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Exchange Frequencies in the 2D Wigner Crystal
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Using path integral Monte Carlo we have calculated exchange frequencies as electrons undergo ring
exchanges in a “clean” 2D Wigner crystal as a function of density. The results show agreement with
WKB calculations at very low density, but show a more rapid increase with density near melting. Re-
markably, the exchange Hamiltonian closely resembles the measured exchanges in 2D 3He. Using the
resulting multispin exchange model we find the spin Hamiltonian for rs # 175 6 10 is a frustrated
antiferromagnetic; its likely ground state is a spin liquid. For lower density the ground state will be
ferromagnetic.
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The uniform system of electrons is one of the basic
models of condensed matter physics. In this paper, we re-
port on the first exact calculations of the spin Hamiltonian
in the low density 2-dimensional Wigner crystal (2DWC)
near melting. This system is realized experimentally
with electrons confined at semiconductor metal-oxide-
semiconductor field-effect transistors (MOSFET’s) and
heterostructures [1], and for electrons on the surface of
liquid helium [2].

A homogeneous charged system is characterized by two
parameters: the density given in terms of rs � a�a0 �
�m��me� �pa2

0r�21�2 and the energy in effective Rydbergs
Ry� � �m��mee2�Ry where m� is the effective mass and
e the dielectric constant. Figure 1 summarizes the 2D
phase diagram. At low density (large rs) the potential
energy dominates over the kinetic energy and the system
forms a perfect triangular lattice, the Wigner crystal [3].
Tanatar and Ceperley [4] determined that melting at zero
temperature occurs at rs � 37 6 5. Recent calculations
[5] have shown that the low temperature phase is free of
point defects for densities with rs $ 50 but defects may be
present very near melting. At densities for rs $ 100 the
melting is classical, and occurs for temperatures Tmelt �
2Ry���Gcrs� where Gc � 137 [6].

We determine the spin-spin interaction in the Wigner
crystal, using Thouless’ [8] theory of exchange. Accord-
ing to this theory, in the absence of point defects, at low
temperatures the spins will be governed by a Hamiltonian
of the form:

Hspin � 2
X

P

�21�PJPP̂spin , (1)

where the sum is over all cyclic (ring) exchanges de-
scribed by a cyclic permutation P, JP is its exchange
frequency, and P̂spin is the corresponding spin exchange
operator. Path integral Monte Carlo (PIMC) as suggested
by Thouless [8] and Roger [9] has proved to be the only
reliable way to calculate these parameters. The theory and
computational method have been tested thoroughly on the
0031-9007�01�86(5)�870(4)$15.00
magnetic properties of bulk helium obtaining excellent
agreement with measured properties [10]. Rather sur-
prisingly, it has been found [11] that in both 2D and 3D
solid 3He, exchanges of two, three, and four particles have
roughly the same order of magnitude and must all be taken
into account. This is known as the multiple spin exchange
(MSE) model.

A WKB calculation of the exchange frequencies in the
2DWC by Roger [9] predicted that the three electron J3
nearest neighbor exchange would dominate, leading to
a ferromagnetic (F) ground state. Recent calculations
[12,13] have confirmed and extended those of Roger. Al-
though the 1�r interaction is characterized as “soft,” in

FIG. 1. Phase diagram. The estimated melting line is based
on Lindemann’s criteria [7]. The dash-dotted line represents
the Debye temperature. The dotted line is the Curie-Weiss
constant u, and the dashed line is the coefficient Jc of the
specific heat at high temperature as defined in the text. The
vertical line is the estimated zero temperature ferromagnetic
(F) transition.
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the 2DWC the two particle pair correlation function for
the electron system is quite similar to that of solid 3He
supporting the idea that multiple exchanges could be im-
portant in the 2DWC near melting.

An exact method for calculating the exchange frequency
in quantum crystals has been previously developed and
applied to solid 3He [10,14,15]. One computes the free
energy necessary to make an exchange beginning with one
arrangement of particles to lattice sites Z and ending on a
permuted arrangement PZ:

FP�b� � Q�P, b��Q�I , b� � tanh�JP�b 2 b0�� . (2)

Here Q�P, b� is the partition function corresponding to
an exchange P at a temperature 1�b. I is the iden-
tity permutation. Note that these paths are of “distin-
guishable” particles since Fermi statistics are implemented
through the spin Hamilitonian in Eq. (1). We determine
the function FP�b� using a method which directly calcu-
lates free energy differences and thereby determines JP

and b0. The only new feature with respect to the 3He
calculations is the method of treating the long-range po-
tential. We use the standard Ewald breakup [9] and treat
the short-range part using the exact pair action [10] and
the long-range k-space term using the primitive approxi-
mation. We used a hexagonal unit cell with periodic
boundary conditions, with most calculations containing
36 electrons. Checks with up to 144 electrons did not
change the results within the statistical errors. The number
of particles is not as important in the 2DWC as in solid 3He
because the 1�r interaction suppresses the long wavelength
charge fluctuations.

We performed calculations for the densities rs � �45,
50, 60, 75, 100, 140, and 200	. We found accurate results
using a “time step” for the discretized imaginary time path
integrals of t # 0.3r3�2

s and extrapolated to the t � 0
limit using Jp�t� � Jp�0� 1 J 0

pt3. The inverse tempera-
ture b in Eq. (2) must be larger than the values determined
by melting and twice the exchange “time” b0 
 5r3�2

s . We
have determined the exchange frequencies with an accu-
racy between 1.5% and 6% independent of their magni-
tude or the number of exchanging electrons, though the
computer time increases with the number of exchang-
ing electrons. Breakdown of Thouless’ theory caused by
many states contributing to the ratio of partition functions
would be signaled by FP�b� not described by Eq. (2).
Except for rs , 50, where our calculations are too un-
stable to make definite predictions, we observed no prob-
lems of convergence.

Figure 2 shows the ring exchanges considered here. Ex-
cept near melting, these exchanges give rise to most of the
thermodynamic properties. Note that we consider the six
particle parallelogram (6p) exchange, which is not taken
into account in solid 3He. We have also calculated sev-
eral 2–5 particle exchanges having next nearest neighbor
exchanges and all possible six particle nearest neighbor
exchanges for 50 # rs # 75, but because their magni-
tudes are much smaller, we do not report those results.
FIG. 2. Considered exchanges.

Our calculated exchange frequencies vary rapidly with
density as shown in Fig. 3. One can see that they are
much less than the zero point energy of the electrons, thus
justifying the use of Thouless’ theory. The WKB method
[11], where one approximates the path integral in Eq. (2)
by the single most probable path, explains most of this
density dependence. In the 2DWC, the WKB expression
for the exchange frequency [9,12,13] is

JP � AP�rs�b1�2
P r25�4

s e2bPr
1�2
s . (3)

Here bPr1�2
s is the minimum value of the action integral

along the path connecting PZ with Z. The three par-
ticle exchange exponent is the smallest indicating that as
rs ! `, J3 will dominate and the system will have a fer-
romagnetic ground state. However, note that in Fig. 3
J2 . J3 for rs # 90.

Figure 4 shows the ratio of the exact frequencies to those
from the WKB approximation [13]. We note that the ratios
tend to a constant of order unity for large rs, but a value
of �1.4 for J2 and J4. All the frequencies increase much
more rapidly than those of WKB, especially J5 and J6,
as the system approaches the melting density because of
fluctuations away from the most probable path. Near melt-
ing, the spread in exchange frequencies is much less than
predicted by WKB resulting in a more highly frustrated
spin Hamiltonian.

FIG. 3. Exchange frequencies versus r1�2
s . The solid line is

1023 of the kinetic energy.
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FIG. 4. The ratio of the PIMC exchange frequencies to those
from a WKB calculation [13] as a function of density.

We are unaware of any work that definitively establishes
the form of the correction to the WKB formula. A good
fit was obtained with the function AP�rs� � AP�0� �1 1

�rP�rs�3� to determine bP , AP�0�, and rP . The exponents
are close to the WKB values [13], differing at most by
0.02.

A recent calculation [16] directly evaluates J2 in the
high density regime, 5 # rs # 45, by numerically solv-
ing for the difference between the even and odd parity
two electron energies. In those calculations, the spectator
electrons were fixed at their lattice sites and the two ex-
changing electrons had vanishing wave functions outside a
rectangle centered around the exchange. At rs � 45, a di-
rect comparison shows their result is 2.3 times larger than
that obtained with PIMC. This result is expected because
of the additional localization caused by the spectator elec-
trons fluctuating into the exchanging region.

Having determined the exchange frequency, one is left
with the spin Hamiltonian of Eq. (1). This is a nontrivial
many-body problem which we will not discuss in detail
here. For spin 1�2 systems, J2 and J3 contribute only with
a nearest neighbor Heisenberg term: Jeff

2 � J2 2 2J3.
This term is negative (ferromagnetic) but approaches zero
near melting. For convenience we use J4 as a reference
to fix the overall scale of the magnetic energy. Neglect-
ing J6p , the Hamiltonian has three remaining parameters
Jeff

2 �J4, J5�J4, and J6h�J4. The dependence of these ra-
tios on density is shown in Fig. 5.

High temperature series expansions [17] determine
the specific heat CV and magnetic susceptibility x0�x

for temperatures kBT ¿ JP . The susceptibility is given
by x0�x � T 2 u 1 B�T · · · and the specific heat
CV �NkB � �3Jc�2T �2 1 · · ·, where the Curie-Weiss con-
stant is given by u � 23�Jeff

2 1 3J4 2 5J5 1 5�8J6h 1
872
FIG. 5. Spin phase diagram as a function of exchange
ratios. The dotted line is the flow of spin Hamiltonian space
versus rs (lower numbers); also shown are the estimated
values of J6h�J4 (upper numbers). The solid lines are the
limit of the ferromagnetic phase according to ED [18] at
J6h�J4 � �0.2, 0.4, and 0.6	. The 2DWC crosses into the F
region for rs � 175. The ��� are empirical estimates of the spin
Hamiltonian of 2D 3He at several densities [20].

15�4J6p� with a quadratic expression of the J’s for Jc.
These two constants, which set the scale of the tempera-
ture where exchange is important, are shown as dotted and
dashed lines in Fig. 1. Note that u changes from positive
to negative at rs � 130. Both u and Jc decrease very
rapidly at low density showing that experiments must be
done at rs # 60 if spin effects are to be at a reasonable
temperature, e.g. Tc . 0.1 mK (assuming the values for
Si-MOSFET: e � 7.7, m� � 0.2).

The zero temperature state can be studied by exact
diagonalization (ED) of an N site system. (The present
limitation is N & 36.) Here we summarize the findings
from Ref. [18] to characterize the stability of the ferro-
magnetic (F) phase and the nature of the antiferromagnetic
(AF) phase. The F-AF transition is shown in Fig. 5. The
ferromagnetic phase is obtained only at very low density:
we estimate the F-AF transition for the 2DWC will occur
at rs � 175 6 10. (Note that this estimate does not in-
clude the effect of J6p ; this will increase the stability of
the antiferromagnetic region to roughly rs � 200.)

At higher density, the frustration between large cyclic
exchanges (4–6 body loops) results in a disordered spin
state [18]. For example, the point (Jeff

2 �J4 � 22, J5 � 0,
J6h � 0), close to the parameters at rs � 100, is a spin
liquid with a gap to all excitations. The spin liquid prop-
erties can be understood from a resonance valance bond
model with ordering into spin-1 diamond plaquettes. The
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TABLE I. Fits for the exchange frequencies. The path area,
aP , was calculated at rs � 60 and it is in units of triangle areas.

P bP AP�0� rP aP

2 1.612 2.11 44
3 1.525 0.91 47 2.07(1)
4 1.656 1.42 45 3.07(2)
5 1.912 1.39 60 4.11(2)
6h 1.790 1.12 59 7.04(3)
6p 2.136 6.24 38 5.09(2)

breakup of the plaquettes is responsible for a low tempera-
ture peak on the specific heat. A second high temperature
peak develops at a temperature T 
 Jc, shown as a dot-
ted line in Fig. 1. However, because this interpretation
is based primarily on the analysis of small spin systems,
or uses approximate analytical methods and takes into ac-
count mainly only two, three, and four spin exchanges [18],
one cannot rule out more exotic types of spin order.

We find that at higher densities (rs , 100), the trajec-
tory of the MSE models parallels the F-AF phase line,
with the possibility of a reentrant ferromagnetic phase for
rs , 40. Note that quantum Monte Carlo calculations [19]
of the normal Fermi liquid at rs � 30 show that the fer-
romagnetic phase has a slightly lower energy that the un-
polarized phase. Hence both the high density 2DWC and
the low density electron fluid are characterized by a spin
Hamiltonian which is nearly ferromagnetic.

We note a remarkable similarity between the exchange
parameters of the 2DWC to those extrapolated from mea-
surements of the second layer of 3He absorbed on grafoil
[20] as shown in Fig. 5. The existence of two separate
realizations of this frustrated spin Hamiltonian should al-
low a fuller investigation of the proposed spin liquid state.
Such an equivalence could arise from an underlying virtual
vacancy-interstitial (VI) mechanism [11] giving rise to ring
exchanges. In this model the prefactor of the exchange is
controlled by the rate of VI formation (nonuniversal) but
the ratios of the various ring exchanges arise from geome-
try of the triangular lattice and from the attraction of point
defects (universal). We have recently determined [5] that
the VI formation energy vanishes at melting in the 2DWC.
This is consistent with the fact that the various JP increase
rapidly near melting.

In summary, we find that the magnetic interactions are
characterized by a frustrated spin order. Application of a
magnetic field [21] transforms the exchange frequencies
to Jpe2pieB�ap�h where ap is the area of the exchange
(see Table I) and B� the magnetic field. Experiments with
magnetic fields will allow exploration of this Aharonov-
Bohm effect and thereby provide direct information on ring
exchanges.

The semiconductor realizations of the 2DWC have sig-
nificant disorder which might stabilize localized electronic
states (a Wigner glass) at higher densities than in the clean
system [22]. It has been argued [12] that disorder will
favor the spin liquid phase. One can also stabilize the
Wigner crystal at higher densities using bilayers [23]. Ex-
change frequencies in those systems including effects of
layer thickness and the exchange properties of point de-
fects could be calculated with the present method.
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