czr;2... . @
The first term is the static potential energy of the de-
fect, and the second is the harmonic energy of the defect.
Cockayne and Elser [21] have done exact calculation of
c; and c3/;. Shown in the lower panel of Fig. 2 is the
anharmonic contribution defined as the excess energy be-
yond the harmonic calculation. Anharmonic effects lower
the defect energies to approximately half the harmonic
value at ry = 50. Cockayne and Elser find that the de-
fect energy vanishes for CI defects at r; = 15 £ 1 and
re = 9 * 1 for vacancies. We assume the exact values for
c1 and c¢3/7 and fit ¢ to obtain cp(vacancy) = —2.8 = 0.2
and c,(CI) = —1.85 = 0.15. From these values we esti-
mate that Ep vanishes for interstitials at , = 35 = 2 and
rs = 29 * 2 for vacancies. The proximity of the vanish-
ing of the interstitial creation energy to the melting den-
sity is highly suggestive that interstitial defects play a role
in the melting process. The proliferation of vacancies for
ry < 40 could result in a continuous rather than first or-
der quantum melting, analogous to what happens for the
classical 2D Wigner crystal. It is possible that the assump-
tion of the ferromagnetic spin arrangement has stabilized
the crystal with respect to interstitials for 35 = ry; = 40.
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FIG. 2. Formation energy (top figure) for vacancy (circle) and
CI (square) defects as a function of 1/r, at a temperature of
1.25 X 107> Ry for a system of 120 lattice sites (open and
solid symbols are for Boltzman and Fermi statistics, respec-
tively). The triangles are results with 340 lattice sites. The
lines (solid for vacancy and dashed for interstitial) are from har-
monic calculations [21]. The anharmonic energy is shown on the
bottom panel.

We have not considered the role of other defects such
as dislocations.

We have also investigated the properties of pair defects
as a function of the spacing between the defects. The
geometry used for the study of the interaction energy be-
tween two defects is shown in Fig. 1b. Shown in Fig. 3
are the pair binding energies for vacancies and CI defects

Epp = AEgef(Nget = 2) — 2AEqef(Nget = 1) (5)

as a function of the separation between the defects. As
expected, for large separations the binding energy goes to
zero. For all separations studied, the pair-binding energy
is negative, indicating an attraction between defects.

In fact, elasticity theory predicts that Ey, will decay as
d 3. For all separations studied, the pair-binding energy
is negative. Similar results have been obtained by Frey,
Nelson, and Fisher [28] for centered-interstitial defects in
vortex crystals. The binding observed here is reminiscent
of the phonon-induced electron attraction in the sense that
it is more advantageous to add a defect nearby an ex-
isting defect, thereby sharing the strain field, rather than
further away.

As is evident from Fig. 4, the interstitial pair bind-
ing becomes slightly positive at r; = 50 indicating a
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FIG. 3. Binding energy of pair defects at r; = 100 and T =

1.25 X 1073 Ry, computed for systems of 340 lattice sites. The
geometry used to study such defects is shown in Fig. 1(b).
Circles are for vacancies and squares for interstitials.

possible weak unbinding near the melting transition.
No such behavior was observed for vacancies. In two
dimensions, any attraction is sufficient for the existence
of a bound state of two defects. At r; = 100, the binding
energy for interstitials pairs is roughly 50 K, for vacancy
pairs 125 K and the classical melting temperature is only
24 K (assuming the effective mass of the electrons and the
dielectric constant are unity). The symmetry of this paired
state will be determined by the magnetic order of the lattice
and the relative exchange frequencies of the defects.

As seen in Fig. 5 the binding energy of the defect is
much greater than the melting temperature, hence point
defects are mainly interstitial pairs, which are likely to
obey Bose statistics.

Assuming that this is the case, let us consider whether
one could have a Bose condensation of defect pairs. The
defect pairs are thermally activated so that their density
is pap = poexp(—Eap/kgT) with py = 1/7 and Esp
the formation energy of a pair defect. The Brezinski-
Kosterlitz-Thouless (BKT) transition occurs at a density
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FIG. 4. Binding energy of pair defects separated by a single
lattice site as a function of 1/r, at T = 1.25 X 1073 Ry, com-
puted for systems of 120 lattice sites. Interstitials correspond to
squares and vacancies to circles.
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FIG. 5. Phase diagram. The solid line is an estimate of the
stable region of the Wigner crystal. The dotted line indicates the
energy of the paired interstitial, the dashed line the condition for
the BKT transition, Eyp < 0.84/r2.

papA*/kgT =~ 0.28 (this is scaled from the helium data
[27]). A solution to these two equations exists provided
that E;p < 0.42A*. Here \* = h?/(2m*) < 2/r? since
the pair defects are heavier than two free electrons. Hence
a necessary condition for the existence of a super-solid
phase is that E,p < 0.84/ rsz. This condition is shown in
Fig. 5. Our results indicate that the supersolid transition
could occur only in the Wigner crystal very near melting
and is likely to be precluded by the unbinding of pairs.
Thus even making favorable assumptions, a supersolid
is unlikely.

As mentioned above, we find that in a 2D Wigner crys-
tal most defects will be bound pairs of interstitials. The
conductivity is likely to be dominated by defect transport.
This could explain the extreme sensitivity of the conduc-
tivity in the insulating phase [6] to an in-plane magnetic
field which would cause unbinding of singlet pairs. Further
simulations are needed to decide whether pairing persists
in the melted phase as has been proposed by one of us [29].
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