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Abstract

In this thesis we will investigate the behavior of two-dimensional granular systems

using novel contact force measurements. One of the most unusual aspects of granular

systems is the inhomogeneous distribution of boundary forces in the bulk sample.

Investigating this behavior requires us to study the behavior of the system under

different loading conditions like isotropic compression, and shear. Most experimental

studies of granular systems have relied upon measurements at the boundaries of the

system. Though useful, these measurements do not provide information about the

micro-mechanics of the system. Information about the grain-scale behavior of the

system is important to distinguish between various models of force distributions in

granular systems.

In light of this, we have developed a novel experimental method that allows us to

measure the normal and the tangential contact forces, for each grain, at every contact.

Our approach utilizes the property of birefringence exhibited by some materials, and

allows us to visualize the stresses within each grain. We use the stress information and

solve the inverse problem of obtaining the contact forces that produce a given stress

pattern. We use these contact force measurements to study isotropically compressed,

and sheared states.

We find significant differences in the distributions of normal forces for sheared and

isotropically compressed systems. For sheared systems, the distribution of normal

forces has an exponential tail, whereas for isotropically compressed systems, the

distribution falls faster than an exponential. We also find that sheared systems show

anisotropic force-chain structure with long force chains roughly along principal strain

directions. We quantify this anisotropy by compution two-dimensional force-force

correlations, and find long-range, almost power-law like correlation in the direction
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of force chains. Isotropically compressed systems have only short-range correlations

in all directions. The spatial correlation of forces serves as a quantitative measure

for the qualitative idea of force-chains. Next we focus our attention on each of these

systems, and study them individually.

For isotropically compressed systems, we study the problem of jamming. We

find the exact point where the system jams. Theoretical studies have indicated that

a loose granular system under compression jams at a critical packing fraction, and

that the average number of contacts per grain grows in a power-law fashion, with

an exponent of 0.5. We indeed find a transition point in the packing fraction, and

a power-law growth of average contact number. We find that the exponent of the

power-law can range from 0.5-0.56, depending on the choice of the critical packing

fraction. The pressure in the system increases with the distance from the critical

packing fraction, as a power-law, with an exponent of 1.1.

In the next set of experiments, we focus on the evolution of sheared systems,

specifically from the point of view of plastic deformation. We study the grain motions,

and the stress-strain behavior of the system under one cycle of forward and reverse

shear. From the contact force measurements, we find that the stress-strain curve for

the system is clearly hysteretic - signifying energy loss in the system. It has linear

elastic segments interrupted by drops in stress of varied magnitudes. The stress

drops signify plastic events. The grain motions also reveals interesting features.

There are three distinct regions in which the grains move differently; two corners

where the grains show homogeneous elastic displacement separated by a diagonal

band consisting of vortices. This pattern is completely destroyed upon reversing the

direction of shear. The initial pattern of the displacements of grains in the reverse-

shear phase is more quadrupolar in appearance.
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Chapter 1

Introduction

This thesis deals with granular systems, and my attempts at understanding the many

fascinating properties of systems as simple as sand. I will take the experimental

approach towards this goal, but with an eye on, and making use of the theoretical

developments of the last century. The questions I will address will be simple. How

and why do granular systems behave differently in many respects than other solid

or fluid systems? Before I can answer these questions, I must begin by describing

what are granular systems, and why study them in the first place. I will briefly

describe some unique features of granular systems. I will then describe my attempts

at studying granular systems.

1.1 Granular systems: definition and description

and relevance

We are all aware of granular systems. These grainy materials are so ubiquitous that

often we do not pay any attention to the fact that we handle such materials on a

daily basis. Sand on the beach, sugar, salt, cereal, the list can go on and on. So what

are granular systems? Simply put they are systems composed of a large collection of

macroscopic grains, interacting with each other, and the fluid surrounding them. If

the grains do not interact with the surrounding fluid, then the system is termed dry

granular material, as opposed to a wet granular material, for example, the wet sand

on the beach. In this thesis we will deal exclusively with dry granular systems.
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Let us make our definitions more precise and describe a few properties of granular

systems:

• Grain sizes can range from a few hundred microns to several meters and beyond.

• Grains interact via repulsive contact forces.

• The contact interactions are frictional and highly dissipative due to kinetic

friction.

• Thermal energy is negligible compared to the kinetic and the potential energy

of the grains; granular systems are athermal.

We will take up each of these items in turn. Grains in a granular systems can

span a very large range of size scales; from a few hundred microns (powders) to

several meters (boulders). The scales can even be larger, as in the case of rings of

saturn, which are composed of very large rocks. In dry granular systems, there are no

attractive interactions between the grains, which in turn means that unlike an elastic

solid, an aggregate of grains do not support tension or stretching. This property has

important consequences for the stability of the system.

Friction plays an enormously important role in inter-grain interaction. As we will

see shortly, static friction between the grains results in history dependence, i.e the

state of the system at any given time depends on its entire history. Sliding friction

dissipates most of the energy in a very short time, causing terrestrial granular systems

to remain stationary unless a large amount of energy is continuously put in the system.

Thermal fluctuations have no effect on the dynamics of the system. Consider an

average grain of size ≈ 1mm, and mass ≈ 1mg. Its potential energy difference in

moving by a height equal to its diameter is given by δEp = mgd ≈ 10−8 Joules.

In contrast, the thermal energy scale at room temperature of 300 degK is ET =
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kT ≈ 10−21, where k is the Boltzmann constant. Thus, δEP >> ET , which in

effect means that the grains do not respond to thermal fluctuations. Unlike fluids or

gases, granular systems do not reach equilibrium through grain-motion generated via

thermal fluctuations.

The frictional dissipation of energy, and the athermal nature of granular sys-

tems results in the rather unique consequence that granular systems can remain in a

metastable state indefinitely, unless extra energy is supplied externally. For example,

unlike fluids, sand poured from a container makes a heap instead of spreading out

like a liquid.

All of these properties mentioned above may sound as if they are mainly scientific

curiosities, but these properties have enormous consequences for many industrial

processes, and environmental events. For example, many industries store granular

materials in silos, which tend to break inexplicably as shown in Figure 1.1d, mostly

during discharge of the material from the silo [Eib84]. This problem has been studied

for decades, but as yet has eluded complete solution. It has been reported that 40%

of the chemical processing industry deals with granular materials [EGD94]. Other

issues relevant for industries include better methods of mixing granular systems, and

avoiding segregation of grains of different sizes. These isuues have enormous economic

implications, and even a minor improvement would mean billions of dollars in savings.

Besides the industrial applications, there is a plethora of naturally occurring phe-

nomena involving granular materials, from beautiful examples sand dunes (Figure

1.1b), to catastrophic events like avalanches Figure 1.1c. These phenomena are

equally fascinating and challenging to understand. A whole range of scientific dis-

ciplines like physics, geophysics, mechanical engineering, chemical engineering, and

materials sciences, are involved in studying these phenomena.

Having seen some examples of granular systems in this section, we now turn to a
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Figure 1.1: Images of granular systems: (a) Sand castle. (b) Sand dunes. (c) Snow
avalanches. (d) Collapse of a silo. (e) vertically oscillating granular system.
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more technical description relevant for our studies. Although some of the examples

discussed earlier are cases of dynamic granular systems, in this thesis we will deal

exclusively with static or quasi-static systems. In the next section we describe some

unique features of granular systems relevant to such static and quasistatic systems.

1.2 Unique features of granular systems

Granular systems can behave like solids, liquids, or gases [JNB96b]. Consider sand

in a container. When it is just sitting undisturbed, it behaves like a solid, whereas if

it is poured out of the container, it flows and behaves like a liquid. A dust storm, on

the other hand, is an example of a granular system behaving like a gas. We will focus

here on understanding some properties related to static, and slowly moving systems.

1.2.1 Contact forces, friction, and indeterminacy of the

forces

The all-important property for granular systems, from our point of view, is the nature

of contact forces between grains of the system. As mentioned earlier, the contact

forces are repulsive, frictional, and dissipative. We will consider peculiar effects of

each of these properties.

Grains in any realistic dry granular system resist being compressed against each

other. They are usually hard grains but not infinitely rigid. This resistance manifests

itself as a repulsive force between particles, much like pushing on a spring. At the

same time, for dry granular systems, there are no attractive forces between the grains.

One consequence of this is the lack of ability to support tension in the system; a

granular system cannot be stretched like a spring or a rubber band. This causes

granular systems in some metastable states to be extremely fragile to perturbations.

The other component of the contact force between any two grains is the frictional

5
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(b)(a)
mgmgN N

Figure 1.2: Schematic diagram of the normal and frictional forces on a solid.

force. Frictional forces are of central importance to our understanding of the varied

phenomena exhibited by granular systems. Before describing its role in granular

systems in detail, let us review the well-known laws of solid friction, first given by

Amontons in the seventeenth century [Amo99], and a little later by Coulomb [Cou76].

Figure 1.2 shows a solid body resting on a solid plane, in two different orientations.

The forces acting on the body are also shown in the diagram. There is the normal

force acting on the body. The Amontons-Coulomb law states that the force required

to move the body horizontally must exceed its normal force multiplied by the friction

coefficient, which is a constant of the material. As long as the applied force is less

than this value the body remains at rest. Hence for a body in static equilibrium:

| FT |≤ µFN (1.1)

Once the applied force exceeds this critical value, the body begins to slide. The

force required to move the body is the same in both configurations in Figure 1.2.

The force of friction does not depend on the area of contact. A noteworthy point

here is that the law of friction is in the form of an inequality, which permits a whole

continuum of values allowed for the force of friction.

The dissipative aspect of contact forces come into play, once the grains start

sliding against each other. When two solid bodies slide past each other, kinetic

6



friction causes a loss of energy. The kinetic force of friction is the force needed to

keep the body moving at a constant speed. It is typically lower than the force of

static friction. In the absence of a constant driving force, the body quickly comes to

rest, losing all of its energy to heat.

f N

mg

? ?

? ?

mg

(a)

(b) (c)

Figure 1.3: Schematic diagram of the indeterminacy of contact forces caused by
friction.

We now come to probably the most important issue related to the work presented

in this thesis, which stems from the inequality in the law for frictional forces. Figure

1.3 shows schematic diagram of what is known as the indeterminacy of forces. It

shows a block placed between two perpendicular plates with friction. Let the final

resting place of the block be at the intersection of the two plates, as in Figure 1.3a.

The crucial point is that it is not possible to determine the forces on the block just

by looking at the final rest position of the block. If the block came to this position

by sliding along left plate, the force of friction would be along the left plate, whereas

if it slid along the right plate, the force of friction would be directed along the right

plate as shown in Figure 1.3b. The forces on the block are indeterminate unless one

knows the history of its dynamics.
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For frictional solids in contact, it is essential to know how the solids came in

contact with each other. This is equally true of grains in a granular system, as shown

in Figure 1.3c. The all important issue for us is that the contact forces between the

grains can not be determined from a single snapshot of the system, even if one could

see all the grains, and knew exactly how they were placed relative to each other. This

is due to indeterminacy of the forces; one would need to know the entire history of

the assembly.

Figure 1.4: An image of a disk with three forces, red arrows show the vector forces.

The second aspect of the same indeterminacy is the mathematical solvability of

a mechanically stable configuration. Consider a disk with three forces acting on it,

as shown in Figure 1.4. The three vector forces are shown by red arrows. Each

force has two components, normal and tangential. In all, for this disk we have six

unknown variables. On the other hand, if the disk is in mechanical equilibrium, we

have force balance and torque balance. The force balance gives two relations, one for

each component of the net force. The torque balance gives one condition between

all the force components. This leaves us with three constraints on the six unknowns,

an under-determined system of equations. Thus, unless extra information regarding

the forces is supplied for this system, it can not be solved, even if we know the exact
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contact locations. The situation just gets a lot more complicated when we have

an aggregate of grains. In order to know all the contact forces for a stable static

ensemble, information besides positional data is crucial.

It is the very first goal of the work presented in this thesis to find a method

for extracting all the contact forces, both the normal and the frictional forces, for a

single grain irrespective of the number of contacts it has, and then extend it to all the

particles in the system and find all the forces from a single snapshot of the system.

1.2.2 Distribution of forces

The most striking consequence of the properties described in the previous section

occurs in the way external forces are distributed throughout a granular medium. Fi-

nite size of the grains, and their frictional properties contribute to a highly unusual

response of granular systems to external loads. Under moderate amounts of com-

pression or shear, a granular system exhibits a very fragile balancing act between the

grains, where a group of grains are supporting other groups of grains by forming a

delicate contact network. This property has a dramatic effect on the way external

forces are distributed within the system.

One of the most fundamental features of granular systems is the inhomogeneous

distribution of interparticle forces. The most striking evidence of this heterogeneous

distribution is in two-dimensional photoelastic systems, where the effect of interparti-

cle forces can be visualized by using birefringent particles. At the system size scales,

this inhomogeneity of distribution appears as a filamentary structure of particles car-

rying more than the average load applied to the system. These groups of particles

have been dubbed “force chains” [Dan57, HBV99].

Figure 1.5 shows an image of a two-dimensional granular system of birefringent

disks. The stressed disks have colored bands, whereas unstressed disks have the
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Figure 1.5: A snapshot of force-chains in a two-dimensional granular system of
photoelastic disks

background intensity. The heterogeneous distribution of boundary stresses, and the

network of force-chains is clearly visible.

One of our goals in this thesis is to understand this heterogeneity in the dis-

tribution of forces, or the force-chain structure, in granular systems under different

boundary loads. The example shown here of a two dimensional granular system is

ideally suited for studying the problems associated with the distribution of forces,

especially since these forces can be readily visualized using the property of bire-

fringence exhibited by some materials. The technique of utilizing birefringence to

visualize stresses in a material is known as photoelasticity [CL31, Fro41].

In this thesis, we will utilize photoelasticity to exclusively study two-dimensional

granular systems. The kind of questions we want the answers to, can most effectively

be studied with two-dimensional systems using birefringent particles. The next sec-
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tion describes the history of the photoelasticity method briefly, and prior reseach on

the problem of force distributions in granular systems.

1.3 Photoelastic method and force distributions

Photoelasticity as a technique to study stress and strain distributions in solids has

a century-old history. It was first developed and utilized in France by Mesnager in

1901 [Har40]. It has since been extensively used by the engineering community to

determine stress distributions in usually two-dimensional [DR65, Hey52], and recently

in three dimensions [ADG92, AD94]. Its use in studying particle aggregates dates

back to 1950s, when civil and mechanical engineers needed to find stress distributions

in granular aggregates [Dan57, DdJdJ72a]. Over the years the use of this technique

has become much more sophisticated and its use in studying granular aggregates has

grown [DSR00].

Over last ten years, Bob Behringer’s laboratory has utilized photoelastic tech-

niques to study a variety of important problems in granular physics [HB99, GHL+01,

HB03] and in the process pioneered a resurgence of interest in its use to study prob-

lems in granular physics.

The presence of force chains gives rise to a number of unusual properties exhibited

by granular systems in static or even dynamic situations [JNB96a]. In static situa-

tions, one of the problems which has been studied for a long time is the response of

the granular system to localized loads [dG98, VHC+99], or finding the “Green’s func-

tion” of the system. Many theoretical models [BCC95, CLM+96, LNS+95, WCC97,

CWBC98, CBCW98, Soc98, GG02] have addressed the issue of the stress distribu-

tion in sandpiles or other geometries. In sandpiles assembled one grain at a time

[vN81, VHC+99, GHL+01, GLBH01, Sav97], the pressure at the base is not neces-

sarily maximum right under the apex of the pile, as one would intuitively expect.
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Instead, the pressure maximum may occur somewhat away from the apex. One ex-

planation for this effect is the formation of force-chains, which arch away some of the

load sideways and shield the region right below the apex [WCC97].

Similarly in granular silos, the pressure does not increase indefinitely with depth,

as it would if it were filled with a fluid [Jan95, VC99, VCB+00, Eib84]. The expla-

nation again is the presence of force-chains, which transfer some of the load to the

walls of the silo, thus keeping the pressure constant beyond a certain depth. Of more

importance is the failure of silos, the cause of which may be very short-lived, strong

force-chains hitting the walls. The forces along the walls of the silos fluctuate by a

large amount.

During the course of many experimental and theoretical investigations concerning

the nature of stress distributions in granular systems, a strong case has emerged for a

need to understand the distribution of contact forces, and equally importantly, their

fluctuations and spatio-temporal properties like correlations between force chains

[MOB96, MJN98, HB99, VHB99, Nic98, RWJM98].

One of the most enduring features found in many experimental and theoreti-

cal studies is the exponential tail in the probability distribution of forces [MJN98,

CLM+96, HB99, RJMR96a]. This is found to be true for systems that are static as

well as those that are quasi-static. Recently new theoretical results have appeared

pertaining force distributions in lattice models [TSS+05, SvHSvS03], and in force

ensemble models [SVvHvS04, SVE+04], which suggest that the probability of force

distributions may be different under different situations. Specifically, both the lattice

model, and the force ensemble model obtain faster than exponential decay for large

forces in isotropically compressed systems. For sheared systems, both models regain

the exponential tail at high forces [TSS+05, SvHSvS03]. Moreover, in the force en-

semble model, the probability distributions of forces differ in the bulk system from
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the boundary layers due to contact geometry effects [SEVvH06].

The predictions made by these models have further strengthened the growing

body of evidence that granular systems behave differently under different boundary

loads. If the system is compressed from all sides, the contact geometry, and the force

distributions are different, than if they are sheared in any way. All of these issues have

inter-grain contact forces as the fundamental property under investigation. Moreover,

most of the numerical and theoretical studies have dealt with the idealized frictionless

particles. As we have discussed earlier, friction is an important piece in the complete

description of real granular systems, and it is of considerable interest to see under

what conditions simulations with frictionless grains can adequately explain features

observed in a real granular system.

1.3.1 Jamming

Sand in an undisturbed container remains stationary. Although the constituent ma-

terial of sand is macro-sized solid grains, we do not say that sand is a solid. Instead

the descriptive that has been used the most to describe any granular system at rest

is jammed. The main reason for this is the observed fact that sometimes the system

does not remain in that state when disturbed by the slightest amount. Sand after

all can be poured out of the container just like a liquid. In this case we say that

the system is flowing or unjammed. To be sure, these behaviors are very similar to

ordinary solids and liquids, but there are significant differences between solids, liq-

uids and granular systems in the way a granular system makes the transition from

jammed to unjammed state and vice versa.

Consider a granular system in a container with a small hole through which the

material canescapee. All of us have experienced the annoyance of trying to pour out

a grainy material from a container, only to find that suddenly it gets stuck, and stops
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flowing. This is very typical of granular systems but it never happens for an ordinary

liquid. As long as the opening is of macroscopic size, a liquid will always ooze out.

We can say that both the sand and a liquid are flowing, sand can repeatedly get

stuck. This is the phenomenon of jamming in the simplest terms.

Many questions arise from these simple observations. For example, when does

the system start flowing?. How does it flow ? Why does it stop flowing of its own

accord? What material or other parameters do all these behaviors depend on? These

questions and more have been studied for a long time by researchers in industries,

and engineering and somewhat more recently by physicists.

Figure 1.6: Phase diagram of jamming in granular and other systems.

An intriguing idea was put forward by Liu and Nagel [LN98] regarding the tran-

sition from jammed to unjammed state, which is captured by a speculative phase

diagram shown in Figure 1.6. According to this idea, many systems, with attractive

or repulsive interactions, can be tied together in terms of their jamming transitions.

A liquid system with attractive interactions becomes jammed when its is supercooled

below a critical temperature. Likewise for granular systems, the role of ordinary tem-

perature may be replaced by shear stress. A granular system would jam only when

its density was sufficiently high and the shear stress below a critical value. Above a
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certain shear stress or below a critical density, the system may become unjammed.

Again, the transition from jamming to unjamming in a granular system in the

phase space of density and shear stress depends on the behavior of the system un-

der shear. Also the nature of this transition is truly critical or not is not a priori

clear. These issues have to be resolved by experiments which can measure the phase

space parameters like the density and the shear stress accurately. Although these

parameters can be measured in both two and three dimensions, in three dimensions,

measurements are made typically at the boundaries of the container. The shear

stresses at the boundaries gets distributed in a highly anisotropic manner. This af-

fects the strength of the system along different directions, and hence the stress at

which the system unjams. In other words it may be easier for the system to unjam

in certain directions but not in other directions.

A possible way to study these issues would be to measure and characterize meso-

scale force-chains in different directions, under different boundary conditions. This

brings us back to the need for measuring grain-scale contact forces, their spatial

distribution in the form of force-chains, and correlations between these force chains

in different directions.

In the end, it may turn out that for large enough systems, and at large enough

length scales, the grain-scale detail of contacts and forces may not matter, but rather

than assuming this to be true, it would be fruitful to verify it experimentally. One

last idea before we end this introduction is the description of contact forces between

realistic elastic bodies, which we take up in the next section.

1.3.2 Elastic bodies in contact

The problem of contact forces between real elastic solids was first studied by Hertz

[HJS96] within the framework of the elasticity theory. He considered two elastic
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Figure 1.7: Two elastic bodies in contact: Hertz’s law.

spheres compressed against each other, as shown in Figure 1.7. If the radii of the

spheres are R, and the distance by which they are compressed is h, then Hertz’s law

gives the force exerted by each sphere on to the other as [LL70a]:

F = kh
3

2 (1.2)

where the coefficient k =
√

2

3

E
1−σ2

√
R, and E and σ are Young’s modulus, and Poisson

ratio respectively.

The force law for quasi-two dimensional solids, for example disks or cylinders, is

somewhat more complicated by the fact that there is a logarithmic correction term

[LL70a], and the force law becomes:

−F log(F ) ∝ h (1.3)

These laws work with remarkable accuracy, although they involve only normal

forces. Finally we note that our model granular material is a collection of small elastic

cylinders with circular cross section. Ideally, they should follow the two-dimensional

law given in equation 1.3, but in reality, because they are three dimensional objects,

and have many asperities, they tend to follow the Hertzian law for three-dimensional

solids.
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1.4 Overview

In the preceding sections, we have briefly touched upon some aspects of granular

physics relevant to what follows in this thesis. It by no means exhausts the range of

interesting and challenging problems in granular physics, but for the sake of brevity

and our purposes here, we have restricted our discussion of the issues involved in

granular systems. One idea that we hope has been conveyed in the preceding is the

importance of contact forces in general, and a need to study the behavior of granular

systems under different boundary conditions, in particular.

It is a common practice in soil mechanics to treat granular systems using contin-

uum equations, ignoring the fluctuations of forces in the system. We have provided

examples of how force fluctuations could play a crucial role in several phenomena.

The exact nature of macroscopic description of granular systems starting from grain-

scale descriptions is still an unresolved issue. Part of the difficulty lies in lack of

experiments with grain-scale information about the forces in bulk systems. The

other difficulty arises from theoretical point of view. Many theoretical models with

radically different microscopic assumptions and mathematical structure end up giv-

ing reasonable agreement with the observed behavior. Without the facility of having

experiments with grain-scale data to test the microscopic assumptions, and macro-

scopic predictions, it becomes impossible to distinguish between various models of

force distributions, stress transmission and the response of a system to perturbations.

There is a definite need for developing experimental methods, which can obtain in-

formation about the grain-scale contact forces in bulk granular systems. With the

help of grain-scale positional, and stress information, we can begin to build up our

understanding of the behavior of granular systems from micro to macro scales.
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In this thesis, we plan to accomplish several goals:

• To study two-dimensional granular systems and use birefringent disks to visu-

alize stress.

• To solve the inverse problem of finding the normal and the tangential contact

forces for each contact from the experimental stress data in the bulk sample.

• To prepare granular systems under different boundary conditions like isotropic

compression and shear and study the distribution of forces, the structure of

force-chains.

• To study isotropically compressed systems from the point of view of jamming,

and to determine the jamming transition point for the system.

• To study the plastic deformation, energy dissipation and the stress-strain re-

lashion in sheared systems.

Chapter 2 will introduce the technique of photoelasticity and describe in detail

our method of obtaining the contact forces from experimental images. In chapter

3, we apply our method of finding contact forces to study isotropically compressed,

uniaxially compressed and sheared granular systems using a biaxial test apparatus.

In chapter 4, we focus on jamming transition in isotropically compressed systems. In

chapter 5, we study plastic deformation in sheared systems.
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Chapter 2

Experimental techniques

Experimental approaches to granular systems depend on the number of spatial di-

mensions of the system under investigation. They also depend on the scale of the

system under scrutiny, i.e the grain-scale or the meso-scale consisting of clusters of

few tens of particles or the system size scale. In order to carry out the program

outlined in the introduction, we need experimental information about the positions,

velocities and forces at all the scales in order to construct a consistent picture of

the behavior of the system from micro to macro scale. This means measuring the

positions, velocities and the forces experienced by the grains in bulk system as well

as macro-scale motion of the system and boundary forces. This is a daunting task

for a full three-dimensional (3D) granular system consisting of realistic grains which

are irregularly shaped and frictional.

It has been possible to obtain positional information of the grains in bulk two-

dimensional (2D) systems [HB99] and at the boundary of a 3D system [CLFB+06,

DB05]. It is also possible to obtain stress information at the boundary of a 3D

system [EMJN02, MJN98]. Obtaining stress information at the grain scale in bulk

3D systems without disturbing the system is an extremely challenging experimental

problem with very few partial solutions so far [ZM05, BWS+05] .

In order to be able to measure grain scale properties of the system, and to un-

derstand the emergent macro-scale behavior of the system, we focus exclusively on

2D systems in this thesis. The main reason for this choice is that in 2D systems,

we can not only measure positions and velocities of the grains but also the contact

forces on each grain in the system. This allows us to completely specify the micro-
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mechanical state of the system. We can then take a bottom-up approach and try to

understand the macro-scale properties like the force distributions, response function

of the system, stress-strain relations and plastic deformation of the system under

shear.

Measurements of contact forces at the grain scale are made possible by a novel

experimental technique, which forms the first step in this thesis and the crux of this

chapter. The main idea behind this technique is to utilize the property of birefrin-

gence exhibited by some materials which allows visualization of stress when viewed

with polarized light. The observed stress field inside a grain is then used to infer the

contact forces that produce the stress field.

In the rest of the chapter, we will begin by covering the basic concepts of pho-

toelasticity which is the optical phenomena exhibited by birefringent materials and

concepts of elasticity theory, which models such materials. We will then describe

the manner in which these two ideas are combined to form what is known as an

inverse problem, i.e computing the contact forces from a given experimental stress

pattern. Finally, we will demonstrate, for the first time to our knowledge, successful

implementation of our automated method for solving the inverse problem for a large

assembly of grains.

2.1 Birefringence, photoelasticity and polariscope

optics

Birefringence is a property of certain crystalline and polymeric materials in which the

index of refraction within the material changes in response to externally applied stress

[CL31, Fro41, DR65, Hey52]. These materials effectively rotate the polarization of

light passing through them. A clever utilization of this photoelastic property consists

of a stressed sample is viewed through crossed polarizers. This optical setup in which
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the sample is placed between two polarizers, with the light source on one side of the

sample and the camera on the other side, is known as a polariscope. Viewing the

sample in this fashion shows a striking pattern of colored bands (for a white light

source) within the sample, which is directly related to the internal stress state of the

sample. Details about the phenomenon of birefringence and many of the formulations

that follow can be found in references mentioned. Here, a brief description of the

process will be given.

Figure 2.1: Schematic of a circular polariscope containing a sample to be ana-
lyzed between complimentary circular polarizers (From Vishay Measurements Corp.
www.vishay.com).

Figure 2.1 shows the schematic setup of a typical circular polariscope. The sample

to be analyzed is placed between two crossed circular polarizers ( a circular polarizer

is a combination of a polarizer and a quarter-wave plate). The quarter wave plates

on either side of the sample are aligned with their axes mutually perpendicular. The

light from a source passes through a circular polarizer and enters the sample. Light

traveling within a stressed sample splits into two components depending on polar-
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ization, each traveling with different velocities. Due to the differences in velocities,

different polarizations of light emerging from the sample come out with different

phases at different points of the sample.

In brief, a stressed birefringent sample becomes anisotropic in its optical properties

and the index of refraction is spatially varying. Instead of being a scalar constant,

now the index of refraction has tensorial form. For a 2D sample, there are two

principal values of the index of refraction at every point of the sample. The variation

in the index of refraction results in phase variations of the light emerging from the

sample. The spatially varying phase α is related to the principle indices of refraction

by:

α(x, y) =
2π(n1 − n2)t

λ
(2.1)

where t is the thickness of the material, n1 and n2 are the principle values of refractive

indices, and λ is the wavelength of the light.

The fundamental equation of photoelasticity relates the changes in the refractive

index to the stress-state of the sample

(n1 − n2) = C(σ1 − σ2) (2.2)

where σ1 and σ2 are the principle values of the stress tensor of the sample, and C

is the stress-optic coefficient. The above two equations, when combined, give the

relation between the phase of the light emerging from the sample and the principle

stress values:

α =
2πC(σ1 − σ2)t

λ
. (2.3)

The goal of traditional photoelastic analysis is to extract the phase α, and infer

principle stresses from it. This goal would be simple to accomplish were it not for the
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nonlinear optical response of the light intensity. The intensity of the light emerging

from the sample and captured by the camera is given by:

I(x, y) = I0 sin2(α/2) = I0 sin2[
(σ1 − σ2)πCt

λ
] (2.4)

where I0 is the maximum intensity emerging from the sample. This is a nonlinear,

periodic function. A simple inversion gives values of phase only in the range 0 to π/2

instead of increasing magnitude of alpha with increasing stress difference.

Figure 2.2: Experimental stress pattern of a photoelastic disk with three loads.

The problem of obtaining the phase information or the stresses can be better

understood by looking at the image of a stressed photoelastic disk as in Figure 2.2.

The disk is under three radially compressive loads. The loads deform the disk and

produce stresses in the disk. A pattern of dark and bright bands (for monochrome

light source) is seen, which represent contours of equal principle stress difference.
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From equation 2.4, it can be seen that whenever the phase of the sin function is an

integer multiple of π, the observed intensity drops to 0. This is seen as a dark band.

By the same token, whenever the phase of the sin function is an odd half integer

multiple of π, the intensity function reaches a maximum and is seen as a bright band.

These bands are known as “fringes” and the whole pattern of fringes is known as the

“fringe pattern”. The density of fringes is low at the edge of the disk and increases

towards the contacts. The phase α is the smallest around the edges of the disk and

increases towards the contacts. The photoelastic analysis problem is to determine

the absolute value of the phase with respect to the phase of the stress-free region.

This is difficult to achieve using only a single monochrome image since the phase at

a reference point is not known a priori.

Development of various strategies to unwrap the phase and obtain full-field phase

information is still an active area of research [Ram00]. In one such approach the

phase at a point is assigned manually and then phases at other regions of the sample

are calculated. Other more automated approaches make use of two images at two

different wavelengths [Che97]. Phase shifting methods involve capturing multiple

images at different relative angles between the analyzer and the polarizer. RGB

photoelasticity involves capturing full color images and finding the phases at arbitrary

loads using calibration look-up tables (LUT) [Ram00]. In this thesis, we will make use

of variants of the greyscale and the RGB photoelasticity method. These methods are

more suitable when an automated photoelastic analysis is needed on a large collection

of particles.

The experimental problem we address in this thesis goes a step beyond getting

just the phase information of a stressed sample: ultimately we want to solve the

inverse problem of finding the contact forces that produce a given stress pattern

inside a sample. This problem can be solved by invoking an appropriate model which
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provides analytic expressions for the stress components in an elastic material given

the boundary forces. We then fit the experimental data and the model in least-squares

sense and obtain contact forces as best-fit parameters.

In order to accomplish this task, we must first choose a model based on the

theory of elasticity which represents the situation under investigation reasonably well.

A further simplification is introduced by selecting an appropriate model granular

system: throughout this thesis, our model granular system is a collection of thin

elastic disks of circular cross section. The advantage of choosing thin circular disks

as opposed to more realistic shapes of naturally occurring granular media is that the

analytic expressions for the stresses are readily calculable using 2D elasticity theory.

When such a collection of circular disks is compressed or sheared, they come in contact

with each other and exert contact forces on each other. From the grain-scale point of

view, when the system is in static equilibrium, the situation can be viewed as if each

disk is acted on by arbitrary number of contact forces in arbitrary directions such

that the forces and torques are balanced. We need to find a general solution for this

case of a single disk and apply it disk by disk on the entire collection. In the following

section we will briefly review the essential theoretical concepts of elasticity theory,

specifically 2D plane elasticity theory which is used to solve the inverse photoelastic

problem.

2.2 Theory of elasticity

An elastic body, as we generally know, is one which can change its shape and size

under the action of applied forces and comes back to its original shape and size once

those forces are removed. The fundamental quantity which can be used to quantify

this behavior is the distance between any two points of the material. Mathematically

an elastic material, as opposed to an ideally rigid material, is one in which the distance
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between any two points changes in response to externally applied forces. The change

in an element of length in the body is known as strain. The definitions of some of the

important quantities and useful formulae will be given in the following. The details

can be found in many authoritative treatises on elasticity theory [LL70b, TG70]. A

brief description can be found in Appendix.

Consider an elastic body described with a fixed set of axes. Let the position vector

of a point before deformation be r and after the deformation be r′. The displacement

vector of the point denoted by u due to the deformation is given by ui = x′i − xi,

where the subscripts i refer to the three spatial components x,y, and z.

σxz

σxx

σzz
σzxx

z

o

z face

x face

FxFxx

Fxz

Figure 2.3: Stress tensor components for a two dimensional plane x-z.

The distance between the points after the deformation dl′ is related to the distance

before the deformation dl via:

dl′2 = dl2 + 2uikdxidxk (2.5)

where uik is known as the strain tensor and is defined as:

uik =
1

2
(
∂ui
∂xk

+
∂uk
∂xi

+
∂ul
∂xi

∂ul
∂xk

) (2.6)
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The strain tensor is symmetric tensor, i.e. uik = uki. The principal values or the

eigenvalues of this tensor denote the three independent strains in the three mutually

perpendicular directions. The eigenvectors of the tensor are then the principal direc-

tions. For small deformations only the first two terms in equation 2.6 are considered

as the third term is of higher order and much smaller than the first two terms.

The next important quantity in describing an elastic solid is the stress tensor.

This tensor describes the response of the material to externally applied force. Thus

if Fi is the applied force in a given direction, then the force on any volume can be

written as an integral over the closed surface bounding the volume:

∫

FidV =

∮

σikdfk (2.7)

The component σik is the i-th component of force on unit area perpendicular

to the xk-th axis, and dfk are the components of the surface element vector d ~f ,

directed along the outward normal. This can be seen from Figure 2.3, where for

simplicity stress components are shown for a 2D plane. Although the stress tensor

for a deformed elastic solid varies spatially, if the body is in equilibrium, an average

of the stress tensor over the entire solid can be calculated, and expressed by a simple

formula which involves only the boundary forces and the locations of their points of

application.

σ̄ik =
1

2V

∮

(Pixk + Pkxi)dA (2.8)

where Pi,k are the boundary forces, xi,k are the coordinates of points of applications

of the forces, dA is the surface area element and V is the volume of the solid.

The fundamental relationship between the stress and the strain in an elastic body

is obtained by thermodynamics arguments [LL70b]. The stress tensor is the derivative
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of the free energy with respect to strain at constant temperature,

σik =
∂F

∂σik
(2.9)

The relationship between stresses and strains is in general a complicated nonlinear

function. If the deformation is small, then for many elastic solids, the strains are

linear functions of stresses. This law is known as Hook’s law and is expressed for an

isotropic solid as:

uik =
δikσll
9K

+
(σik − 1

3
δikσll)

2µ
(2.10)

where δik is the Kronecker delta, and K and µ are the bulk modulus and shear

modulus respectively.

In order to be able to use the formalism of elasticity theory for our model granular

system, we need to introduce one more simplification and consider the case in which

both the stress and the strain are only in one plane. This results in a considerable

simplification and allows for an effectively 2D analysis of a 3D problem [Her82]. The

plane elasticity approximation is valid if both the the stresses and strains are small

and the z-components of the stress and the strain are zero. We next consider the 2D

plane elasticity and its application to solve the problem of a thin disk under external

forces.

2.2.1 2D plane elasticity: the problem of concentrated forces

on a thin disk.

The plane elasticity approximation is very useful in the context of deformation of thin

plates due to external forces. The cases which involve longitudinal deformation of the

plates without any bending form a special class of problems. The simplest case we
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Figure 2.4: Two disks in contact with external force F acting on them.

want to consider is depicted in Figure 2.4. If the plate, which in our case is a circular

disk, is at equilibrium, then the forces and torque on it are balanced. If it is sufficiently

thin, then the strains can be regarded as uniform over its thickness and only the x

and y components of strains are non zero. Similarly the stress tensor also has only

x and y components. Thus, the elastic stress tensor reduces to a two dimensional

tensor with three independent components σxx, σyy, and σxy, since the tensor is still

symmetric and σxy = σyx. Now that we have obtained considerable reduction in the

complexity of the problem, we need to apply the formalism to the thin disk problem

and obtain the solution of stress components in terms of the external forces.

The first step in the solution is to obtain the solution for a point load on a half

plane, schematically shown in Figure 2.5. The detailed derivation is given in the

Appendix; here we briefly mention some important features of the solution (in radial

coordinates with the axes as shown in the figure). A point load acting on a half plane

produces radial stresses. The circular regions inside the half plane are lines of equal

radial stress. σrr. The two other components involving the θ coordinate, σrθ and σθθ

are zero due to the symmetry of the problem. The radial stress decays as 1/r, and

has the following functional form:

σrr = −2F

πt

cos(θ)

r
(2.11)
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Figure 2.5: Half plane and a circular disk under compressive loads.

where F is the applied load, t is the thickness of the plane, θ and r are the coordinates

of the point under consideration. The half plane solution forms the basis for many

2D elasticity problems including the solution for the circular disk problem.

The general solution for a disk acted on by arbitrary number of forces in arbitrary

directions is obtained by considering each contact separately and treating that contact

as a point force on an elastic half plane. Contributions from each contact are added

up and a correction term is added to match the boundary condition [Appendix].

The correction term is required because the circumference of the disk is stress free

except at the points of application of the forces. Adding the contributions for each

contact separately results in non-zero boundary stresses which need to be made zero

by adding the appropriate correction terms. A specific example of the disk problem

and the solution is given below. The general solution for any arbitrary situation can

be found in the Appendix.

Consider the case where a disk is in equilibrium under the action of two equal and

opposite forces, as shown in Figure 2.6. The left panel shows the schematic diagram
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Figure 2.6: Left: Diagram of a disk with two equal and opposite forces. Right: An
experimental example of the case.

of the situation. At any point in the disk, the radial stress has two contributions of

the type in equation 2.11. Thus the total radial stress at any point is

σtotalrr = σ1

rr + σ2

rr (2.12)

σ1

rr = −2F

πt

cos(θ1)

r1
(2.13)

σ2

rr = −2F

πt

cos(θ2)

r2
(2.14)

In Eqs. (2.12)-(2.14), each r and θ is measured from the point of application of the

force as shown in Figure 2.6. Also, each of the radial stress contribution is directed

towards the respective loading points. At the boundary of the disk θ2 = 90◦ − θ1.

Adding both contributions for the boundary of the disk results in an overall radially

compressive load of magnitude σn = −2F/πtd, where d is the diameter of the disk.

The correct stress distribution is obtained by adding a uniform tension of magnitude

σn = 2F/πtd to the solution σtotalrr . The deformation of the disk can be obtained

easily from the stress components, since for two dimensional, linear, and isotropic

elastic solids, the stresses and strains are directly proportional.

The general solution of this problem was first given by Mitchell [MMFJ64]. He
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showed that the stresses at any point in the disk produced by N concentrated loads

are obtained by combining in appropriate manner radial stress contribution by each

contact, and adding to it the isotropic tension σn which satisfies the boundary con-

ditions:

σrr = −
N

∑

i=1

2Fi
πt

cos(θi)

ri
(2.15)

σn =
N

∑

i=1

2Fi
πtd

sin(θ1 + θ2)i (2.16)

σtotal = σrr + σn (2.17)

The above set of equations are the solutions we have been looking for. In a large

collection of disks at static equilibrium, each disk may have a different number of

forces of arbitrary magnitudes and directions, but for each such disk the stress field

is given by a solution outlined above. From the above set of equations, we can

calculate an analytic expression for σ1−σ2 [Appendix], which is used in equation 2.4.

In this way we can create a theoretical model for the observed intensity patterns. The

formula for σ1 − σ2 depends on the spatial coordinates within the disk and also on

the normal and the tangential contact force components, which we intend to extract

from the experimental data.

The next stage in the our method involves analysis of the photoelastic images

and fitting the observed photoelastic stress patterns within each disk to the model

developed above. We will take up each of these issues in the next two sections.
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Figure 2.7: An experimental image of stress patterns in a collection of photoelastic
disks.

2.3 The inverse photoelastic problem: problem state-

ment and the solution

We have developed the necessary theoretical background for addressing the central

experimental challenge put forward in the beginning of this chapter. The experi-

mental problem can be defined much more precisely for our experimental system and

understood more clearly with the help of an experimental image. Figure 2.7 shows an

experimental image of a collection of photoelastic disks confined in a rectangular en-

closure and under compressive boundary forces. The boundary forces are distributed

within the system in a non-uniform manner with different disks carrying different

amounts of loads. Each disk under compression shows a stress pattern produced

by the contact forces acting on it. It can observed that the stress pattern of each

disk is different, even if only slightly, from any other disk. More quantitatively, the
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stress state of each disk depends on the number of contacts it has, the location of

the contacts, and the magnitudes and directions of each of the contact forces. Since

the number of combinations of these variables is exceedingly large, for all practical

purposes, each disk carrying some finite amount of load has a unique stress state and

hence a unique stress pattern.

Our objective is to find the magnitudes and directions of contact forces at every

contact of each particle carrying a finite amount of load. In order to achieve this, we

need to know several things:

• center of mass of each disk;

• number of contacts for each disk;

• locations of the contacts;

• greyscale or RGB image of stress patterns inside the disks.

We have seen the example of the last item in the above list in Figure 2.7. This is

the image obtained by viewing the image through crossed polarizers. If we use white

light and a color camera, we obtain a truecolor RGB image, whereas a monochrome

light source or a monochrome camera would yield a greyscale image. The RGB images

yield three times the information obtained from a greyscale image; on the other hand,

a narrowband monochrome light source reduces errors due to wavelength spread, and

yields precise fringes for a particular wavelength. We will make use of both kinds of

images to study different problems, as our inverse problem solution method is general

enough so that it can be modified suitably for both kinds of images.

The first task before finding the contact forces is obtaining the material fringe

value, fσ, which is the combination of constants in the phase of the sin() function

of equation 2.4. The details of obtaining this constant will be described in a later

34



section. Once fσ is known, the algorithm for solving the photoelastic inverse problem

for any particular disk in the sample can be put quite simply as follows:

• locate the center of the disk;

• find out the number of contacts and the x-y coordinates of those contacts;

• consider the stress pattern inside the disk as experimental data;

• fit observed stress pattern to the theoretical stress pattern given by equation

2.4, by keeping the contact force components as fitting parameters;

• treat the best fit parameter values as measured contact forces.

The process of solving the inverse problem can be split into two steps. The first

step is to obtain the geometric information about the system, i.e. the disk centers,

contact numbers and their locations. The second step is obtaining the contact forces

by fitting the analytical model to the observed stress patterns. In what follows, we

will take up each step separately and examine the methods involved in each step in

detail.

2.3.1 Geometric image analysis: obtaining the particle cen-

ters and contacts information.

The center of mass information for objects of any shape within an image requires

morphological operations to be performed on the image. The central idea is to con-

fine the region of interest (ROI) within a boundary, eliminate the intensity variations

within the ROI and assign a prescribed intensity value such that it is distinctly differ-

ent from the background and unambiguously identifiable. This step usually results

in binarization or thresholding of the image. There are several distinct strategies

to obtain centers of dark/bright blobs in bright/dark background. One approach is
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to continue the morphological image operations and perform a sequence of erosions

and find the ultimate erosion point (UEP). Another approach is to perform moments

analysis on the ROI with the first moment being the center of mass. In a different

approach, the greyscale or a binary image is convoluted with a specified kernel to

obtain the centers. In general finding circular areas and centers of circles is an easier

task than most other shapes [Rus99, Gre83]

Figure 2.8: Unpolarized image to obtain disk centers and contacts.

An inspection of Figure 2.7 reveals that a simple minded strategy for finding

centers of circles is unlikely to work for photoelastic images. The reason for this is

the spatially periodic variations of intensities within each disk, which are different

for each disk, and which hinder any attempt to apply global rules for finding circles

and their centers. This problem is overcome by acquiring a separate image which

captures only the particles without the stress patterns. This is accomplished by

capturing the image without the analyzer. The resultant image is shown in Figure
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2.8. This image is ideally suited to finding circular disks and their centers using any

of the approaches mentioned above. We will predominantly use the erosion method

which is computationally fast but requires some amount of manual input to improve

the accuracy of the method. When a large data set is to be analyzed, the convolution

method is more suitable, as it can be completely automated.

Figure 2.9: An unpolarized image of the disks with centers superimposed.

An example of the centers found by above erosion method is shown in Figure 2.9.

The image size is 3264 × 2448. The erosion method is implemented using software

written in C. It is also cross-checked with Matlab codes. Key steps involved in

obtaining centers from an unpolarized image are as follows:

• A Sobel edge detector is used to find the edges of the disks.

• The edge-detected image is binarized using an appropriate intensity threshold,

and reversed, which results in an image with bright blobs on a dark background.
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• Multiple erosions are applied to separate the blobs completely from each other.

This results in substantial reduction in the size of the blobs, and also a distortion

of the circular shape.

• A few dilations are applied until the blobs grow, so as to become more rounded

but still separated from each other.

• A labelling algorithm is applied, which finds the geometric mean of connected

bright pixels.

The centers are found with a pixel-level, or even sub-pixel accuracy. The accuracy

can be maintained at sub-pixel level by manually adjusting the image processing

parameters like the threshold value and the number of erosion-dilation cycles, for

a given run. The most important aspect of the process is removal of all the voids

of different shapes and sizes. This is accomplished by calculating the form factor

f = L2/4πA of the blobs, where L is the perimeter, and A is the area of the blob.

For circular disks, the form factor is 1, whereas for non-circular objects it is greater

than 1. Retaining objects with form factors close to 1 eliminates the voids which

typically have much larger form factors. Although the form-factor criterion is quite

accurate, occasionally a disk is missed, or a void is treated as a disk. These cases are

corrected manually. Typically, only one or two such erroneous instances occur for an

image with roughly 1300 disks.

The next step in our method involves finding particle contacts. Most traditional

methods of finding nearest neighbors or contacts employ a euclidean distance crite-

rion. The idea is to check center-to-center distances and consider two particles in

contact if this distance is within a few percent of the sum of the radii. Ordinarily

this approach would suffice, but for our system this simple approach falls short due

to one extra requirement. We want to find not just the possible contacts but the true
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force-transmitting contacts. In addition, for the inverse problem solution to work

effectively and efficiently, we need a high accuracy in finding true contacts.

In view of this requirement, we implement a two step procedure for finding the

true contacts. In the first step we obtain possible contacts by employing the euclidean

distance criterion from the centers found as described above. In the second step we

use the polarized stress image and examine the region around each possible contacts

to determine if there is a transmission of force. This determination is done by looking

at the intensity variations and the square of the gradient of intensity, ∇I 2
x,y in a small

window around the contact. Typically, when a contact carries a load, it acts as a

source point for fringes resulting in rapid variations in the intensity as compared to

the rest of the disk or a contact carrying no force. This is due to the variation of stress

near the contact. This allows us to identify a true contact based on a cutoff value of

the gradients in intensity. If the square of the gradient of intensity is higher than a

cutoff value, the contact is treated as a true contact. This procedure is quite accurate

with errors around 2%. The error estimate is found by employing the criterion on

various test images with manually determined contacts. The primary reason for the

errors is the digital image noise and resolution limit.

The intensity gradient, ∇I2
x,y, calculated at each point in the image is a four-way

(horizontal, vertical, and both diagonals) average of the intensity difference squared

divided by the distance of a line segment joining the pixels:

∇I2

x,y =
1

4

[

(
Ix+1,y − Ix−1,y

2
)2 + (

Ix,y+1 − Ix,y−1

2
)2 +

(
Ix+1,y+1 − Ix−1,y−1

2
√

2
)2 + (

Ix+1,y−1 − Ix−1,y+1

2
√

2
)2

]

(2.18)

for a square pixel array with directions x and y. Each individual component of the

gradient is squared to remove the directional dependence.

Finally, the average gradient squared of intensity (G2) is found by averaging ∇I2
x,y
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over the entire N pixels contained within the region of interest (ROI):

G2 =
1

N

∑

x,y

∇I2

x,y. (2.19)

Figure 2.10: An example of an image (left) and its gradient square (right) as an
image.

Figure 2.11: Image of the system with centers and contacts.

Figure 2.10 shows an example image (left) and the image constructed by finding

the G2 at every pixel (right). This pixelwise G2 is then averaged over a suitable
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window around the contact to obtain the average G2 around a contact. The number

of fringes increase as the contact force increases, resulting in a higher average G2 as

compared to any other area inside the disk. Figure 2.11 shows the stress image of the

system with centers marked as black dots and contacts as red crosses. The average

spatial error in finding the contact location is roughly two pixels.

The locations of the centers of the disks and the force-bearing contacts complete

the geometric information required prior to the measurement of contact forces. The

contact forces can now be found by utilizing the geometric information along with

the stress pattern inside the disks and the plane elasticity solution.

2.4 Solving the inverse problem

At this stage of our analysis, we have the geometric information about the disks; the

locations of the centers of the disks, the number of contacts each disk has, and their

coordinates. Before we begin to implement the solution to the inverse problem, we

need to find the relation between the optical response of the material with applied

stress. This relation is a property of the material, and can be quantified by a single

constant; the fringe value, fσ, which is defined by combining all the constants in the

phase of equation 2.4, and is given by:

fσ =
λ

Ct
(2.20)

Although it can be found by knowing all the constants exactly, in practice, for

a given material of specific thickness, observed under white light, it is found by

applying various loads to the sample, and measuring the fringe number at specific

locations. For disks, the procedure is somewhat simplified, and rather accurate, since

the relation between the material fringe value, diametrically applied loads, and the
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fringe number at the center of the disk is very simple. It is given by:

fσ =
4F

πDN
(2.21)

where, F is the applied load, N is the fringe number at the center and D is the

diameter of the disk.

Figure 2.12: A sequence of experimental images of diametrically loaded disks for
calibration.

Figure 2.12 shows a sequence of images of diametrically loaded disks with increas-

ing loads. It can be seen that the number of bands or fringes in the disks increase

as the load increases. The fringes are contours of constant shear stress, and can be

numbered systematically, signifying increase of shear stress as we trace a path from

the edge of the disk towards the contact locations. The center of the disk is a sad-

dle point, where fringes originating from the two opposite contact points meet. The

fringe number is zero at the boundary and then increases by one half integer for every

bright and dark band crossing. Thus the first bright band from the circumference

has the fringe number 0.5, the next dark band, 1.0 and so on.
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Figure 2.13: Calibration curve for force and fringe number.

Figure 2.13 shows the calibration curve for applied load (F) versus the fringe

number (N) at the center of the disk. The applied load is measured with a digital

force gauge (IMADA DPS-1) with a resolution of 0.001 N. The slope of the straight

line fit to this curve can be used to find the fringe value fσ, from equation 2.21.

The disks used in our experiments are made from a polymer (PS-4, Vishay Inc.); the

Young’s modulus of the disks is 4 MPa, diameter is around 0.8 cm, and the thickness

is around 0.5 cm. For this material, the fringe value comes out to be about 58.

Once the material fringe value is known, the analysis for finding contact forces from

individual images can begin.

The basic idea in solving the inverse problem is to use equation 2.4, which is

rewritten below in terms of fσ.

I(x, y) = I0 sin2[
(σ1 − σ2)π

fσ
] (2.22)
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The left side of the equation is the observed intensity at a pixel coordinate x

and y. The right hand side of the equation has two contributions; one is the known

fringe value fσ, and the other is the principal stress difference σ1−σ2, at the physical

coordinate x and y of the disk. The pattern of intensity variation reflects the variation

of σ1 − σ2 as a function of spatial coordinates. Our procedure for extracting contact

forces relies on substituting an analytical expression for σ1 − σ2. If we can manage

to do that, then we can cast the problem as a non-linear fitting problem between

observed intensities and theoretical intensities.

We have derived an exact analytic expression for the stress components for general

case of N point contact loads of arbitrary magnitudes and in arbitrary directions,

obeying force and torque balance, and acting on the circumference of a disk. The full

solution is given in the Appendix. From these stress components, the eigenvalues of

the stress tensor can be computed, and hence the difference in the eigenvalues, which

is the principal stress difference σ1 − σ2. The observed intensities are sin2 of the

principal stress difference, which makes the response highly nonlinear and periodic.

2.4.1 Algorithm for solving the inverse problem

To begin with, we will first consider the single disk problem. Figure 2.14 shows a disk

acted upon by a number of forces. Using the plane elasticity theory, we can obtain

the individual stress components σxx, σyy, and σxy in terms of the contact forces. For

a two dimensional disk, the complete stress tensor is given by:

σ =

(

σxx σxz
σzx σzz

)

. (2.23)

The eigenvalues or the principal stresses σ1, and σ2 of the stress tensor are given
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Figure 2.14: Schematic diagram of forces acting on a disk.

by:

σ1,2 =
−(σxx − σyy) ±

√

(σxx − σyy)2 + 4σ2
xy

2
(2.24)

The principal stress difference is given by:

σ1 − σ2 =
√

(σxx − σyy)2 + 4σ2
xy (2.25)

The above expression for the principal stress difference is a function of contact

force components which we need to extract. The way in which we implement the

algorithm for extracting these forces can best be understood with the help of a few

examples.

Consider, for a single disk, the simplest possible situation of two equal and op-

posite forces acting on the boundary of the disk as shown in Figure 2.15. We begin

by finding the center of the disk, marked in the image as x. The locations of the

contacts can also easily be found in from the image. The black circle in the image
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Figure 2.15: Diametrical forces acting on a disk: the center is marked as “x”, and
the area within the circular ring is used to obtain intensity data.

within the disk represents the region which we use as experimental data. The region

used to get observed intensity is chosen carefully to avoid data points very close to

the contact points. Very close to the contacts, the density of fringes increases very

rapidly and produces data which is not very well resolved. In order to fit the model to

the data, we need sufficient number of good data points, which we can obtain from

the interior of the disk, while avoiding ill-resolved data near the contacts. In this

way, as experimental data, we have a matrix of intensity values (I) at a given pixel

location (i,j), in the image coordinate system. In order to set the fitting problem, we

need to convert the pixel coordinates to physical coordinates with the axes centered

at the center of the disk. This is accomplished by a simple linear transformation.

Now we have, in physical coordinates of the disk, the following:
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I(x, y)observed = I0sin
2





(
√

(σxx − σyy)2 + 4σ2
xy)π

fσ



 (2.26)

This is the equation we will use to extract the contact forces. On the left side of

the equation, we have experimental intensities at various locations within the disk.

On the right side, we have the theoretical values of intensities at these locations

depending on the external forces. Our goal is to find the external forces which result

in theoretical intensities closest to the observed intensities at all of the data points

under consideration.

This goal is best achieved by performing a nonlinear least-squares fit between

the observed intensities, and the theoretical solution, keeping the external forces as

free parameters. The fitting procedure, when finished should yield us the contact

forces as best-fit parameter values. The algorithm used for performing the nonlinear

least-squares fit is due to Levenberg & Marquardt [PFTV92]. We implement a two

dimensional nonlinear fitting procedure.

The Levenberg-Marquardt algorithm starts with the user supplied data for the in-

tensities at various locations of the disk, the coordinates of those points, the analytic

expressions for the theoretical intensities, and the derivatives of this analytic expres-

sion with respect to the fitting parameters. Given this basic information, and initial

guesses for the fitting parameters, the algorithm begins computing the least-square

error between the observed values and the computed values. It then increments the

initial guesses by a small amount and recomputes the least-square error. If the error

increases, the values of the parameters are reduced by a small amount. If the error

decreases, the new parameter values replace the initial guesses. The process can be

repeated until the change in the error is less than a predetermined small amount. In

this way, the algorithm settles on the final values of the fitting parameters, which
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are taken as the measured contact forces. This is a barebones sketch of the algo-

rithm, which in practice has many subtleties, like any numerical analysis of nonlinear

problems. The details can be found in [PFTV92].

A peculiar feature of any nonlinear fitting procedure is the dependence on initial

guesses of the fitting parameters. This dependence on initial values is problematic

even in one dimension. In two spatial dimensions, the problem is even more com-

pounded. Borrowing the language of energy minimization problems, our fitting pro-

cedure is equivalent to finding the global minimum of a complicated two-dimensional

energy landscape. If one starts with initial guesses of parameters which are very close

to the correct values, the convergence is rapid and usually accurate. On the other

hand, a different set of initial guesses may converge rapidly but only onto a local

minimum. Convergence onto a global minimum is not guaranteed. In view of this,

we augment our fitting procedure to find the best-fit parameters by large number of

initial guesses of parameter values within a certain range. We then compare the final

least-square errors of these converged solutions, and select the best-fit parameter set

with the minimum error. This step further improves the accuracy of the method.

In practice, the range of initial guesses we supply is based on the following obser-

vation. Each contact force on a disk has magnitude and direction. The magnitude

of the contact force can be guessed reasonably accurately by using prior calibration.

The calibration tells us what the intensity pattern looks like around the contact,

when a force of certain magnitude is applied. What this calibration does not tell us

is the direction in which this force acts. The job of the nonlinear fitting procedure is

to give us not only a more accurate measure of the magnitude of the force but also its

direction. In order to obtain this direction precisely and unambiguously, we supply a

range of initial guesses with the same magnitude but different directions, implement

the fit, obtain the best-fit parameter values for each set of initial guesses, and select
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the set with the lowest error. In most cases, this procedure produces an accurate

estimation of both the magnitudes and directions of the contact forces acting on the

disk.

A second area of concern for nonlinear fits in general is the number of fitting

parameters. The overall convergence properties of the fitting procedure depend on

the number of parameters to be fitted; more parameters require more representative

data points. This in turn affects the computational effort. In our case we can reduce

the number of fitting parameters by enforcing force balance and torque balance; a

fundamental requirement for frictional particles to be in static equilibrium. Thus, for

N contact forces, we have 2N unknown force components that we need to determine.

Since the disk is in static equilibrium, all the 2N parameters are not independent. The

force balance condition on X and Y components of forces produces two constraints:

N
∑

i=1

Fix = 0 (2.27)

N
∑

j=1

Fjy = 0 (2.28)

(2.29)

where Fix, and Fjy are the X and Y components of contact forces.

The torque balance produces one more constraint.

N
∑

i=1

~Ri × ~Fi = 0 (2.30)

where, Ri is the radius vector between the center of the disk and i-th contact, and

Fi is the force at the contact. × is the vector product.

In the end we have 3 constraints on our 2N free parameters, which reduce the

number of free parameters to 2N-3. This is of substantial help in reducing com-
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Image Experimental Force (N) Best-Fit force (N) Error (%)
1 0.149 ± 0.001 0.146 0.3
2 0.198 ± 0.001 0.200 0.2
3 0.298 ± 0.001 0.299 0.1
4 0.372 ± 0.001 0.376 0.4

Table 2.1: A table of experimental and computed values of forces

putational time and improve the efficiency of the algorithm. In addition, it is also

physically meaningful, since any best-fit force components are necessarily force and

torque balanced.

Figure 2.16: Experimental image of a diametrically loaded disk (left), and the
best-fit image obtained after obtaining the contact forces (right).

Once the contact forces are obtained, we can use the theoretical model to visualize

the response of the disk to the contact forces by computing the intensities using the

best-fit force values. It gives an easily verifiable visual check as to the reasonableness

of the measured force values. Figure 2.16 shows an example of an experimental image

and the best-fit image generated from the best-fit force values.

Figure 2.17 shows such numerically generated best-fit images constructed from

the best-fit contact forces of the diametrically loaded disks used to obtain the fringe

value fσ. These images are in the same sequence as in Figure 2.12. The similarity

between the observed and best-fit images is readily apparent. Table 2.1 shows the

values of the applied force and those obtained from solving the inverse problem in
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Figure 2.17: Best-fit images of the calibration images shown in Figure 2.12.

each case. The errors are very small in these simple two-contact cases primarily due

to the fact that after imposing force and torque balance, we are left with only one

free parameter.

The main idea to be grasped from Figure 2.16 and Figure 2.17 is that the method

proposed here works rather well in extracting contact forces from experimental stress

images. The examples presented so far should be considered as “proof of principle”

type of evidence.

We now examine how well the method works when there are more than two contact

forces acting on the disk. Essentially the procedure is exactly the same except for

the fact that there are more free parameters now.

Figure 2.18 shows a comparison between the experimental image with three loads

applied to a disk, and the best-fit image generated after finding the contact forces.

The agreement between the observed photoelastic response and the theoretical re-

sponse is again evident. The contact at the bottom the image was loaded with a
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Figure 2.18: Experimental image of a disk with three contacts (left) and the best-fit
image (right).

force gauge, which gave an independent measure of the force. The applied load was

0.663 N and the force obtained after the fitting procedure was 0.685, which is an error

of roughly 3%. This is expected since the large forces have resulted in high fringe

density, which has not been well-resolved at the contacts.

2.4.2 An array of disks: multi-contact, multi-particle prob-

lem

The next significant test of our procedure for contact force measurements is for the

case of an array of disks under some arbitrary boundary load. The contact loca-

tions, as well as the normal and tangential forces developed between the particles are

somewhat random, or at the very least, not carefully controlled. In this situation,

we can truly test both aspects of our method; accuracy with which we can obtain

the centers, and contact locations in an automated fashion, and the accuracy in the

normal and the tangential components of the contact forces.

Figure 2.19 (left) shows a small collection of disks confined in a rectangular en-

closure, with a force applied on the disk at center of the bottom boundary. The
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Figure 2.19: Experimental image of an array of disks (left), and the best-fit image
obtained after obtaining the contact forces (right).

applied force is measured with a force gauge. The centers of the disks and contact

locations are found by methods described in earlier sections. Each disk is treated as

an independent object, and solved for separately. Thus, we start with the disk at

the bottom boundary, and find the normal, and the tangential contact forces for that

disk. We know the value of one of the contact force magnitude since it is measured

with the force gauge. We can compare the value of the force measured via the force

gauge and the one obtained by solving the inverse problem, giving us an estimate of

the error at that contact, which is roughly 1.2%. Each disk is solved for subsequently,

starting with the contacting neighbours of the first disk. This allows us to supply the

forces found for the first disk as initial guesses for contact forces of the other disks.

Once all the contact forces have been found, the best-fit image is computed.

Figure 2.19 shows the best-fit image computed after all the disks have been solved

for. The fit again appears good, although not as good as in Figure 2.17, or in Figure

2.18. This is because in order to capture more disks, the resolution per disk has to

be lowered.

In most situations of interest, we will not have a measure of the force on one or

more boundary particles. For these cases, it is highly desirable to have an estimate
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of the errors in the best-fit force values which is in some sense an internal measure.

One internal measure of errors in fitting is the usual χ2, or the least-square error.

This measure pertains only to the fitting algorithm; how well the observed, and

the theoretical values match for the data points chosen to be used for solving the

inverse problem. In order to have a more physical measure of the errors in force

measurements, we employ the following procedure.

As mentioned earlier, our procedure treats each disk separately, and solves for the

contact forces on one disk at a time. The only constraint we have is that the forces

and torques be balanced for that particular disk. This still laves one more constraint

on the entire array of disks, viz. Newton’s third law. The forces between the disks

have to be equal and opposite. We do not impose the third law on our system. Instead

we use the third law as a measure for the errors in the contact force measurements.

Since a contact is shared between two disks, we get two values for the normal and the

tangential component of the force at that contact. Ideally, they should be equal and

opposite, but in practice they are somewhat different. We calculate the difference

between the values obtained for the normal, and the tangential component and also

the total magnitude of the force. We use these differences to estimate the errors in

contact force measurements for disks in the bulk sample.

Using this procedure, we find that the average error in the magnitude of contact

forces are small ( ≤ 5 %) for forces between 0.15 N and 1.5 N, but they are relatively

higher ( 5-10 %) for forces lower than 0.15 N and higher than 1.5 N. The reasons for

higher errors at both the very low, and very high end are different. At the low end of

forces, there is very little intensity variation data to make a precise measurement of

forces. At the high end, we have two limitations; one is the resolution of the imaging

device itself, and the other is the sensitivity of the material itself, which is dictated by

the stress-optic coefficient. Force measurements with the lowest errors are obtained
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when the fringes are well-resolved, which happens in the above mentioned range of

0.15 N - 1.5 N. In most of our experiments, the loads on any given disk are always

lower than 1.5 N, and the average force in most cases is around 0.4 - 0.6 N.

From all of the above data and discussion, a few important conclusions can be

drawn. The method proposed in this thesis to extract vector contact forces is suc-

cessfull. The method not only yields the magnitudes of contact forces but also the

directions. In other words, we can obtain not only the normal forces, but also the

tangential forces acting on the disk at each contact. The inverse method is effective

even if the boundary forces are not known. The errors in the measurements are small

for most of the force-range of interest to us.

We can now begin our systematic study of granular systems under different loading

conditions, like isotropic compression, pure shear, simple shear etc., with the help

of grain-scale contact force measurements; such an approach was feasible only via

numerical simulations so far. The grain-scale contact force measurements can be

used to gain a deeper understanding of the bulk response of the system. We will

investigate these issues in the subsequent chapters.
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Chapter 3

Response of granular systems to

compression and pure shear

We begin, starting with this chapter, to apply our method of measuring grain-scale

normal and tangential contact forces to granular systems under different conditions.

Our objective is to study the behavior of granular systems under different loads in

terms of the contact force distributions, the spatial structure of force-chains, and the

geometry of contact networks. We would like to ascertain if there are any significant

differences in the response of the system to different loads like pure shear and isotropic

compression, and find ways to quantify these differences.

3.1 Introduction

A fundamental goal of granular mechanics is to understand the inhomogeneous dis-

tribution of interparticle forces manifested qualitatively as filamentary force chains,

and their spatial correlations, specifically in response to forces at the boundaries

[GHL+01, RC01]. Achieving this goal is of central importance in civil engineering,

geophysics, and physics [JNB96a, BJ97, Ned92] for understanding challenging prob-

lems like jamming, shear induced yielding and mechanical response. Here, we present

novel experimental data for both normal and tangential grain-scale forces inside a

two-dimensional system of photoelastic disks subjected to pure shear and isotropic

compression. Various statistical measures show the underlying differences in these

two stress states. These differences appear in the distributions of normal forces (more

rounded for compression than shear) although not in the distributions of tangential

forces (exponential in both cases). Sheared systems show anisotropy in distributions
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of both the contact network and the contact forces. Anisotropy also occurs in the

spatial correlations of forces, which provide a quantitative replacement for the idea

of force chains. Sheared systems have long-range correlations in the direction of force

chains. Isotropically compressed systems have short-range correlations regardless of

the direction.

Under the action of external stresses, grains in dry granular materials form an

inhomogeneous contact network, which carries most of the external load via force

chains. The resultant network is different for shearing than for isotropic compression

and is history-dependent due to friction. Previous experiments [MJN98, TVCR98,

LMF99] have reported an exponential tail for the distribution of contact force mag-

nitudes. This tail can be successfully predicted by many models [GG03, SvHSvS03]

with radically different mathematical structures and microscopic assumptions. Test-

ing the validity of these models requires that the predicted force distributions be

verified by measurements of full vectorial contact forces in the bulk of the sample. It

is also important to find other distinguishing signatures characterizing the nature of

force chain networks under different boundary conditions, an important goal of the

present work.

In the following experiments, we visualize internal stresses in each grain and

by solving the full inverse photoelastic problem [Fro41] for each disk, we obtain

normal and tangential force components for each contact between disks. We use this

microscopic contact force information to investigate differences in the distributions of

contact forces, and the force chain structure, arising from two different types of loads:

pure shear and isotropic compression. We find that forces have distinctive angular

distributions and spatial correlations depending on the macroscopic preparation. In

particular, forces have long-range correlations in the direction of force chains for

sheared systems, but are correlated over a much shorter range, regardless of direction
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for isotropically compressed systems.

Figure 3.1: a: Biaxial test apparatus, b: (top) Isotropically compressed system,
(bottom) sheared system, c: Single disk pattern.

3.2 Experimental system and methods

Our experimental system is a two-dimensional (2D) array of approximately 2500

bidisperse photoelastic (birefringent under strain) disks subjected to pure shear and

isotropic compression. Figure 3.1a shows the schematic diagram of the biaxial test

cell. The biaxial test apparatus rests horizontally on a sheet of Plexiglas and is used

to impart pure shear and isotropic compression. Motorized linear slides move two

walls of the biaxial cell precisely and independently with a velocity of .024 cm/s.
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The system is illuminated from below and a high-resolution camera captures digital

images from above. Each image captures roughly 250 particles located around the

center of the cell, roughly 10% of the total number of particles. The system is imaged

through crossed circular polarizers.

For each type of load, incremental deformations are applied in a quasi-static man-

ner, beginning with a stress-free state. The sheared states are created by compressing

in one direction and expanding by an equal amount in the other direction with strains

(εxx = εyy = |δL/L|) ranging from 0 to 0.042. Isotropically compressed states are

created by compressing in both directions with strains ranging from 0 to 0.016. The

particles used in the experiment are either 0.8 cm or 0.9 cm in diameter and 0.6 cm

in height with a Young’s modulus of 4 MPa and friction coefficient 0.8. The number

ratio of small to large disks is 4:1.

Figure 3.1b shows typical system size images for isotropically compressed state

(top) and sheared state (bottom). Figure 3.1c shows an example of the observed stress

pattern for a single particle at the resolution 0.01 cm/pixel used in these studies.

Although previous approaches [DDJdJ72b, DW83, SN85, DX93] have obtained

contact forces using photoelastic techniques, they were neither automated nor suit-

able for a large enough number of particles to generate statistical information. Mea-

surements of contact forces in our method are performed in a completely automated

fashion for all disks except those at the boundary of the image.

Our algorithm (Chapter 2) for extracting contact forces involves fitting the ob-

served photoelastic pattern inside each disk to the plane elasticity solution [LL70b]

for the stresses inside a disk, treating the force components as fitting parameters. In

effect we solve the 2D isotropic elasticity equations for each disk assuming a perfect

line contact between 3D cylinders. As long as the deformations are not too large, as is

the case in our experiments, the 2D solution is a good approximation. As the experi-
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mental image is a highly non-linear function of the contact forces with the possibility

of multiple solutions, we perform a non-linear least-squares fit using about 500 data

points for each disk. The best-fit parameter values are our measured contact forces.

Figure 3.2: a,c : Experimental images, b,d: Best-fit images.

For each realization, we compare the image computed using the best-fit contact

forces and the original experimental image. Figure 2 shows two such realizations.

The computed images (Fig 2b, d) agree well with the experimental images (Fig.

2a, c) in terms of capturing the broad features of force chains. The error estimates

found by calibration and by computing the average difference of pairs of forces at

each contact are around 10 % for low forces and 5% for mean-to-high forces. The

agreement between the observed stress field inside each disk and the computed stress
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field validates the use of 2D approximation. The data presented below (Fig. 3, Fig.

4) is obtained from five realizations for each stress state. We use the contact forces

obtained by the procedure outlined above to investigate the distributions of contact

forces and the anisotropy induced by external loads.

3.3 Results

Figure 3.3: Distributions of the contact forces, and mobilized friction for sheared,
and isotropically compressed systems. a) Probability distributions of the normal, and
the tangential forces for sheared systems. b) Mobilized friction for sheared systems.
c) Probability distributions of the normal and the tangential forces for isotropically
compressed systems. d) Mobilized friction for isotropically compressed systems.
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Figure 3.3 shows the distributions of the normal force, the tangential force and

the ratio of tangential to normal force, for a sheared system and an isotropically com-

pressed system. The deformation for isotropically compressed and sheared systems

is 0.016 and 0.042 respectively. The normal and the tangential forces are normalized

by the mean normal force, < Fn >. The mean normal force is around 0.25 N, and

0.4 N for sheared and isotropically compressed systems respectively. The normal

force distribution for the sheared system (Figure 3.3a) has a peak around the mean,

a roughly exponential tail and a dip towards zero for forces lower than the mean.

In contrast, for isotropically compressed systems, the normal force distribution (Fig-

ure 3.3c) dips towards zero for forces below the mean, is broad around the mean,

and decays faster for large forces compared to the sheared system. The tangential

force distributions have a nearly exponential tail for forces larger than the mean for

both the sheared (Figure 3.3a) and the isotropically compressed system (Figure 3.3c).

The mean tangential forces are an order of magnitude smaller than the mean normal

forces: a feature responsible for a smaller range of maximum tangential forces.

In order to investigate the role of friction in the system, we study the distribution

of the variable S =| Ft | /µFn, where µ is the static friction coefficient, Ft is the

tangential force, and Fn is the normal force. The variable S gives information about

how far away a contact is from the Coulomb failure criterion. If a contact is at the

Coulomb failure criterion, S=1. Figure 3.3b and Figure 3.3d show the distributions

of S for the sheared and the isotropically compressed system, respectively. For both

types of loading conditions, the distribution of S shows that most of the contacts are

much below the Coulomb failure condition. Numerical simulations of 3D granular

systems in a silo geometry by Landry et al. [LGSP03] report similar results for

the distributions of the normal forces and the tangential forces in sheared systems.

The distributions of the mobilized friction in the interior of the system reported by
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Silbert et al. [SGL02] are qualitatively similar to our results for the sheared systems.

The similarity in the distributions of the mobilized friction for the sheared and the

isotropically compressed systems could be due to the fact that our sheared system is

well below the shear yield limit and that our distributions are obtained from regions

far away from the walls.

Figure 3.4 shows the contact orientation, variation of the mean force and spatial

correlations of forces for the sheared and isotropically compressed systems. The

mean co-ordination numbers for the sheared system and the isotropically compressed

system are 3.1 and 3.7, respectively. The deformations for each type of loads are the

same as in Figure 3.3. Figure 3.4 a & b show the distribution of contact angles of

contacts carrying forces larger than the mean, for the sheared and the isotropically

compressed system, respectively.

Figure 3.4 c & d show the angular variation of the mean normal force, normalized

by the maximum of the mean normal force, for the sheared and the isotropically

compressed system, respectively. Starting from the center of the image, the image

is divided into 24 angular bins of 15 degrees each and the average normal force in

each bin is plotted against the mean value of that bin. The angle is measured with

respect to the horizontal axis. The parameters of the fit in c are a=0.563, b=0.727

and θ0 = 0.374. The parameter a gives the mean force, b is a measure of anisotropy

of the mean force and θ0 gives the direction in which the mean force is maximum.

Figure 3.4e shows the spatial correlations of forces for the sheared system in

the direction of force chains and perpendicular to it. Figure 3.4f shows the spatial

correlations for the isotropically compressed system in the same two directions used

for sheared system. The insets of e & f show the greyscale representations of the 2D

correlations. The darker regions correspond to low correlation values and brighter

regions to high correlation values. The computations are performed in Fourier space,
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Figure 3.4: Contact orientation, variation of the mean force and spatial correlations
for the sheared and isotropically compressed systems.

64



as the image sizes are large (1600x1152). The plots are on a log-log scale with distance

R normalized by the average diameter D of the disks.

Our next focus of investigation is the shear induced anisotropy. The anisotropy

induced by an external load has two distinct effects; one, a purely geometric effect, is

to introduce anisotropy in the contact network, and the other, a mechanical effect, is

to develop an anisotropic force chain network and alter the stress distribution in the

system. In order to investigate the geometric anisotropy, we study the distribution of

contact angles for contacts carrying forces larger than the mean force. The sheared

system Figure 3.4a shows a strongly anisotropic distribution with a large number of

contacts aligned along the direction of majority of force chains and a small number of

contacts in the direction perpendicular to it. In contrast, the isotropically compressed

system exhibits a distribution with a six-fold symmetry Figure 3.4b, indicating that

the contacts are distributed evenly along these directions. A simple measure char-

acterizing the mechanical anisotropy is the angular variation of the mean normal

force as shown in Figure 3.4c and Figure 3.4d, for the sheared and the isotropically

compressed system, respectively. For the sheared system, the mean normal force

shows a periodic variation with peaks roughly in the direction of force chains. The

variation can be adequately described by a second order Fourier expansion (Figure

3.4c), a result consistent with previous studies [BPC04]. In contrast, for the isotrop-

ically compressed system, the mean normal force is distributed randomly around an

average value (Figure 3.4d).

A more quantitative characterization of the force chain structure can be obtained

by computing the 2D spatial correlation function of the magnitude of the forces on

the particles. Here, the idea is to provide a well-defined quantitative measure to

replace the rather vaguely defined notion of a force chain. Specifically we computed

< F(x)F(x + r) >, where F(x) is the sum of the magnitudes of the contact forces
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on a particle, x gives the position vector of the point under consideration, and <>

implies an average over x. Because we want to study the variation of this correlation

in different directions, we do not average over angles. Thus, the correlation function

gives spatial correlation between forces separated by a distance r in different direc-

tions. Figure 4e and Figure 3.4f show the 2D correlation functions for the sheared

system and the isotropically compressed system, respectively. The inset in each case

shows greyscale representation of the 2D correlation functions. For the sheared sys-

tem, the 2D correlation image (Figure 3.4e, inset) reveals that the force correlations

are much larger and of much longer range in the direction of the long force chains.

Figure 3.4e, which depicts the variation of correlation function with distance in the

direction of, and perpendicular to, the force chains, indicates that the spatial corre-

lation in the force chain direction persist for up to 15 particle diameters, whereas in

the perpendicular direction they fall to background values within a couple of particle

diameters. The correlation range in the direction of force chains is comparable to

half the image size, which is 15 particle diameters in length. This length is also the

Nyquist cut-off frequency of the Fourier method for computing the force correlation

function in our computed images. The above data suggests the interesting possibility

that the spatial force correlation may in fact be power-law type in the direction of

long force chains for large system sizes.

In complete contrast to sheared systems, the isotropically compressed system has

nearly uniform force correlation in all directions (Figure 3.4f, inset). This behavior

is confirmed by examining the spatial correlation function in the same two direc-

tions used for the sheared case as shown in (Figure 3.4f). The correlation functions

drop to background values in both directions after two particle diameters. Thus, no

preferred direction is found in the isotropically compressed system, whereas in the

sheared system the boundary stress creates an anisotropic stress state characterized
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by long force chains aligned in a specific direction. Our results strongly indicate that

sheared systems exhibit not only geometric but also mechanical anisotropy and that

force correlations serve as an additional distinguishing signature characterizing stress

induced anisotropy in granular systems. The rather long range of correlations in

the force chain direction is important for understanding the approach to continuum

behavior.

The observations reported here open up a completely new regime of compari-

son between theoretical models and experiments. One of the earliest computations

of interparticle contact forces comes from the numerical experiments by Radjai et

al. [RJMR96b], which are contact dynamics simulations of rigid, frictional particles

under biaxial shear. Although the boundary conditions of the simulations and our

experiments are not identical, these simulations seem to be the closest match to our

experiments. Since our current experimental resolution does not allow us to measure

very small forces, we restrict our comparison to forces higher than the mean. In

qualitative agreement with our data for the sheared systems, the simulations obtain

an exponential tail for forces larger than the mean for the distributions of both the

normal and the tangential forces.

Two recent models, which study the force distributions in 2D systems of friction-

less particles under isotropic compression and shear, are also relevant for the present

data. A force ensemble approach by Snoeijer et al. [SVvHvS04] assumes equal a

priori probability for all force networks consistent with force balance constraints on

each particle. In this model, the distribution of the magnitude of the force has a

peak around the mean force, finite P(f) at f = 0, and a tail decaying faster than an

exponential for compressed systems. For sheared systems, the model has an expo-

nential regime for normal forces up to three times larger than the mean (Snoeijer, J.,

private communication). A new lattice model [TSS+05] considers triangular lattices

67



with force balance constraints on each node, which allows isotropic and anisotropic

force chain networks. The lattice model prediction for the distribution of normal

forces is an exponential tail for the sheared systems and a faster than exponential

decay of the tail for compressed systems. The predictions of both models for sheared

and isotropically compressed systems are in qualitative agreement with the present

data. The absence of friction in both these models precludes a comparison of the

distributions of tangential forces.

We have obtained experimentally, for the first time to our knowledge, the dis-

tributions of both the normal and the tangential components of contact forces, at

the grain scale, in a bulk granular system. We find significant differences in the nor-

mal force distributions for sheared and isotropically compressed systems. We have

demonstrated that the force distributions, the force correlations and the angular

distributions are essential in capturing the anisotropy of force networks in systems

subjected to shear and that force correlations could serve as an additional test for

various models. Looking towards the future, we are now in a position to address a

variety of important issues like the nature of jamming transition, and plasticity in

sheared systems. These issues are vital for gaining a deeper understanding of the

macroscopic behavior of granular systems from microscopic observations.
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Chapter 4

Jamming in isotropically compressed

systems

In this chapter we probe isotropically compressed systems further, but this time from

the point of view of jamming. Starting from a loose system, we study when exactly

the system jams and becomes mechanically stable, and what changes occur in the

system at the point where it begins to jam. We study these issues with the help of a

biaxial setup and measurement of contact forces.

4.1 Introduction

A solid – in contrast to a fluid – is characterized by mechanical stability that implies

a finite resistance to shear deformation. It is well established that such stability

can originate from long-range crystalline order that emerges at a fluid-crystal phase

transition. On the other hand, there is no general agreement on the mechanism

for how mechanical stability arises for a disordered solid. Disordered or amorphous

materials encompass systems as diverse as molecular and colloidal glasses, gels, and

granular packings. For granular systems, it is known that the elastic moduli of stable

granular packings increase faster with pressure than expected from effective medium

theories that take only the individual particle contact into account [God90]; thus

collective effects play an important role close to the limit of mechanical stability

[MGJS04, SRS+05].

A particularly striking aspect of the limit of mechanical stability was discovered re-

cently in computer simulations [SEG+02, OLLN02, OSLN03]: For increasing density,

the number of contacts per particle, (Z), increases discontinuously at the transition
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point from zero to a finite number and continues to grow with the distance from the

critical point as a power law. A power-law exponent of 1/2 was identified in these

studies for both two-dimensional, and three-dimensional simulations without friction;

a more recent simulation found a slightly higher exponent of 0.6 in three dimensions

[DTS05]. The initial simulations[SEG+02, OLLN02, OSLN03] also identified scaling

laws for other quantities, such as the pressure P . In particular, P is expected to grow

above the jamming transition as (φ− φc)
ψ, where ψ = α− 1 in the simulations, and

α is the exponent for the interparticle potential. Related discontinuous transitions

followed by a square-root law are known from scattering experiments in glass-forming

liquids [PBF+91, YN96, ABT+03].

To date, tests of jamming have been based on simulations. It is then crucial to ap-

ply experimental tests to these predictions. In the following, we present experimental

data for coordination number (Z) and pressure (P) based on a method that yields an

accurate determination of the transition point and identifies the power laws in Z and

P for a two-dimensional experimental system. For frictionless disks, it is known that

in the isostatic limit for the packing, when the number of constraints on each disk

equals the number of unknown forces, the average Z equals 4. For frictional disks,

because of one extra constraint of torque balance, the average Z is 3. Also known

from simulations is the power-law growth in P with increasing packing fraction (φ).

These are quantitative predictions, which we test here and find the jamming point

for our system. By measuring both P and Z, we can also obtain a sharper value of

the critical packing fraction, φc, for the onset of jamming.

4.2 Experimental setup and methods

Figure 4.1a shows a schematic of the apparatus. We use a bidisperse mixture of

approximately 3000 polymer photoelastic (birefringent) disks with diameter 0.74 cm
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Figure 4.1: Schematic cross-section of biaxial cell experiment. Sample images of
highly jammed/compressed and almost unjammed states.

or 0.86 cm. 20% of the disks are large and 80% are the smaller sized disks. This is the

minimum possible number ratio which avoids crystallization. The disks have Young’s

modulus of 4 MPa, and a static coefficient of friction of 0.85. The model granular

system is confined in a biaxial test cell which rests on a Plexiglas sheet [MB05].

The test cell is a rectangular enclosure 42 cm × 42 cm in size, with two movable

walls, which are adjusted by stepper motors. The displacements of the walls can be

controlled very precisely and the linear displacement step size used in this experiment

is 0.004 cm; this is approximately .005D, where D is the average diameter of the disks.

The setup is horizontal and placed between crossed circular polarizers and imaged

from above with a high resolution (8 MP) CCD color camera. The camera captures

roughly 1200 disks in the center of the cell. The disks, when viewed through crossed

circular polarizers, enable us to visualize the stress field within each disk, as shown

in Figure 4.1

The experimental procedure involves quasi-static compression or decompression
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of the system. For compression, the system is initially in a stress-free state, and for

decompression, the end state is a stress-free state. The results for both protocols

are similar. In what follows we will show data mainly for decompression. Figure

4.1d shows the state of the system at the beginning of decompression phase; a highly

stressed and jammed state. Figure 4.1e shows the state of the system towards the

end of decompression phase when the system is almost unjammed and has very small

amount of stress.

The procedure for data taking from an initially compressed state begins by com-

pressing the system by 1.6 % from an originally stress-free state. We decompress the

system by simultaneously moving the two walls outwards by a uniform steps of 0.004

cm. After each step, tapping is applied to relax stress in the system. Two images

are captured at each decompression state; one with polarizer and one without. The

image with polarizers gives stress information and the one without polarizers is used

to locate disk centers using standard image processing methods. This quasi-static

step-wise decompression is continued until the system is stress-free.

An important issue is the determination of contacts. Previous studies have mainly

used the particle overlap criterion to determine contacts. In numerical studies, overlap

beyond a threshold value also signifies transmission of force through the contact.

In contrast, in experimental systems, finding correct contacts based on overlap or

euclidean distance criterion is susceptible to larger errors due to contributions from

false positive (Figure 4.1b, black square) as well as false negative (Figure 4.1c, white

circle) contact assignment. The false positives occur when two particles with high

stress are neighbors but not exerting any force on each other, whereas false negatives

occur when the forces through the contacts are so low that the intensity of light it

produces falls close to the limit of imaging sensitivity.

We overcome both issues raised above and increase the precision of contact deter-

72



mination by employing a two step process. The first step involves obtaining possible

contacts based on the distances between disk centers, and employing a threshold

(10%D) below which the disks are considered to be in potential contact. This esti-

mate of contacts is significantly improved by utilizing the photoelastic stress images

at various exposure times for each state, such that eventually most of the force trans-

mitting contacts can be seen. As seen in Figure 4.1b,c, the contacts through which

there is force transmission, appear as source points for the stress pattern. This effect

can be quantified by measuring the intensity and the gradient square of the intensity

(G2) around the contact [How99]. A true, force bearing contact can be distinguished

by employing appropriate thresholds in intensity and in G2. The threshold in inten-

sity is useful in capturing contacts with very small forces, reducing errors due to false

negatives, whereas the threshold in G2 helps in capturing contacts with larger forces

and reduces errors due to false positive, since the G2 around a contact is significantly

higher for a true force bearing contact. The final error in average coordination num-

ber is around 2%. The errors are not the same for every φ; they are about 3.5%

for very low φ and about 1.5% at high φ. The average coordination number can

be computed either by counting only the force bearing disks or by counting all the

disks including rattlers, which are disks without any contacts. The rattlers do not

contribute to the mechanical stability of the system. We present data for both cases.

From a mechanical point of view, the pressure of the system is one of the most

important quantities for isotropically compressed systems. Here, the pressure is com-

puted from the measured contact forces [MB05]; the Cauchy stress tensor σij =

1

2V

∑

(Fixk + Fkxi)df , for each disk is computed first, where V is the volume of the

disk. The trace of the tensor is found for each disk, which is then averaged over

the entire system to yield the pressure. Finally, φ is calculated by measuring the

total area of the disks and dividing it by the area of the confining box at each de-

73



compression state. We perform two sets of experiments; one with a relatively larger

range in φ (0.8390 - 0.8650), and also larger step size in φ (0.016). The second set of

experiments are done at a finer scale, once the jamming region is identified from the

first set. In the second set, we have a smaller range of φ (.840745 - .853312), and a

finer step size in φ (0.000324). This allows us to determine the jamming point with

an unusually high precision.

4.3 Results
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Figure 4.2: Z vs φ for a relatively larger range of φ.

Figure 4.2 shows data for Z over a relatively broad range of φ. The data for

Z(φ) indicate a significant rise in Z at the jamming transition. The rise in Z is

clearly shows some rounding, and we discuss below some likely origins of this feature.

Figure 4.2 shows two curves; one with rattlers (red stars) and one without rattlers

(blue squares). At higher φ, the variations of the cureves are similar. At lower φ, the
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Figure 4.3: Pressure vs φ for the larger range in φ.
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Figure 4.4: Z vs φ at a finer scale in φ.
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Figure 4.5: Pressure vs φ at a finer scale in φ.

behavior differs; the values of Z drops much lower for the case with rattlers, and the

transition is somewhat less apparent.

Figure 4.3 shows data for variation of Pressure (P) over a broad range in φ. P (φ)

also shows a sharp change in slope at a well defined φ. The pressure is not identically

0 below jamming for the same reason that the jump in Z is not perfectly sharp.

Figure 4.4 shows the variation in Z with φ over a narrow range close to the jam-

ming point. Again, over a relatively narrow range, the distributions change dramati-

cally. We again consider two cases; one with rattlers excluded from the coordination

number calculation and the other in which they are included. The behavior is similar

to the long-range case.

From the case where rattlers are excluded (blue squares) we observe a clear tran-

sition point at φc = 0.8422 ± .0005, where the coordination number is 3.04. Beyond

this φc, Z increases as a power-law given by (Z − Zc) = b(φ − φc)
β. This is a clear
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Figure 4.7: Power-law fit for P vs φ− φc.
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φc Without Rattlers With Rattlers
Zc β Zc β

0.84058 2.390 ± 0.135 0.5166 ± 0.064 1.198 ± 0.310 0.5024 ± 0.093
0.84075 2.512 ± 0.138 0.5472 ± 0.073 1.071 ± 0.359 0.4601 ± 0.090
0.84172 2.632 ± 0.151 0.4935 ± 0.077 0.9747 ± 0.458 0.3631 ± 0.083
0.84204 2.858 ± 0.127 0.5637 ± 0.086 1.183 ± 0.413 0.3665 ± 0.079
0.84236 2.916 ± 0.133 0.5555 ± 0.093 1.744 ± 0.298 0.445 ± 0.088
0.84269 3.003 ± 0.124 0.5627 ± 0.095 1.989 ± 0.267 0.4691 ± 0.092
0.84301 3.075 ± 0.12 0.5603 ± 0.095 2.28 ± 0.235 0.5245 ± 0.108

Table 4.1: A table showing power-law exponents, and critical coordination number
obtained as fitting parameters, at various critical packing fractions.

signature of jamming in the system. The curve with rattlers included has much lower

coordination numbers, and the transition-like behavior is smeared out, although the

power-law increase in Z with φ is still evident. Due to rounding of the curve around

the proposed φc, it is likely that the exact value of the critical packing fraction could

be in a range from 0.84 to 0.843. The nature of the growth of Z depends on the

choice of φc, as we demonstrate below.

We now focus more closely on the regime very close to and just above jamming,

with an eye towards testing recent predictions for the critical exponents. Figure 4.6

shows the variation of Z −ZC, above jamming on a fine scale. The actual power-law

increase in both instances are also shown in Figure 4.6 as solid lines. The fits to the

experimental data are good. As mentioned previously, the power-law exponents can

be different for different φc. In order to examine this variation, we examine a range

of values for φc and obtain the exponents to the power-law fits, as shown in Table

4.1. Here, φc is selected, and Zc, and β are the fitting parameters. It can be seen

that the exponent ranges from 0.51 to 0.56, and Zc ranges from 2.39 to 3.075, for the

case without rattlers. For the case with rattlers, the exponents show more variation

(0.36 - 0.52), and the errors in Zc are larger. The values of the power-law exponents

for the case without rattlers are roughly between the values predicted by Silbert et

al., and O’Hern et al. (β = 0.5), and Donev et al. (β = 0.6). Both of these sets
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of simulations apply to frictionless particles. By contrast, for frictional disks under

shear, Aharonov and Sparks obtain the much lower value, β = 0.36. However, a

direct comparison is not possible to the case of jamming under isotropic conditions.
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Figure 4.8: Force vs. deformation curve for a single disk: Hertzian fit.

Figure 4.7 shows the variation of pressure with packing fraction. A clear transition

is again observed when the packing fraction is at φc = 0.8422 ± .0005. The pressure

increases with an exponent of ψ = 1.1, slightly greater than 1.0 beyond the critical

packing fraction, a feature observed in all of the numerical studies mentioned above.

The value of ψ that we measure is very close to what one might expect from the

predictions of [SEG+02, OLLN02], assuming that our disks are ideal. In that case,

linear elasticity predicts a contact force potential that is nearly harmonic, i.e. such

that the potential varies quadratically in the disk compression, and α = 2, hence

ψ = α− 1 ' 1. However, a careful calibration of the potential for our disks indicate

an α that is slightly greater than 1.0. We believe that this occurs because initially,
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Figure 4.9: Force vs. deformation curve for a single disk: Linear fit.

as two particles are pushed together, there is deformation of the asperities on the

surfaces of the particles, which behave like Hertzian contacts. The force law then

becomes more linear for somewhat larger compressions, once the asperities have been

larger “flattened”.

This issue becomes clear from Figure 4.8 and Figure 4.9. Figure 4.8 shows for

a single disk under compression, the variation of the force with compression. The

forces are measured with a digital force gauge with a resolution of 0.001 Newtons. The

deformation is measured by a micrometer with a resolution of 2.45×10−5 meters The

curve can be fit very well by a Hertzian force law of the type F = a0 + bδγ , where

γ = 3

2
for a Hertzian solid. The actual exponent we obtain is 1.54 ± .04. This

calibration covers the full range of forces (0 N - 1 N) reasonable for our disks. In

practice, all our measurements are performed by imaging. The nonlinear response of

the camera and the nature of birefringent material is such that a recognizable optical
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intensity signal begins only beyond 0.010 N. If we then restrict our force-deformation

fit to forces greater than 0.010 N, then we get a reasonable linear fit to the curve.

This would be in line with the preceding observation about the value of ψ being close

to 1.

The value of the critical packing fraction obtained from the pressure is very close

to the one obtained from Z vs φ curve. This result clearly is consistent with a

simultaneous transition in both Z and P occurs at a critical packing fraction.

We now turn to the rounding that we observe, particularly in Z quite close to the

transition.

One of the causes for this rounding is friction between the disks and the Plexiglas

base, which prevents small fragments of force chains to persist and retain a small

amount of stress. Moreover, the motion of the walls induces a small amount of shear,

which retains a small amount of stress near the jamming point. The same cause also

produces anisotropy in stress and contact network before a system is fully jammed;

indications of these anisotropies can be seen in Figure 4.1e. Moreover in this region

the grains in the packing are still undergoing substantial rearrangements, and hence

strictly speaking are not jammed.

We conclude by noting that these experiments, the first of which we are aware,

demonstrate the novel nature of jamming transition. These results take advantage

of the high resolution in contact number that is afforded when the particles are

photoelastic. They show, modulo some rounding in Z, the predicted jump in the

mean particle coordination number, Z at a φc = 0.8422 for both Z and P . Above

φc, Z and P follow power laws in φ− φc with respective exponents of 0.56 and 1.1,

which are reasonably consistent with recent predictions for frictionless particles. The

effects of friction are likely to be modest, based on recent results[MB05] which show

that the mean frictional force is only about 10% of the normal force for isotropic
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compression. We observe some rounding, which may be attributed to two sources: 1)

small residual friction with the base on which the particles rest, and 2) small residual

shear stresses that are induced by preparation history. The ability of a small amount

of shear to affect the jamming transition is interesting, and points to the need for a

deeper understanding of failure under non-isotropic conditions.
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Chapter 5

Plastic deformation in sheared systems

In this chapter we will investigate sheared systems from the point of view of plasticity

of the system. A dense sheared granular system jams and unjams repeatedly under

shear. For each sequence of jammed states, the stress and the energy in the system

increases, and for every unjamming event, the system rearranges, and yields, resulting

in a drop in the stress and the energy of the system. At the macro-scale, this behavior

is sometimes seen as stick-slip behavior similar to that found in frictional properties

of other systems. We see such rise and fall of stress in a simple situation like solid-

on-solid friction [Per98], and also in highly complex systems like earthquake faults

[MRS90, AHT00] .

Here we investigate the evolution of sheared systems. We measure both, the

displacements of the particles and the forces on the particles to study how the system

evolves under continued quasistatic shear. We hope to gain a better understanding of

the macro-scale behavior of the system from grain-scale measurements. In particular,

we study the stress-strain, or the energy-strain behavior of the system to understand

the dissipative properties of the system. The stress measurements are augmented

by tracking particle locations, and measuring the particle displacement profiles to

understand particle motions during elastic segments, and plastic failure events.

The grain-scale mechanism of such a complicated macro-scale behavior is quite

simple sounding. When a system is under shear, and a contact network is established,

the contacting grains carry loads until they no longer satisfy force and torque balance.

At this point, the grains slip against each other and rearrange so as to conform to

the next mechanically stable arrangement. The process of slipping causes irreversible
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energy loss, if the grains are frictional, and also irreversible or non-affine displacement.

Non-affine displacement refers to the portion of the total displacement of the grain

which is over and above that dictated by the boundary displacements. It is the

non-elastic, or non-reversible, or non-affine displacement.

The crucial issue here is the meso-scale dynamics, or the effects of collective

motion of small groups of grains. It is the collective behavior of such irreversibly

rearranging groups of particles, which give rise to the macro-scale properties of the

system. Recently, there have several interesting theoretical approaches put forward,

which explicitly take account of irreversible deformation of groups of particles [FL98,

TWLB02, ML04b, ML04a, AHT00].

One such approach is the Shear Transformation Zone (STZ) theory [Arg01, FL98],

which imposes transformation rules for the local rearrangement of a group of grains,

and studies the global effects of such transformations. Other approaches are more

directly numerical [TWLB02], where different quantities are used to define the ir-

reversible part of the deformation and the pattern of the non-affine displacement

throughout the system is studied. These approaches have begun to shed more light

on some of the intriguing phenomena exhibited by sheared granular systems, like the

formation of shear bands, shear localization, and plastic failure events in granular

systems.

In the rest of the chapter, we begin by briefly describing some of the theoretical

ideas behind the STZ theory, and other related works. We then briefly describe our

experimental procedure, and present our results.

5.0.1 Theoretical approaches

We will cover a few recent numerical, and theoretical studies, which deal with the

role of non-affine displacements in sheared amorphous systems. We will in particular
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describe the STZ theory, and briefly mention numerical simulations by Tanguy et al.

The ideas behind the STZ theory came about from simulations on metallic glasses

[Arg01, Arg82, AS04], and experiments on soap bubble rafts [AK78, AS82]. These

works revealed that the smallest scale or “atomic scale” motions during plastic shear

were confined to a cluster of particles few particle diameter in length. These results

led Argon to put forward a mean field theory of the transitions localized in space

termed as the “Shear Transformation Zones” (STZs), where each such STZ was a

unit of plastic deformation. Falk and Langer later found the mean field equations

of motion for the number density of STZs, which were found to be applicable to

strain hardening in metallic glasses [FL98]. Such an approach may not be limited to

metallic glasses, but could be potentially useful in many amorphous systems including

granular systems [ML04a]

Figure 5.1: Schematic diagram of the Shear Transformation Zone.

Figure 5.1 shows a unit of STZ. Consider this group of four particles in an initial

state (left). A two-state transformation rule brings farther particles closer, and pushes

nearer particles farther apart, while still maintaining this group as a local cluster

(right). This is a simple example of a local, irreversible transformation zone. A

number of such STZs are distributed throughout the system, but the STZs themselves

do not diffuse in the system. A key ingredient of the STZ, and related models is

to describe global plastic deformations in terms of these local units of irreversible
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deformations.

Recently Maloney and Lemaitre have extended these ideas to include interacting

STZs, and studied plasticity in amorphous systems using athermal quasi-static sim-

ulations (AQS). The main idea behind this simulation is to apply alternate steps of

elastic deformation with energy relaxation, which keeps the system in a local energy

minimum [ML04b].

Figure 5.2: Stress-strain behavior and elastic moduli, from [ML04b].

Their detailed study of the onset of plastic failure, reveals several interesting

features associated with plasticity in sheared amorphous systems. They have found

that macroscopic stress and energy fluctuations arise as a series of reversible branches

of the stress-strain curve, interrupted by irreversible events. The elastic moduli of

the system diverge at these transition points. These observations are captured in

Figure 5.2, taken from [ML04b]

A second set of observations deal with the spatial profiles of the non-affine dis-
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Figure 5.3: Non-affine displacement at the onset of plastic failure. (from [ML04b,
ML04a]).

placement field, and the energy changes in the system. It was found that at the

onset of a plastic failure event, the non-affine displacement field, and the energy

changes show quadrupolar alignment, as can be seen in Figure 5.3 (modified from

[ML04b, ML04a])

Figure 5.4: Non-affine displacement of sheared system. (from [TWLB02]).

Studies of sheared amorphous systems by Tanguy et al. [TWLB02] show similar

interesting results. These are numerical simulations of a large number of disk-shaped

two dimensional particles with Lennard-Jones interaction potentials. They find a

breakdown of continuum elasticity below a characteristic length-scale of approxi-

mately 30 molecules. The studies also find that the non-affine displacement field
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shows correlated, vortex patterns, also with a correlation length of 30 molecules, as

seen in Figure 5.4.

A similar study of plasticity in uniaxially compressed granular system by Åström

et al. [AHT00] in the context of earthquake fault zones reveals that the displace-

ment pattern of grains fall in distinct zones; in the upper and lower part the grains

move homogeneously, where as two narrow shear bands appear, where the grains are

rotating. The authors term these groups of rotating particles “roller bearings”.

These theoretical and numerical studies have opened up a way to understand

macroscopic plastic behavior using “atomic-scale” properties. Another appealing

feature of these studies is that they have experimentally testable predictions. In

our case, with the help of our biaxial test apparatus, we can create a variety of

precise loading conditions, and combined with the grain-scale position, and contact

force measurements, we can test some of these predictions concerning irreversible

deformations in sheared granular systems.

5.1 Experimental procedure

The experimental setup for this experiment is much like the previous experiments.

We use a biaxial test apparatus to apply pure shear to the system, and image the

system from above with a high resolution (8 MP) color CCD camera.

As in earlier experiments, we use a bi-disperse mixture of approximately 8 mm and

9 mm photoelastic disks. The fraction of smaller disks is 80 % and those of the larger

disks is 20 %. The total number of disks is 3000. The material parameters of the

disks are exactly as before. The imaging resolution is such that 1 pixel corresponds

to .0001 meters. In other words, each disk is imaged within a window of roughly

80 × 80 pixels. As shown in Figure 5.5, the setup is placed horizontally, and imaged

from above, through crossed circular polarizers. Two of the walls of the biax are
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Figure 5.5: Experimental setup (top) and schematic illustration of application of
pure shear (bottom).

moved as shown in Figure 5.5 (bottom), to apply pure shear. The initial box size is

roughly 40 cm × 40 cm, and the strain is measured as:

Strain = ε =
| δL |
L

(5.1)

The experimental procedure is briefly summarized in the following. We start

from a stress-free state in which the disks are randomly placed, so as to ensure that

there is no global or large-scale crystallization. Incremental, quasistatic deformation

is applied to the system by moving one of the walls inwards, and the perpendicular

wall outward by the same amount. The linear distance per step δL ≈ 0.05D, where

D is the average diameter of the disk. The strain step in these experiments is always

0.0012.

The state of the system is imaged at every shear step after a strain of about 8 %.

Two images are captured; one with polarizers, and the other without polarizers. The
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polarized image gives stress information and the unpolarized image is used to obtain

disk centers. The images cpatured are RGB images of size 3264 × 2448 pixels. At

the resolution per disk mentioned above, we can capture roughly 1300 disks around

the center of the biax; slightly less than 50% of the disks. This allows us to obtain

information about most of the bulk system, and leaving out the boundaries to avoid

boundary effects.

The difference in this experiment compared to our previous experiments is the

application of shear in forward and reverse direction. One of the goals of this study

is to understand the energy dissipation of the system; cyclic loading and unloading

is traditionally used to extract any hysteretic features in the system. In the present

study, we restrict our protocol to one cycle.

Figure 5.6 shows six stages in each forward and reverse portion of the shear cycle.

Each image is 3264 × 2448 pixels in size, which corresponds to 32 cm × 25 cm. On

the top left is the image of the system at a shear strain of 8 %, where we begin

imaging. The last image in the second row is at the end of forward shear portion

where the strain is 11.2 %. The direction of the shear is reversed after this point,

and the system is brought back to its same shape and size in the same number of

deformation steps. The first image in the third row is the first reverse shear step.

The rightmost image in the last row is at the end of the reverse shear portion of the

shear cycle, where the strain is 0.08.

Our approach for analyzing these data is as follows:

• From the unpolarized images of the entire cycle, find disk centers

• Use the disk centers to track each disk throughout the cycle

• Use the stress images to determine forces on the disks by methods previously

described
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Figure 5.6: Stress images for one cycle of shear. Each image is 3264 × 2448 pixels,
which corresponds to 32 cm × 25 cm in size.
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• track positional and stress changes for each disk throughout the shear cycle

The positional changes will give us information about the collective motion of the

disks during elastic segments, and at the plastic failure event. The force measure-

ments, which in turn give us the stresses and energies of the disks, inform us about

the energy changes in the system.

The forces in the system are determined in two separate ways. One method is the

empirical approach using the gradient square (G2) technique described in Chapter 2.

The average gradient square over a disk gives us an estimate of the magnitude of the

force on that disk. From prior calibration it is known that G2 is linearly proportional

to the force, and can be used to estimate the average force. The average over the

entire image, i.e. all the disks in the image, gives us the average stress in the system.

The second method is the more exact method of finding contact forces at each

contact of each disk in an image by the inverse problem solution method described in

Chapter 3. It gives us the exact Cauchy stress tensor for each disk. The trace of this

tensor gives us the average pressure on a disk, which when averaged over the entire

image, gives us the average pressure over the system.

5.2 Results

We begin the results by describing the qualitative features seen in Figure 5.6. In

the first image in the first row, one can observe a well developed stress state with

long force-chains roughly along the principal strain direction. There are smaller side-

chains with weaker forces, which may act as a backbone structure supporting the

strong force-chains. Between each successive image, the strain increases by 0.0072.

The second row of images are towards the middle and end of the forward shear

portion. The rightmost image in the second layer is the last step in the forward
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shear, where the strain is roughly 11.2%. There is a visible increase in stress not only

along the long force-chains previously established, but also along the side chains.

The direction of the shear is reversed from this point on. In exactly the same

number of deformation steps, the system is returned to its initial shape and size

starting from the top left image. The leftmost image in the third row shows the

stress state after the first reverse step. Again, the successive images have strain

difference of .0072. The rightmost image in the fourth row shows the state of the

system when the system returns to the same size as that when we began imaging

the system. As can be seen from the image, the stress is much lower than the initial

state, and the direction of the strongest force-chains is roughly vertical. This state

of stress is clearly not the same as the very first image, either in magnitude of stress

or the direction of strong force-chains. This points to large overall rearrangement

of the disks, and “dissipation” of stress, though from the stress images, only the

reduction in stress can be readily observed. In the following section we will present

more quantitative results on the variations in stress with increasing shear.

5.2.1 Stress and energy changes

As described in the previous section, we measure stress from photoelastic images

by two different methods. We will first present the results obtained by employing

the empirical G2 technique. The principal advantages of this method are ease of

implementation, and relatively smaller computational time. At the same time, when

combined with a rigorous calibration between the applied force on the disk and the

G2 averaged over the disk, the method is very accurate in estimating the amount of

force or the average pressure on the disk.

Traditionally, the stress-strain behavior of any material is of fundamental signif-

icance to ascertain the constitutive behavior of the system, which in most cases can
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Figure 5.7: Experimental stress-strain curve for forward and reverse shear using the
G2 technique.

not be derived from first principles. Figure 5.7 shows the stress-strain curve for the

entire cycle of forward and reverse shear. The most striking feature of this curve is

its hysteretic nature, which confirms the drop in stress during the reverse shear phase

quantitatively.

The second aspect of importance is the nature of variation of each branch of the

curve. Consider the upper curve for the forward shear. It can be observed that

there segments during which the stress increases linearly. These are segments during

which the system behaves like an elastic solid. During these linear, elastic segments,

all the shear stress imposed on the system is borne by the pre-existing network of

force-chains.

The elastic portions are interrupted by sudden drops in stress within a single

strain step. These events are plastic events where the system can no longer support
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the additional shear stress imposed on it, while still retaining its mechanical stability.

The system responds by rearranging the particles such that a new mechanically stable

configuration is achieved, and the stress on the system is reduced. This is achieved

with the help of not only individual grain-scale motions, but also a more correlated

collective motion of the grains. The magnitudes of stress drops vary, depending on

the exact stress state of the system. Stress drops of both small and large magnitudes

can be observed.
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Figure 5.8: Experimental energy-strain curve for forward and reverse shear using
the G2 technique.

The elastic and plastic regions of the material behavior can be seen more clearly

in the energy-strain curve. The energy is obtained as the average (G2)2. The drops in

stresses are of larger magnitudes. The total area inside the hysteretic loop represents

the energy loss of the system.

We turn next to a similar analysis of the stress-strain behavior, but this time using

the vector contact force measurement technique described in this thesis. Figure 5.9
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Figure 5.9: Experimental stress-strain curve for forward and reverse shear obtained
using the force components measurement technique (top). The same curve using the
G2 technique, shown for comparison (bottom).
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(top) shows the stress-strain behavior over the entire cycle. The plot is remarkably

similar to Figure 5.7, which is reproduced in Figure 5.9 (bottom), for comparison. We

can observe similar features in both plots. There are elastic segments, and plastic

failure events, with the trends of both curves being almost the same, though one

can also observe minor differences. This kind of stick-slip behavior is seen in many

systems as discussed earlier. It is well known in solid friction studies. In granular

systems, besides the overall stick-slip behavior, there are many intriguing aspects

associated with motion of grains under shear. We next examine the effects of shear

on displacements of the grains.

5.2.2 Particle displacements

Particle displacements offer us further insight into the response of the system to pure

shear. We begin imaging the system when there is 8% shear strain already present.

We track subsequent development of the system upon application of more shear. One

aspect of this is the developement of shear bands in the system, which is a typical

occurence in sheared granular systems. Also the grains within a shear band support

a small fraction of the applied load. Within our experimental operating parameters,

we can examine the dynamics of such shear bands.

Figure 5.10 shows a striking pattern of displacements. The figure is obtained in the

following manner. First, the centers of disks are found for each strain step. The disks

in each of these sets are uniquely tagged to make them identifiable. Then the locations

of the disk centers are compared between a strain state and the previous strain state,

which give the displacement for each disk. The mean displacement is subtracted from

the displacement of the individual grain displacement. The resulting displacement

vectors are scaled and plotted as a vector field. The red arrows are placed for ease of

visualization. Each image is roughly 30 cm × 23 cm in size; a smaller size than the
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Figure 5.10: Particle displacements: forward shear (left column), and reverse shear
(right column).
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stress images, because the boundary layers have been discarded.

Let us walk through these six displacement vector field plots. Figure 5.10 has two

columns, left and right. The three plots in the left column show the displacement field

at three different strains during the forward shear phase, and the ones in the right

column for the reverse shear phase. The initial strain at the beginning of imaging is

ε = .08.

Consider first the forward shear portion (left column). The first plot shows the

displacement field in an early elastic segment of the stress-strain curve. One can

immediately observe three distinct regions of different displacement patterns:

• region in the upper left part moving uniformly upwards at 45 deg

• region in the lower right part moving uniformly downwards at −45 deg

• a central band of grains roughly along the diagonal, with a well-defined vortex

pattern

The diagonal band with vortices is the shear band in the system, roughly aligned

along the principal strain direction. The second plot at ε = 0.1052 is the displacement

field after the largest plastic event captured in the stress-strain curve. The behavior

does not show any dramatic differences from the elastic region, though the width of

the band may be somewhat different. The third plot is the last step in the forward

shear portion. The displacement pattern is still the same with three distinct regions,

but the shear band is significantly narrower. At each strain step some rearrangement

of the actual vortex pattern within the band is always evident. The location of the

band also shifts somewhat during the forward cycle.

Perhaps the most dramatic event of the entire sequence of forward-reverse shear

occurs when the very first strain step is taken in the reverse direction. The first image
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in the right column shows the event quite clearly. The entire three-region displace-

ment pattern is destroyed within a strain step of .0012. Not only the homogeneous

displacement in the corners is destroyed but the shear band and the vortex motion

of the grains is also destroyed. The pattern in the previous step is replaced by a pat-

tern that looks more quadrupolar in nature. The motion of grains in all four corners

is along different directions, with minimal displacement in the central region of the

image. This change in the displacement pattern could be due to sudden change in

the principal strain direction being imposed on a pre-existing direction, or it could be

due to plastic events taking place over the entire system as opposed to local failure

events due to grain slipping. A noteworthy point is that the stress does not show a

large drop at the shear reversal point (Figure 5.9).

The second plot in the reverse shear phase at ε = 0.0968 shows the development of

a flow similar to the three-region flow of forward shear phase. The three-region flow

pattern in reverse direction is established only after four or five strain steps. Until

then, a transient pattern with remnants of quadrupolar pattern exists. Although the

two corner regions show homogeneous displacement, the vortices in the diagonal are

not as well-defined as in the forward shear case.

The third plot is at the end of the reverse shear phase, when the system returns to

the shape and size it had as the first plot in the forward shear phase ( ε = 0.0848). The

displacement pattern is similar to the forwad flow, but with the directions reversed.

Also noticeable is the formation of vortices along the diagonal. The vortex pattern

is not as fully developed as the forward shear case, but the shear band is distinctly

present, and so are the two elastic displacement regions in the corners.

Thus, the reversal of shear has a dramatic effect of eliminating the flow pattern

in the system, including the elimination of the vortex pattern in the shear band. A

shear band does begin to develop in the reverse flow but only after a relatively long
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transient.

In these displacement plots, we have shown only one type of displacement; with

the mean displacement subtracted. There are other measures to characterize non-

affine displacements, which could yield somewhat different displacement patterns.

Nevertheless, a comparison with the theoretical and numerical works cited earlier

may not be completely out of place. All of these studies show examples of vortices

in the non-affine displacement pattern. The boundary condition in these studies is

simple shear, whereas in our experiments we apply pure shear. This could account

for the differences in the location and distribution of the vortices, primarily due to

different principal strain directions.

5.2.3 Energy fluctuations

Finally we turn our attention to energy fluctuations. Recall that according to [ML04b,

ML04a], at the plastic failure event, the energy fluctuations show a quadrupolar pat-

tern. In actuality, this pattern is observable when a failure event is studied at a finer

scale and single drop resolves into a cascade of smaller energy drops. Experimentally

this would amount to observing the process almost dynamically with an extremely

high resolution in strain steps. Currently this is beyond the scope of any experiments.

Instead, we examine what happens to the energy fluctuation patterns in our system,

at the plastic failure event of largest magnitude. This should give us some indication

of the spatial distribution of energy fluctuations.

Figure 5.11 shows the energy fluctuations after the largest plastic failure event, as

decided by the magnitude of the stress drop in the stress-stain curve. It is a difference

image of the average energy of the disks at two strain steps. The bright regions are

negative changes, and the dark regions are positive changes. There is some pattern

of energy fluctuations and a hint of quadrupolar structure, but it is not definitive.
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Figure 5.11: Energy fluctuations at the largest plastic failure event.

However, at this resolution in strain steps, we may not be able to capture the effect.

5.3 Conclusions

We have conducted a cyclic shear experiment in order to understand the response

of the system to shear in terms of stress-strain relation, energy dissipation, and the

grain-scale and collective motion of the particles.

We have found several interesting properties in our study.

• The stress-strain curve obtained using both the G2 method, and the vector force

measurement method, show very similar trends. Each has elastic segments with

linear growth in stress interrupted intermittently by drops in stress, typical of

stick-slip type of motion.
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• The stress-strain curve has a clear hysteretic nature, signifying energy dissipa-

tion.

• The energy fluctuations after a plastic event have spatial patterns which may

be quadrupolar

• The particle displacement profiles for the forward shear phase show a three-

region pattern; elastic motion in two corners, and vortex motion in the shear

band diagonally across the system.

• This pattern is destroyed completely upon reversing the shear direction. The

resulting displacement has quadrupolar nature. A profile similar to the forward

shear is established towards the end of reverse cycle.

These observations, to our knowledge, are the first experimental measurements of

macroscopic properties of sheared granular systems, from grain-scale force measure-

ments. Combined with grain-scale displacement measurements, these observations

allow us to study a number of important properties of sheared granular systems, and

the nature of plastic deformations in amorphous, athermal systems.
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Chapter 6

Conclusions and future directions

In this thesis, we have experimentally studied the behavior of 2D granular systems

under a variety of conditions. We began our journey by outlining the need for study-

ing granular systems under different boundary conditions. We then argued for a need

to experimentally obtain grain-scale contact forces, and proposed a novel method of

measuring both the normal and tangential forces. We demonstrated successful im-

plementation of the method. We then proceeded to apply this method to study the

distribution of forces, the structure of force chains and correlations between them. We

began by studying isotropically compressed, and pure sheared systems. We found sig-

nificant differences in the force-chain networks and the distribution of normal forces.

We also devised a new measure to quantify force chains.

Our next set of experiments dealt with isotropically compressed and sheared sys-

tems separately. We studied the issue of jamming transition in isotropically com-

pressed system. We found the jamming point for our system and a discontinuous

transition in the average coordination number and the pressure at the jamming point.

We also studied sheared systems from the point of view of plastic deformation, and

the evolution of the system under cyclic shear. In particular, we studied the stress-

strain behavior of the system, and the motion of individual grains. We found that

the stress-strain behavior is hysteretic, signifying energy dissipation. We also found

vortex patterns in the motion of grains.

We briefly summarize the main results from each experiment below, and present

a few ideas about the next stage of development in experimental methods, and some

open questions that need to be studied in future.
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6.1 Summary of results

6.1.1 Experimental method

We begin by summarizing experimental methods not only because they are novel

but also because they represent a significant step forward in terms of the detail with

which we can study granular systems. Although restricted to two dimensions, we

have been able to measure, for the first time to our knowledge, the normal and

the tangential forces in bulk granular systems. We can accomplish this task in an

automated fashion with good accuracy on a large number of grains (≈ 1000 grains).

We have made use of birefringent disks, which allow us to visualize stresses in the

system. The measurement of contact forces is accomplished in a least-squares sense

by fitting the plane elasticity model to the observed intensity profile within each disk.

In order to be able to study the response of granular systems to different kinds of

boundary loads, we need to have an experimental setup that can impose a variety of

boundary conditions precisely, and repeatedly. We built a biaxial test apparatus to

accomplish this. It is a simple enclosure with four walls, two of which can be moved

independently and precisely. By moving the walls appropriately, we can create states

with uniaxial compression, isotropic compression, and pure shear. We use this setup

in all our subsequent experiments.

6.1.2 Distribution of contact forces in granular systems

In chapter 3 we study two kinds of systems, isotropically compressed and pure

sheared. We apply our method of finding grain-scale contact forces, and obtain

the distributions of the normal and the tangential components, for both kinds of sys-

tems. We find that the tangential forces are much smaller in magnitude as compared

to the normal forces, and their distributions for both isotropically compressed and
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sheared systems fall off exponentially. In contrast, the distributions of normal forces

show significant differences. The distributions of normal forces for sheared systems

have an exponential tail, whereas for isotropically compressed systems they fall off

faster than an exponential. We then characterized the spatial organization of force-

chain network in each case. We found that sheared systems have long force chains

roughly in the principal stress direction. We characterized this spatial distribution of

force chains by two-dimensional spatial correlation of magnitudes of forces, and found

that sheared systems have long-range almost power-law like correlation in force-chain

direction. This is a novel measure that quantifies the qualitative idea of force-chains.

6.1.3 Jamming in isotropically compressed systems

In chapter 4 we study the jamming behavior in isotropically compressed systems.

We start with a stress-free system, and find the packing fraction at which the system

jams. We find the packing fraction at which the system jams (φc ≈ 0.8422). We

also find a significant rise in the average coordination number of the system as the

system goes through the jamming transition (Zc = 3.04). The variation of Z − Zc

shows a power-law increase beyond the jamming point. The exponent of the power-

law is around 0.56. We also measure the contact forces in the system, and find the

mean pressure. As the system jams, the pressure also shows a clear transition at

φ ≈ 0.8422. The pressure also shows a power-law increase as a function of φ − φc,

with an exponent of 1.1, a value close to that predicted by simulations.

6.1.4 Plastic deformations in sheared systems

In chapter 5 we examine sheared systems from the point of view of plastic deforma-

tion. We measure grain-locations, and employ particle tracking to study the motion

of grains. We also measure contact forces to obtain the stress-strain behavior of the
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system. Using the measured contact forces, we compute the energy of the system at

every deformation state and find the energy changes in the system. The stress-strain

curve for the entire cycle of forward and reverse shear clearly shows a hysteresis loop.

The stress-strain curve has elastic segments of linearly increasing stress interrupted

by drops in stress, signifying plastic failure events. The displacement profile of the

particles also shows interesting features. The displacement during the forward shear

portion has two homogeneously moving regions in the upper-left, and lower-right

corners of the image, and diagonally across the image we can see well-formed vor-

tices. This pattern is abruptly destroyed upon reversing the shear, and the profile

looks more quadratic. These observations are qualitatively similar to some recent

numerical, and theoretical studies.

6.2 Future directions

We have made a beginning in studying granular systems at the grain-scale. Although

we have been able to find some new results, and an improved understanding of a

small number of issues, the task has just begun. Many more questions remain to

be answered, and can be answered using the techniques developed in this thesis.

Progress can be made on two fronts; on the one hand, each of the systems described,

can be studied in further detail by exploring aspects that have not been analyzed,

and on the other hand, experimental techniques can be improved even further, which

in turn will bring more questions that can be investigated within reach. We will

outline some directions regarding both issues, which are feasible in near future.

6.2.1 Open questions in granular physics

let us outline some outstanding questions, and some avenues that have been opening

up due to recent advances in theoretical, numerical, and experimental progress:
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• The distributions of forces for sheared, and isotropically compressed states need

to be investigated further. We need more experimental data at the low-force

end to ascertain the behavior of these distributions completely.

• Although we know that the distribution of contact forces in isotropically com-

pressed systems falls off faster than an exponential, we do not know its exact

nature. Is it Gaussian? Or is it some other function? Does it depend on the

system size? How does the functional form of the distribution change with

compression? These are some of the questions that can be answered upon more

investigation.

• For both sheared and compressed systems, quantitative characterization of the

force-chain networks has just begun. We need more study to ascertain the

changes in the force-chain networks due to increasing compression, and shear.

For example many quasi-static, and dynamic phenomena show interesting for-

mation and break-up of force chains.

• A related theme is whether or not the force-chain networks can be modelled by

percolation models, or graph theoretic models. An experimental study of this

issue is being carried out by John Wambaugh, a fellow graduate student.

• The phenomenon of jamming is complicated. The inter-grain forces at the

jamming transition are quite low. As discussed earlier, this is the region that

needs more attention and study, in order to get a clearer understanding of the

problem.

• The jamming behavior, in all likelihood, will turn out to be different for isotrop-

ically compressed and sheared systems. A study of jamming transition similar

to the one presented in this thesis can be done for the sheared systems.
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• Our study of plastic deformation in sheared systems has revealed some inter-

esting features. More analysis can reveal whether we can capture units of shear

Transformation Zones or not. Moreover, the correlation between plastic de-

formation, and shear-induced anisotropy has yet to be studied. Probing these

issues can help in improving our understanding of plastic failure events.

• A longstanding problem in granular systems is the response of the system to

small perturbations, or finding the “Green’s function” for the system. The

experimental setup, and the force measurement technique we have developed

can be used effectively to obtain such a response function for both isotropic,

and anisotropic stress states.

• returning to a general theme, all of our experiments have been performed on

very soft particles. We have not established how does particle elasticity affect

any of the effects observed in our experiments. We can study these effects by

using harder particles, which are also closer to many numerical simulations,

and theoretical studies.

6.2.2 Improvements in experimental methods

The experimental improvements proposed here are based on the questions raised

above, and our experience about the limitations of the experimental approach out-

lined in this thesis. As mentioned in the previous section, we may need to extend our

experiments to include harder particles. Also, the issue of low-force measurements

needs consideration. Accurate measurements of low forces requires a material with

more sensitive stress-optic response.

During the course of experiments presented in this thesis, we have encountered an

issue, which somewhat limits our scope of analyses, and was mentioned in chapter 4.

At the very low-force end, during compression or shear, we encounter a very small but
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noticeable induced-shear effect. When the grains are about to touch each other, the

packing fraction of the system is low. In this regime, there are two effects of moving

the boundary walls of the biaxial test apparatus; one effect is meso-scale frozen-in

stresses, and the other effect is a lag in the transmission of the effects of moving a

boundary to the bulk sample. Both issues are related and possibly have a common

cause.

The meso-scale frozen-in stresses refer to small fragments of force-chains, which

can not be removed by tapping or other mechanisms. This happens most frequently

near the boundaries of the system, and could be due to locally enhanced packing

fraction. It results in a slightly anisotropic stress state.

The transmission of the effects of moving a boundary do not reach the bulk system

until a sufficiently dense packing has been reached. If we start from an initial stress-

free state, some amount of compression goes towards compaction of the system, which

again is most prominant at the boundaries, which in turn causes small fragments of

force-chains locally.

One cause common to both these effects could be friction between the disks and

the Plexiglas base, which although not high is not negligibly small. It is most no-

ticeable, and pertinent when the overall stress is the system is very low; precisely

the kinds of situations described above. In low packing fraction states when a wall

is moved, ideally the grains near the boundary should start moving and come to

rest only when they are stopped by collisions with other grains, and so on for every

subsequent layer of grains. This would result in the effects wall-motion being carried

all the way to the bulk system. This does not happen in our experimental system

due to friction with the base. The grains near the wall move but stop before coming

in contact with any other grain.

We have planned for an improvement in the experimental setup, and a change
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in the material of our model granular system, which removes the above mentioned

problems all at once. In the next version of the experimental setup, we intend to

completely remove friction with the base by levitating the disks on a substrate with

air cushion, much like an air-hockey table. This would be accomplished by replacing

the Plexiglas base with a porous board and supplying pressurized air through it. It

would ensure that the grains behave exactly as described in the ideal case, and would

remove problems of frozen-in force-chain fragments, and transmission of wall-motion

to the bulk system.

A fall out of changing the base to a non-transparent material is that our current

method of transmission photoelasticity no longer works. We need to switch to reflec-

tion photoelasticity, where polarized light is reflected off of a material with metallic

backing, so that the same effect is accomplished, but with reflected light. The disks

we will use will have reflective backing, and the available material (Vishay Measure-

ments, PS-1) is stress-optically around 15 times more sensitive, and 700 times harder

than our present material. This new material is ideal for low-force measurements,

and is much closer to realistic hard grains.

Combining both these improvements would result in hard grains, with a high

stress-optic sensitivity, floating on a frictionless surface, a situation very close to

numerical simulations and theoretical models!

In conclusion, with the help of the improvements outlined above, combined with

the existing contact force measurement technique, future students could investigate

many of the open questions posed earlier, and I wish them happy investigating!
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Chapter 7

APPENDIX

In this appendix, we sketch the relevant formulations of the elasticity theory needed

in order to obtain the solution for the stresses in a disk under concentrated loads.

We need to begin with two-dimensional (2D) elasticity theory, give the solution to

the half-plane problem and then proceed to give the solution to the disk problem.

In order to solve for the stresses or strains within a stationary elastic solid sub-

jected to boundary forces, several additional conditions need to be met:

• Condition of equilibrium: The boundary forces and tractions must balance each

other, and the body must be in static equilibrium

• Constitutive relation: The relashionship between the stresses and strains must

be known.

• Compatibility condition: The deformations and strains must preserve the con-

tinuity of the solid.

For an elastic solid where either the stresses or the strains are negligible in the

third dimension, we have the so-called plane stress and plane strain situation respec-

tively. The plane stress situation is applicable to thin disk problem, whereas the

plane strain approximation is more suitable for a long cylinder loaded axially.

In two dimensions, the stress tensor has three independent components, σxx, σyy,

and σxy. The complete stress tensor is:

σ =

(

σxx σxy
σyx σyy

)

. (7.1)
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The condition of equilibrium is given by:







∂xσxx + ∂yσxy + Fx = 0

∂xσxy + ∂yσyy + Fy = 0
(7.2)

Alongwith the equilibrium conditions, for a 2D linear elastic solid, if there are no

body forces like gravity, the compatibility conditions for stresses are:

(∂2

x + ∂2

y)(σxx + σyy) = 0 (7.3)

These equations apply equally to plane stress and plane strain problems, and they

do not contain any material constants. The solution of any 2D problem can now be

attempted by knowing the boundary loads.

G. B. Airy introduced a function stress function Φ(x, y), which identically satisfies

the equilibrium conditions. The stress function is related to the stresses as:

σxx = ∂2
yΦ

σyy = ∂2
xΦ

σxy = ∂x∂yΦ

(7.4)

Substituting equation 7.4 in equation 7.3 yields:

∂4Φ

∂4x
+

∂4Φ

∂2x∂2y
+
∂4Φ

∂4y
= 0 (7.5)

The Airy stress function satisfies the bi-harmonic equation, and is most com-

monly used to solve a particular problem. There are very few problems that can be

solved by directly integrating the bi-harmonic equation. A more common strategy is

to make an educated guess for Φ, or use symmetries of the problem to find a stress
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function that will satisfy equation 7.5 and the boundary conditions; much like the

2D fluid flow problems of flow around objects of complex geometrical shapes. An-

other approach used often is to start with partial solutions from a known and solved

problem, and adjust the solution for the boundary conditions under consideration.

This approach, for example, has been used repeatedly, whenever the solution of the

half-plane problem can be used as a starting guess.

There are direct methods though, of solving equation 7.5. One method is to try

polynomial solutions and fix the coefficients so that the equation is satisfied. The

other approach is to use Fourier series, and find the coefficients in the series by

integration.

7.1 Half plane

Figure 7.1: Line load on a semi-infinite half plane.

Consider a line force F acting on a semi-infinite plane, as shown in Figure 7.1.

Consider an area element within the solid, at a distance r from the point of the

application of the force, and at an angle θ from the direction of the application of the
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force. The Cartesian coordinate system is as shown.

For the case of half plane, it is advantageous to solve the bi-harmonic equation

in polar coordinates. We assume the solution to be Φ = cFrθ sin θ, where c is a

constant. This form of Φ satisfies the compatibility condition, and from equilibrium

equations we have:

σrr =
2cF cos θ

r
, σθθ = 0, σrθ = 0 (7.6)

The force acting on any volume element at a distance r must be equal to the

applied force. Therefore, the boundary conditions become:

σθθ = 0, σrθ = 0, θ = ±π
2

(7.7)

2

∫ π

2

0

(σrr cos θ)rdθ = −F (7.8)

Substituting equation 7.6 in the above equation, we get:

4cF

∫ π

2

0

cos2 θdθ = −F (7.9)

Integrating the equation gives c = − 1

π
. Substituting the value of c in equation

7.6 gives for the radial stress,

σrr = −2F

π

cos θ

r
(7.10)

The Cartesian components of the radial stress in the XY axes shown in Figure

7.1 are given by:
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σxx = −2F

π

y3

(x2 + y2)2

σyy = −2F

π

yx2

(x2 + y2)2

σxy = −2F

π

y2x

(x2 + y2)2
(7.11)

This completes the solution for a line load on a semi-infinite plane. Two notewor-

thy points are:

• The contours of equal stress are circles with diameter d that have the X axis

as a tangent, and their centers are on the Y axis. The stress on these circles is

σrr = −2F
πd

.

• The direction of the application of the force does not have to be normal; the

angle to an area element is measured with respect to the direction of the force.

This property is used in deriving the solution to the disk problem.

7.2 Solution to the disk problem

Consider a disk with arbitrary number of forces acting on it as shown in Figure 7.2,

each having arbitrary magnitude and arbitrary direction. This is the most general

case that can be constructed for a 2D disk problem. The only condition on the forces

is that both components of forces are balanced, and the torques are balanced.

The disk problem again is no solved most fruitfully by direct methods but by

starting with a partial solution; in this case the half plane solution outlined above.

Each force is considered independently, and the stress field due to each force is as-

sumed to be of the same form as the radial stress of the half plane problem. It is clear
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Figure 7.2: Schematic diagram of a disk under concentrated loads.

that the disk problem has different boundary conditions and different symmetries,

therefore we will need to adjust the solution so as to match all boundary conditions.

The key difference here is that the circumference of the disk is stress-free except

at the points of application of forces. In the half plane problem, there was only one

force acting at one point and the boundary was flat. Here there are several forces,

and the arc segments between these load points are stress free.

The general solution follows exactly along the lines of a disk acted on by forces

along a chord, which is not the diameter of the disk. A consideration of a single force

tells us what the additional factor should be. The situation is illustrated in Figure

7.3. We assume a radial stress solution of the same form as the half plane. At point M

on the circumference, the compressive load is ( 2F
π

) cos θ1
r1

, along the direction AM. Let

O be the origin of polar coordinates, and the distances and angles are measured as

shown in Figure 7.3. The stress acting on the the element tangential to the boundary

at point M can be calculated from observing that the angle between the normal MO
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Figure 7.3: Point force on a disk along a chord.

to the element and the direction r1 is π
2
− θ2. Then we use the formula for the

projection of stress along any direction θ:

σr = σrr cos2 θ (7.12)

σθ = σrr sin θ cos θ (7.13)

To find the normal and the tangential components at M, we substitute π
2
− θ2 for

θ, and obtain:

σrr = −2F

π

cos θ1

r1
sin2 θ2 (7.14)

σrθ = −2F

π

cos θ1

r1
sin θ2 cos θ2 (7.15)

From the triangle AMN, r1 = d sin θ2, where d is the diameter of the disk, the

above equations can be written as:

σrr = − F

πd
sin (θ1 + θ2) −

F

πd
sin (θ2 − θ1) (7.16)

σrθ = − F

πd
cos (θ1 + θ2) −

F

πd
cos (θ2 − θ1) (7.17)
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This is the stress acting on the boundary element at M. It can be considered as

a superposition of three stresses:

• A normal stress uniformly distributed along the boundary:

− F

πd
sin (θ1 + θ2) (7.18)

• A shearing stress uniformly distributed along the boundary:

− F

πd
cos (θ1 + θ2) (7.19)

• A stress whose normal and tangential components are:

− F

πd
sin (θ2 − θ1) and − F

πd
cos (θ2 − θ1) (7.20)

The angle between the force F and the tangent at M is θ1 − θ2, therefore the

stresses in equation 7.20 are of magnitude F
πd

, and act in the direction opposite to

the direction of force F.

Now if we have a number of forces acting on a disk in static equilibrium, we

assume as before that each of them produces a radial stress distribution. Then the

stresses that need to be applied at the boundary in order to maintain such a stress

distribution are, from equation 7.18, equation 7.19, and equation 7.20:

• A normal stress uniformly distributed along the boundary:

−
∑ F

πd
sin (θ1 + θ2) (7.21)

• A shearing stress uniformly distributed along the boundary:

−
∑ F

πd
cos (θ1 + θ2) (7.22)
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• A stress whose intensity and direction is obtained by the vector sum of expres-

sions equation 7.20, where the summation is over all the forces on the boundary.

where,
∑

is the sum over all the forces acting on the disk.

Now the sum of the torques with respect to the center of the disk, due to all the

forces is given by:

∑ F cos (θ1 + θ2)d

2
, (7.23)

which is zero due to torque balance, which in turn means that the tangential stresses

equation 7.22 are zero. Also the third contribution to the stresses, the vector sum

of equation 7.20 is zero due to force balance. Therefore we are left with only one

additional term, equation 7.21. The effect of this term can be nullified by adding a

uniform tension of magnitude:

∑ F

πd
sin (θ1 + θ2) (7.24)

to the sum of radial distributions. In the end, the total stress field inside the disk

due to any number of arbitrary forces is given by:

σrr = −
∑

i

2Fi
π

cos θi
ri

+
∑

i

Fi
πd

sin (θ1 + θ2)i (7.25)

σrθ = 0 (7.26)
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[vN81] J. Šmid and J. Novosad, Pressure distribution under heaped bulk solids,
I. Chem. E. Symposium Series 63 (1981), D3/V/1–12.

[WCC97] J.P. Wittmer, M.E. Cates, and P. Claudin, Stress propagation and arch-

ing in static sandpiles, Journal de Physique I 7 (1997), 39.

[YN96] Y. Yang and K. A. Nelson, Impulsive stimulated thermal scattering

study of α relaxation dynamics and the debye-waller factor anomaly

in ca0.4k0.6(NO3)1.4, J. Chem. Phys. 104 (1996), 5429–5436.

[ZM05] H. P. Zhang and H. A. Makse, Jamming transition in emulsions and

granular materials, Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics) 72 (2005), no. 1, 011301.

128



Biography

Trushant Majmudar was born on September 23, 1971, in Mumbai, India. He spent his

school years in Mumbai. He graduated from Mithibai College, Bombay University in 1993,

with a specialization in Physics. He began his Mastres in Physics at University of Pune,

India, in 1993 and earned his Mastres in 1995.

He then, continued in University of Pune, to pursue his Ph. D in Physics, and nonlinear

dynamics in particular, under the guidance of Professor R. E. Amritkar. He left the program

in 1998 and came to the United states to pursue his Ph. D. first at Northeastern University.

He transferred to Duke University in the summer of 2000 to pursue his Ph. D. at Duke.

He joined Professor Bob Behringer’s lab and started studying granular physics. He has

developed a novel system of measurement to find grain-scale contact forces in a granular

system, and used it to study the behavior of granular systems under isotropic compression

and shear.

Current Publications:

1. T. S. Majmudar and R. P. Behringer. “Contact force measurements and stress-
induced anisotropy in granular systems.” Nature 435, 1079-1082 (2003).

2. Majmudar, T. S. and Behringer, R. P. “Contact forces and stress induced anisotropy.”,
Powders and Grains 2005, pp 65-68. Eds. Ramon Garcia-Rojo, Hans J. Herrmann
and Sean McNamara. Balkema, Amsterdam.

Conferences Attended and Contributed Presentations

• American Physical Society, Division of Fluid Dynamics. (2000-2006).

• Dynamics Days Workshop (2001,2003).

• Gordon Research Conference: Granular and Granular Fluid Flow. (2004).

• Powders and Grains, 2005, Stuttgart, Germany.

• APS March Meeting, 2006, Baltimore, MD.

129


